第三章位置与坐标教学案精编
- 格式:doc
- 大小:476.64 KB
- 文档页数:8
课时教案第周星期第节年月日课时教案星期第 节年 月 日课题2平面直角坐标系(第 1课时)31•理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念; 2 •认识并能画出平面直角坐标系;3 .能在给定的直角坐标系中,由点的位置写出它的坐标。
1•通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交 流意识;2 .通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵 坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系。
1•理解平面直角坐标系的有关知识;2 .在给定的平面直角坐标系中,会根据点的位置写出它的坐标;1. 横(或纵)坐标相同的点的连线与坐标轴的关系的探究; 2 .坐标轴上点的坐标有什么特点的总结。
电脑、投影仪第一环节 感受生活中的情境, 导入新课同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游, 那么你应怎样确定旅游景点 的位置呢?下面给出一张某 市旅游景点的示意图,根据示 意图(图5-6),回答以下问 题:(1) 你是怎样确定各个景 点位置的?(2)“大成殿”在“中心 广场”南、西各多少 个格? “碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度, 那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法, 这个问题中,大家看用哪种方法比较合适? 第二环节分类讨论,探索新知1•平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限 的划分。
学生自学课本,理解上述概念。
2•例题讲解(出示投影)例1二次备课例1 写出图中的多边形ABCDE各顶点的坐标。
(2)线段CE位置有什么特点?(3)坐标轴上点的坐标有什么特点?由B(0,—3) , C (3, - 3)可以看出它们的纵坐标相同,即B, C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。
《位置与坐标》单元教学设
重点;确定图形的位置,认识和画出平面直角坐标系,能根据坐标找出点的位置,也能根据点的位置用坐标来表示。
探索图形位置变化和图形坐标之间的关系。
难点:灵活运用各种方法描述物体的位置。
认识图形位置和坐标之间的关系,发展学生的空间观念。
单元知识
结构框架
及课时安
排
(一)单元知识结构框架
(二)课时安排
课时编号单元主要内容课时数
1 确定位置 1
2 平面直角坐标系 1
3 轴对称与坐标变化 1
4 回顾与反思 1
达成评价课题课时目标达成评价评价任务
确定位置1、能说出确定位置的
方法,并了解数对定
位、方位角与距离定位
和经纬度定位的方法。
2、经历探索确定位置
方法的过程,通过自主
学习,自由探索体会数自主学习、合作探
究、归纳总结从而得
出,在平面上确定物
体的位置方法多种
多样,但基本点是必
须用两个数据才能
正确描述。
活动一;知识再现、
旧知导入,激发兴
趣。
活动二;探究用有序
数对确定位置。
活动三;用方位角和
距离确定位置。
第三章位置与坐标2 平面直角坐标系第2课时平面直角坐标系中点的坐标特征教学目标1.在给定的坐标系下,会根据坐标描出点的位置.2.结合平面直角坐标系,知道不同象限中点的坐标的特征.3.通过找点、连线、观察,确定图形的大致形状,能进一步掌握平面直角坐标系的基本内容.教学重难点重点:平面直角坐标系中点的坐标特征.难点:会根据点的坐标特征判断点在哪个象限或哪条坐标轴上.教学过程导入新课在上节课中我们学习了平面直角坐标系的相关概念,练习了在平面直角坐标系中由点写坐标以及由坐标找点,利用上节课的知识来解决下列问题.B(-6, -3).设计意图:先回顾上节课的内容,让学生加深理解平面直角坐标系的知识,为学好本节课做铺垫.探究新知一、预习新知请同学们拿出准备好的坐标纸,然后按照给出的坐标,尝试在直角坐标系中描点,并依此用线段连接起来.