简谐振动动力学方程推导
- 格式:docx
- 大小:25.21 KB
- 文档页数:2
简谐振动的运动学方程一、简谐振动的概念和特征简谐振动是指在没有阻力的情况下,一个物体围绕着平衡位置做往复运动的现象。
简谐振动具有以下特征: - 循环性:振动物体围绕平衡位置做往复运动,一次完整的运动称为一个循环。
- 周期性:振动物体完成一个循环所需的时间称为振动的周期,记为T。
- 频率性:振动的频率是指单位时间内完成的循环数,记为f,与周期的倒数成正比。
二、简谐振动的描述简谐振动的运动学方程用来描述振动物体位置随时间的变化关系。
对于单摆、弹簧振子等简谐振动系统,可以根据其运动状态和受力情况建立相应的方程。
2.1 单摆的简谐振动单摆的简谐振动是指将一个质点用一根轻细线连接到固定点上,质点在重力作用下围绕该固定点做往复运动的现象。
单摆的运动学方程可以通过下面的推导得到:•设单摆的质点离开平衡位置的角度为θ,质点到固定点的距离为l。
•考虑到单摆的往复运动,可将角度θ表示为θ = θ0sin(ωt + φ),其中θ0为最大摆角,ω为角速度,t为时间,φ为相位角。
•根据几何关系可知,质点在水平方向上的位移为l sinθ,根据物体在一维直线运动中的位移与时间的关系,可得到质点在水平方向上的位移与时间的关系方程为x = l sin(θ0sin(ωt + φ))。
2.2 弹簧振子的简谐振动弹簧振子是指将一根具有一定弹性的弹簧的一端固定,另一端挂上质点后产生的简谐振动现象。
弹簧振子的运动学方程可以通过下面的推导得到:•设弹簧振子的质点离开平衡位置的位移为x,弹簧的劲度系数为k,质点的质量为m。
•根据胡克定律可知,弹簧的拉力与位移成正比,即F = -kx。
•根据牛顿第二定律可知,质点所受的合力与加速度成正比,即F = ma。
•将上述两个等式联立可得到弹簧振子的运动学方程为m*d2x/dt2 + kx = 0。
三、求解简谐振动的运动学方程为了求解简谐振动的运动学方程,我们需要确定简谐振动的周期、频率和振幅。
借助初态条件和边界条件,我们可以使用微分方程求解的方法得到简谐振动的解析解。
简谐振动动力学方程推导
简谐运动可以看做圆周运动的投影,所以其周期也可以用圆周运动的公式来推导。
圆周运动的;很明显v无法测量到,所以根据得到。
其中向心力F便可以用三角函数转换回复力得到即(F=-kx中负号只表示方向,所以在这省略)。
所以得到;
因为x与r之间的关系是:x=rcosα,所以上式继续化简得
到:。
然后再将v带入之前的圆周运动T中,即可得到。
将R记为匀速圆周运动的半径,即:简谐运动的振幅;
将ω记为匀速圆周运动的角速度,即:简谐运动的圆频率,
则:;
将φ记为 t=0 时匀速圆周运动的物体偏离该直径的角度(逆时针为正方向),即:简谐运动的初相位。
则,在t时刻:
简谐运动的位移x=Rcos(ωt+φ);
简谐运动的速度v=-ωRsin(ωt+φ);
简谐运动的加速度a=-ω2Rcos(ωt+φ),上述三式即为简谐运动的方程。