①D(-3,5),E(-7,3),C(1,3);②F(-6,3),G(-6,0),A(0,0),B(0,3);观察所描出的图形,它像什么?学生独立认真地连线.师:(展示学生的作品),画出的图形是这样的吗?这幅图画得很美,你们觉得它像什么?生:这个图形像一座房子.师:要想准确地作出图形,我们应该注意什么问题呢?生1:看点的坐标时容易看错符号,所以就找错了点所位于的象限.生2:连线时没有用直尺或三角尺连线,画图不规范,另外点的顺序也容易出错.设计意图:通过在坐标系中描点、连线,很好地体现了数学的趣味性,数与形的结合完美地展现出来,大大激发了学生的学习热情.二、合作探究观察上面画出的图形,回答下列问题:师:图形中哪些点在坐标轴上,它们的坐标有什么特点?生:线段AG上的点都在x轴上,它们的纵坐标等于0,线段AB上的点都在y轴上,它们的横坐标等于0.师:线段EC与x轴有什么位置关系?点E和点C的坐标有什么特点?线段EC 上其他点的坐标呢?生:线段EC平行于x轴,点E和点C的纵坐标相同,线段EC上其他点的纵坐标相同,都是3.师:点F和G的横坐标有什么共同特点,线段FG与y轴有怎样的位置关系?生:点F和G的横坐标相同,线段FG与y轴平行.学生总结,教师点评:由上面的探究过程可以得到“平行于两轴的直线上的点”的坐标特征:(1) 平行于x轴的直线上的点:纵坐标相同;(2) 平行于y轴的直线上的点:横坐标相同.做一做:师:在“笑脸”上找出几个位于第一象限的点,指出它们的坐标,说说这些点的坐标有.教师总结:第一象限内的点的横、纵坐标符号都为“+”.师:在其他象限内分别找几个点,看看其他各个象限内的点的坐标有什么特点?学生分小组讨论,然后找代表说出本小组的答案.学生总结,教师点评得到“四个象限内点”的坐标特征:各象限内的点的坐标特点:点P(x,y)分别在:第一象限内,则x>0,y>0;第二象限内,则x<0,y>0;第三象限内,则x<0,y<0;第四象限内,则x>0,y<0.巩固练习已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0,解得m>2.答案:m>2典型例题【例1】观察图形,并回答以下问题:(1)写出多边形ABCDEF各个顶点的坐标;(2)线段BC,CE的位置各有什么特点?(3)计算多边形ABCDEF的面积.点的坐标?【解】(1)A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).(2)线段BC平行于x轴(或线段BC垂直于y轴),线段CE垂直于x轴(或线段CE平行于y轴).(3)S多边形ABCDEF=S△ABF+S长方形BCEF+S△CDE =12×6×2+3×6+12×6×1=6+18+3=27.【总结】纵坐标相同的点所在直线平行(重合)于x轴;横坐标相同的点所在直线平行(重合)于y轴.【例2】已知点P(a-2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【问题探索】在x轴上、y轴上的点的坐标各有什么特征?平行于x轴、y轴的直线上的点的坐标又有什么特征?【解】(1)因为点P(a-2,2a+8)在x轴上,所以2a+8=0,解得a=-4,故a-2=-4-2=-6,则P(-6,0).(2)因为点P(a-2,2a+8)在y轴上,所以a-2=0,解得a=2,故2a+8=2×2+8=12,则P(0,12).(3)因为点Q的坐标为(1,5),直线PQ∥y轴,所以a-2=1,解得a=3,故2a+8=14,则P(1,14).(4)因为点P到x轴、y轴的距离相等,所以a-2=2a+8或a-2+2a+8=0,解得a=-10或a=-2.当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述,点P的坐标为(-12,-12)或(-4,4).【总结】横轴上点的纵坐标为0,纵轴上点的横坐标为0.平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.课堂练习1.在平面直角坐标系中,点P(m,1)在第二象限,则点Q(-m,0)在()A.x轴的负半轴上B.x轴的正半轴上C.y轴的负半轴上D.y轴的正半轴上2.点B的坐标为(3,-4),而直线AB平行于x轴,那么点A的坐标可能为()A.(3,-2)B.(2,4)C.(-3,2)D.(-3,-4)3.如果点B与点C的横坐标相同,纵坐标不同,则直线BC与y轴的关系为()A.平行B.垂直C.相交D.以上均不对4.设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?参考答案1.B2.D3.A4.解:(1)点M在第四象限.(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0).(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上(a=0,b<0).课堂小结1.“平行于两坐标轴的直线上的点”的坐标特征:(1) 平行于x轴的直线上的点:纵坐标相同;(2) 平行于y轴的直线上的点:横坐标相同.2.“两坐标轴上的点”的坐标特征:(1)x轴上的点的坐标:纵坐标为0(2)y轴上的点的坐标:横坐标为0.3.“四个象限内的点”的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).布置作业习题3.3第1,2题板书设计2 平面直角坐标系第2课时平面直角坐标系中点的坐标特征1.“平行于两坐标轴的直线上的点”的坐标特征.2.“两坐标轴上的点”的坐标特征.3.“四个象限内的点”的坐标特征.。
教学目标:1.能够理解和使用位置和坐标的基本概念。
2.能够在二维空间中确定点的位置和坐标。
3.能够通过坐标计算和描述物体之间的相对位置关系。
教学重点:1.位置和坐标的概念。
2.在二维空间中确定点的位置和坐标。
3.通过坐标计算和描述物体之间的相对位置关系。
教学难点:通过坐标计算和描述物体之间的相对位置关系。
教学准备:教材、黑板、粉笔、尺子、直角、透明坐标纸、印有图形的卡片教学过程:一、导入(10分钟)1.师生问好,营造良好的学习氛围。
2.通过实际生活中常用的参照物来引出位置和坐标的概念。
3.通过提问和学生回答的方式,让学生了解和理解位置和坐标的意义。
二、概念解释与归纳(10分钟)1.教师在黑板上写出“位置”和“坐标”两个词,让学生分组讨论其含义。
2.学生上台依次解释位置和坐标,教师逐渐整理出位置和坐标的定义。
3.通过问答的方式,让学生归纳出位置和坐标的特点和关系,并记录在黑板上。
三、探究位置与坐标(20分钟)1.教师发放透明坐标纸和印有图形的卡片,要求学生按照卡片上图形的位置在坐标纸上标出相应的位置和坐标。
2.学生完成后,教师指导学生一起检查和讨论对错,纠正学生的错误。
3.教师针对学生常犯的错误情况,进行解释和讲解,澄清学生对位置和坐标的理解。
4.教师提出问题引导学生思考:通过坐标计算和描述物体之间的相对位置关系。
四、通过例题巩固知识(20分钟)1.教师出示一张地图,上面标有不同地点的坐标,让学生根据坐标确定地点,并描述其位置关系。
2.学生个别或小组完成练习后,教师随机组织学生上台解答,鼓励学生口头描述和简单计算。
五、拓展练习(15分钟)1.教师给学生出示一道应用题“小明现在在平面直角坐标系的原点(0,0)处,他向东走3个单位,再向北走4个单位,最后向西走2个单位。
请问,小明现在的位置是?”2.鼓励学生自己思考,利用所学知识解题,然后学生互相交流答案和解题方法。
六、巩固与总结(5分钟)1.教师对本节课的重点内容进行梳理和总结,引导学生进行回顾和思考。
位置与坐标教案一、教学目标1. 知识与能力目标:(1)正确理解位置和坐标的概念;(2)掌握描述位置和坐标的方式;(3)能够在平面直角坐标系中标出给定点的位置。
2. 过程与方法目标:(1)通过观察、实验、讨论等方式培养学生的观察力和思维能力;(2)利用学生自主探究的方式引导学生主动参与学习。
3. 情感、态度与价值观目标:(1)培养学生积极参与课堂活动的态度;(2)培养学生乐于观察与探究的学习态度。
二、教学重点和难点1. 教学重点:位置和坐标的概念、位置和坐标的描述方式。
2. 教学难点:能够在平面直角坐标系中标出给定点的位置。
三、教学过程1. 导入新课使用多媒体工具展示图片,让学生观察图片中的物体的位置,并引导学生回答相关问题。
(1)图片上的物体有哪些?(2)这些物体的位置如何描述?2. 探究位置和坐标的概念引导学生进行观察实验,比如让学生观察教室里各个物体的位置,并让学生反思它们的位置是如何描述的。
引导学生总结位置的描述方式,并概括出位置的概念。
引导学生进行对话,让学生思考位置和坐标的关系。
3. 学习位置的描述方式展示图片,让学生观察图片中的物体的位置,并引导学生描述出物体的位置。
让学生交流各自描述的方式,并进行汇总总结。
使用平面直角坐标系的方法,引导学生描述出物体的位置,并进行巩固练习。
4. 深化学习让学生找出教室中的几个固定点,比如(0,0)、(1,0)、(0,1),并通过引导让学生描述其他物体相对于这些固定点的位置。
通过练习巩固学习成果,让学生能够准确描述出物体的位置。
5. 拓展思考通过展示不同的地图,让学生从地图中找出自己感兴趣的地点,并描述出这些地点的位置。
学生之间进行分享讨论,让学生了解到不同位置的特点。
四、教学反思通过本节课的教学,学生能够正确理解位置和坐标的概念,并能够准确描述出物体的位置。
教师在课堂上采用了多媒体工具,结合实际情境进行教学,使学生能够积极参与学习。
通过观察实验、讨论等方式,培养了学生的观察力和思维能力。
分课时教学设计教师活动1:活动意图说明:(2)求△ABC 的面积[96]第11题 第12题(1) 第12题(2)12.(1)已知A(1,4),B(-4,0),C(2,0).△ABC 的面积是[12](2)若BC 的坐标不变, △ABC 的面积为6,点A 的横坐标为-1,那么点A 的坐标为 (-1,2)或(-1,-2)选做题:13.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (﹣2,1),B (1,3),将线段AB 经过平移后得到线段A ′B ′,若点A 的对应点为A ′(3,2),则点B 的对应点B ′ 的坐标是(6,4) .14.若点P (2﹣m ,3m+1)在坐标轴上,则点P 的坐标为(0,7)或(37,0) 15、已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是(2,2)或者(-2,2)16.已知等边△ABC 的两个顶点坐标为A (-4,0),B (2,0),求:(1)点C 的坐标;[-1,33)或(-1,-33)]17.如图,四边形ABCD 各个顶点的坐标分别为 (–2,8),(–11,6),(–14,0),(0,0)求出这个四边形的面积。
解析:利用割补法,四边形面积=两个三角形面积+梯形面积。
答案80.必做题:1.下列各点中,在第二象限的点是( C)A.(2,4) B.(2,-4)C.(-2,4) D.(-2,-4)2.在平面直角坐标系中,点P(x2+2,-3)所在的象限是(D)A.第一象限 B.第二象限C.第三象限 D.第四象限3.在平面直角坐标系xOy中,点A(-3,4)关于y轴对称的点的坐标是( D) A.(3,-4) B.(-3,-4)C.(-3,4) D.(3,4)4.若A(a,b)在第二、四象限的角平分线上,a与b的关系是 a=﹣b.5.在直角坐标系内,点A(3,)到原点的距离是 4 .6.点P(3,﹣5)关于y轴对称的点的坐标为(﹣3,﹣5).7.已知点P的坐标为(2a+3,a-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过点A(2,-3),且与x轴平行的直线上.解:(1)因为点P的纵坐标比横坐标大3,所以a-1-(2a+3)=3,解得a=-7,所以2a+3=-11,a-1=-8,所以点P的坐标为(-11,-8).(2)因为点P在过点A(2,-3),且与x轴平行的直线上,所以a-1=-3,解得a =-2,所以2a+3=-1,所以点P的坐标为(-1,-3).选做题:8.已知P(a+1,b﹣2),Q(4,3)两点.(1)若P,Q两点关于x轴对称,求a+b的值(2)若点P到y轴的距离是3,且PQ∥x轴,求点P的坐标.解:(1)∵P,Q两点关于x轴对称,∴a+1=4,b﹣2=﹣3,∴a=3,b=﹣1,∴a+b=3﹣1=2;(2)∵点P到y轴的距离是3,∴点P的横坐标为3或﹣3,又∵PQ∥x轴,∴点P的纵坐标为3,∴P(3,3)或(﹣3,3)9.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)描点如图;(2)依题意,得AB∥x轴,且AB=3﹣(﹣2)=5,∴S△ABC=5×2÷2=5;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,﹣3).。
第三章位置与坐标1 确定位置教学目标教学反思1.理解在平面内确定一个物体的位置一般需要两个数据,灵活运用不同的方式确定物体的位置.2.经历在现实生活中确定物体位置的过程,感受确定物体位置的多种方法.3.体验生活中处处有确定位置,感受现实生活中确定位置的必要性.教学重难点重点:理解在平面内确定一个物体的位置一般需要两个数据.难点:灵活运用不同的方式确定物体的位置.教学过程导入新课提出问题:1.在数轴上,确定一个点的位置需要几个数据呢?学生:一个,例如A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置.2.在平面内,又如何确定一个点的位置呢?小明父子二人周末去电影院看电影,座位号分别是3排6座和6排3座.怎样才能既快又准地找到座位?设计意图:利用学生感兴趣的生活知识,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,以愉快的心情开始一节课的学习,激发学习数学的积极性.探究新知一、预习新知让学生自主预习课本54~56页,并思考下面的问题:1.在电影院内如何找到电影票上指定的位置?2.在电影票上,“3排6座”与“6排3座”中的“6”的含义有什么不同?3.如果将“3排6座”简记作(3,6),那么“6排3座”如何表示?(5,6)表示什么含义呢?(教师巡视)学生独立思考,然后小组内讨论,最后学生代表发表各小组的见解.设计意图:这样能较好地体现数学的实践性,可以形成良好的数学观.二、合作探究在电影院内,确定一个位置一般需要几个数据?两个数据,排数和座位号数.教师总结:我们称这种方法为行列定位法.“3排6座”可以记作(3,6),“6排3座” 可以记作(6,3),它们的前后顺序可以交换吗?这两个数据各自表示的意义不同,不能交换前后顺序,我们把这样的这样的数据叫做有序实数对.(学生总结,教师点评)在平面内,确定一个物体的位置一般需要两个数据.根据有序实数对怎样确定教室里每个人的位置?我们把竖行叫做列,确定第几列一般从左往右数,引导学生按列报数,把横行叫做排,确定第几排一般从前往后数,引导学生按排报数.做游戏教学反思(1)第二列同学拍拍肩,第五排同学站起来,谁做了两次动作,请说说你的位置.(2)第四列同学举手,第三排同学拍拍手,谁做了两次动作,请说说你的位置.在生活中,确定物体的位置还有其他方法吗?与同伴交流.方向定位法、经纬度定位法、区域定位法.巩固练习电影院的3排6座表示为(3,6),如果某同学的座位号为(7,5),那么该同学所坐的位置是()A.5排7座B.7排5座C.5座7层D.7排5层答案:B典型例题【例1】观察如图所示象棋盘,回答问题:(1)请你说出“将”与“帅”的位置;(2)说出“马3 进4”(即第3 列的马前进到第4列)后的位置.【问题探索】只要把每个棋子所在的行和列表示清楚本题就解决了.【解】(1)(5,9),(5,1)(注:第一个数字是列数,第二个数字是行数);(2)(4,7).【总结】利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.【例2】一家超市的位置如图,则学校在这家超市的什么位置?【问题探索】用方向定位法确定物体的位置时,一般先考虑什么?再确定什么?【解】学校在超市的南偏西60°方向,且距离超市500米处.【总结】确定位置的方法有多种,但都需要两个数据.方向定位法所需的两个数据:一是方向角;二是距离.要避免出现缺少其中一个数据的错解.课堂练习1.七(2)班有45人参加学校运动会的入场式,队伍共9排5列.如果用(2,4)表示第2排从左至右第4列的同学,那么在队伍最中间的同学应表示为()A.(15,4)B.(2,3)C.(3,0)D.(5,3)2.生态园位于县城东北方向5公里处,下列选项中表示准确的是()A BC D3.现规定向东、向北走为正.小林向东走5米,再向南走8米,记作(5,-8),那么,(-3,6)表示______.4.如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.参考答案1.D2.B3.向西走3米,再向北走6米4.解:A(0,0),C(3,3),D(1,2),E(4,1),F(2,4),G(5,4).课堂小结(学生总结,老师点评)在平面内,确定一个物体的位置一般需要两个数据,也就是有序实数对.确定位置的方法:行列定位法、方向定位法、经纬度定位法、区域定位法.布置作业随堂练习第1题,习题3.1第2题板书设计1 确定位置在平面内,确定一个物体的位置一般需要两个数据.教学反思。
平面直角坐标系1.平面内确定位置的几种方法:○1有序数对:有两个数据a和b表示,记为_______○2方位角+距离法○3经纬定位法○4区域定位法2.平面直角坐标系:在平面内,两条互相______且具有公共______的数轴组成平面直角坐标系.其中水平方向的数轴叫______或______,向_____为正方向;竖直方向的数轴叫_______或______,向______为正方向。
两条数轴交点叫平面直角坐标系的_______.3.平面内点的坐标:对于平面内任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a 叫P的____坐标,y轴上的垂足对应的数b叫P的_______坐标。
有序数对(a,b),叫点P的坐标。
若P的坐标为(a,b),则P到x轴距离为_______,到y轴距离为_______.4.平面直角坐标系内点的坐标特征:(1)(2)坐标轴上的点不属于任何象限,它们的坐标特征○1在x轴上的点______坐标为0;○2在y轴上的点______坐标为0;(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征○1点P(a,b)关于x轴对称点P1_____________ ;○2点 P(a,b)关于y轴对称点P2_____________ ;○3点P(a,b)关于原点对称点P3_____________ 。
5.平行于x轴的直线上的点______坐标相同;平行于y轴的直线上的点_______坐标相同.6.探索图形变换与坐标变化规律(1)若两个图形关于x轴对称.则对应各点横坐标_________,纵坐标互为___________.(2)若两个图形关于y轴对称,则对应各点纵坐标_________,横坐标互为___________.(3)将一个图形向上(或向下)平移n(n>0)个单位,则图形上各点横坐标____,纵坐标加上(或减去)n个单位.(4)将一个图形向右(或向左)平移n(n>O)个单位,则图形上各点纵坐标____,横坐标加上(或减去)n个单位.(5)纵坐标不变,横坐标分别变为原来的a倍,则图形为原来横向伸长的a倍(a>1)或图形横向缩短为原来的a倍(0<a<1)。
(6)横坐标不变,纵坐标分别变为原来的a倍,则图形为原来纵向伸长的a倍(a>1)或图形纵向缩短为原来的a倍(0<a<1)。
横坐标与纵坐标同时变为原来的a倍,则图形被放大,形状不变(a>1)。
【过手练习】1、下列数据不能确定物体位置的是()A.4楼9号B.北偏东300 C.希望路25号D.东经1180、北纬4502、下列语句中不正确的是()A.平面直角坐标系把平面分成了四部分,坐标轴上的点不在任何一个象限内.B.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.C.坐标轴上的点与有序实数对是一一对应的.D.凡是两条互相垂直的直线,都能组成平面直角坐标系.3、平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等 B.纵坐标相等C.横坐标和纵坐标都相等 D.以上结论都不对4、在坐标平面内,有一点P(a,b),若ab=0,那么点P的位置在()A.原点B.x轴上C.y轴D.坐标轴上5、已知点P(x,y)在第四象限,且|x|=3,|y|=5,则P点的坐标是()A.(-3,5) B.(5,-3)C.(-3,-5)D.(3,-5)6、纵坐标为-3的点一定在()A.与x轴平行,且距离为3的直线上B.与y轴平行,且距离为3的直线上C.与x轴负半轴相交,与y轴平行,且距离为3得直线D.与y轴负半轴相交,与x轴平行,且距离为3得直线7、用两个数字来确定一个点的位置是常用的确定位置的方法,如图,A点用(2,3)来表示,那么B点的位置为.8、点P(a+5,a-2)在x轴上,则a =________.9、若点A(a,b)在第三象限,则点(-a+1,3b-5)在第______象限.10、A(8,-7)和点M 关于原点对称,则M 点坐标为________.【拓展训练】1、点P (-6,5)到x 轴的距离是 ,到y 轴的距离是 ,到原点的距离是 .2、以点P (0,-1)为圆心,3为半径画圆,分别交y 轴的正半轴、负半轴于点A 、B ,则点A 坐标为 ,B 点坐标为 .3、点P (6,-4)关于x 轴对称点P '的坐标为 ,关于y 轴对称点P ''的坐标为 .4、若点(3a-6,2a+10)是y 轴上的点,则a 的值是________.5、将一个图形的每一点的纵坐标保持不变,横坐标乘以-1后所得的新图形与原图形( )A.关于x 轴对称B.关于y 轴对称C.关于原点轴对称D.向左平移1个单位6、平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系 是 ( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.无法确定7、在直角坐标系中,已知A(1,3), B(-1,3),则下列说法正确的是( )A.点A 、B 关于x 轴对称B.直线AB 平行于y 轴C.A 、B 间的距离是2D.A 、B 间的距离是68、点A (a -1,5),B (3, b )关于y 轴对称,则___=+b a .9、已知)4,(),3(b N a M 、-,根据下列条件求出b a 、的值; (1)N M 、两点关于x 轴对称;(2)N M 、两点关于y 轴对称;(3)N M 、两点关于原点对称;【课后作业】1.如图1-5-2所示,○士所在位置的坐标为(-1,-2),相所在位置的坐标为(2,2那么,"炮"所在位置的坐标为______.2、已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则P 点坐标为___________3.坐标平面内的点与___________ 是一一对应关系.4.若点M (a,b )在第四象限,则点M (b -a,a -b )在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若P (x ,y )中xy=0,则P 点在( )A .x 轴上B .y 轴上C .坐标原点D .坐标轴上6.若P (a,a -2)在第四象限,则a 的取值范围为()A.-2<a<0 B.0<a<2 C.a>2 D.a<0A(a,b)的位置在()78.已知M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a等于()A.1 B.2 C.3 D.09.如图1-5-3,方格纸上一圆经过(2,5),(-2,l),(2,-3),( 6,1)四点,则该圆的圆心的坐标为()A.(2,-1)B.(2,2)C.(2,1)D.(3,l)10.已知点P(-3, 2),点A与点P关于y轴对称,则A点的坐标为______11.矩形ABCD中的顶点A、B、C、D按顺时针方向排列,若在平面直角坐标系中,B、D两点对应的坐标分别是(2,0),(0,0),且A、C关于x轴对称,则C点对应的坐标是()A、(1,1)B、(1,-1)C、(1,-2)D、(2,-2)12.点P(3,-4)关于y轴的对称点坐标为_______,它关于x轴的对称点坐标为_______.它关于原点的对称点坐标为_______.13.若P(a, 3-b),Q(5, 2)关于x轴对称,则a=___,b=______14.点(-1, 4)关于原点对称的点的坐标是()A.(-1,-4)B.(1,-4)C.(l,4)D.(4,-1)15.在平面直角坐标系中,点P(-2,1)关于原点的对称点在()A.第一象限B.第M象限C.第M象限D.第四象限16.对于任意实数x,(x,x-1)一定不在第___________象限.17.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在第_____________象限.18.P(-5,4)到x轴的距离是________,到y 轴的距离是_________19.与点P(a,b)与点Q(1,2)关于x轴对称,则a+b=__________20.如图1-5-18所示,已知边长为1的正方把OABC在直角坐标系中,B、C两点在第二象限内,OA与x轴外夹角为60°,那么B点的坐标为_____第三章 位置与坐标 练习题一、精心选一选1.点),(n m P 是第三象限的点,则 ( )(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <02.若点P 的坐标为)0,(a ,且a <0,则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴3.若点A 的坐标为(3,-2),点B 的坐标是(-3, -2),则点A 与点B 的位置关系是 ( )(A )关于原点对称 (B )关于x 轴对称 (C )关于y 轴对称 (D )无法判断4.点M (-2,5)关于x 轴的对称点是N ,则线段MN 的长是 ( )(A )10 (B )4 (C )5 (D )25.一只七星瓢虫自点(-2,4)先水平向右爬行3个单位,然后又竖直向下爬行2个单位,则此时这只七星瓢虫的位置是 ( )(A )(-5,2) (B )(1,4) (C )(2,1) (D )(1,2)6.以点(2,0)为圆心,以3为半径画一个圆,则这个圆与x 轴的交点是 ( )(A )(0,-1)和(0,5) (B )(-1,0)和(5,0)(C )(-1,0)和(5,0) (D )(0,-1)和(0,5)7.若点P ),(b a 在第四象限,则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.如图1所示,线段AB 的中点为C ,若点A 、B 的坐标分别是 (1,2)和(5,4),则点C 的坐标是( )(A )(3,3.5) (B )(3,2) (C )(2,3) (D )(3,3) 9.如图2,在直角坐标系中,△AOB 的顶点O 和B 的坐标分别是O (0,0),B (4,0),且∠OAB =90°,AO =AB ,则顶点A 关于x 轴的对称点的坐标是 ( )(A )(2,2) (B )(-2,2)(C )(2,-2) (D )(-2,-2) 10. 若0>xy ,且0>+y x ,则点)(y x P ,在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限X二、耐心填一填11.若点P 的坐标为(-3,4),则点P 到x 轴的距离是_____,到y 轴的距离是_____,到原点的距离是_____.12.过两点A (-2,4)和B (3,4)作直线AB ,则AB_____x 轴.13.如图3,Rt △AOB 的斜边长为4,一直角边OB 长为3,则点A的坐标是_____,点B 的坐标是_____.14.点A )2,(a 和点B ),3(b 关于x 轴对称,则ab =_____.15.商店在学校的东南方向,则学校在商店的_________.16.点P 的坐标是(-2,12 a ),则点P 一定在第_______象限.17.若点A 的坐标是(-2,3),点B 与点A 关于原点对称,点C 与点B 关于y 轴对称,则点C 的坐标是_____.18.一个矩形的两边长分别是3和4,已知它在直角坐标系中的三个顶点的坐标分别是(0,0),(4,0),(0,-3),则此矩形第四个顶点的坐标是_____.19.将点P (2,1)绕原点O 按顺时针方向旋转90°到点Q ,则点Q 的坐标是_____.20.如图4,∠OMA =90°,∠AOM =30°,AM =20米,OM =203米, 站在O 点观察点A ,则点A 的位置可描述为:在北偏东_____度的方向上,距离点O_____米.三、用心做一做 21. 已知点P(b a ,)在第二象限,且|a |=3,|b |=8,求点P 的坐标.22. 在平面直角坐标系中,描出下列各点:A (-2,-1),B (4,-1),C (3,2),D (0,2),并计算四边形ABCD 的面积.23. 如图5,每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O 出发,按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标;(2)按图中所示规律,标出下一个点F 的位置.图4一、选择题1.如图,小手盖住的点的坐标可能为( )5.点P (m+3,m ﹣1)在x 轴上,则点P 的坐标为( ))7.已知点A (2,0)、点B (﹣,0)、点C (0,1),以A ,B ,C 三点为顶点画平行四边形.则第四个顶点不可能在( )8.点A 在x 轴上,且与原点的距离为5,则点A 的坐标是 _________ .9。