2015年东北三省三校第一次高考模拟考试文科数学试题及答案
- 格式:doc
- 大小:990.00 KB
- 文档页数:12
第Ⅰ卷(共60分)【试卷综析】本试题是一份高三测试的好题,涉及范围广,包括集合、函数、导数、充要条件、不等式、简易逻辑、程序框图、数列、平面向量、三角函数、等高考核心考点,又涉及了集合、三角向量、简易逻辑、函数、导数应用等必考解答题型。
本题难易程度设计合理,梯度分明;既有考查基础知识的经典题目,又有考查能力的创新题目;从6,12等题能看到命题者在创新方面的努力,从18、21、22三题看出考基础,考规范;从20题可以看出考融合,考传统。
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.若集合}0|{≥=x x A ,且B B A = ,则集合B 可能是 A.}2,1{ B.}1|{≤x xC.}1,0,1{-D.R【知识点】集合及其运算A1 【答案解析】A 解析:A B B B A =⇒⊆,易知A 对【思路点拨】转化是关键。
【题文】2.下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是A.)62sin(π+=x y B.)32sin(π+=x yC.)32sin(π-=x yD.)62sin(π-=x y【知识点】三角函数的图像与性质 C3【答案解析】 D 解析:最小正周期为π,不起作用;把3π=x 带入解析式,函数取到最值,经检验D 符合。
【思路点拨】理解对称轴、对称中心在函数图像中的体现。
【题文】3.已知110a b<<,则下列结论错误的是A.22b a <B.2b aa b+> C.2b ab >D.2lg lg a ab <【知识点】不等式的概念与性质E1 【答案解析】C 解析:由110a b<<易得0b a <<两边都乘b ,且0b <,所以2ab b <,故C 错。
【思路点拨】不等式的性质要娴熟运用。
尤其倒数不等式的性质。
【题文】4.规定2,a b a b a b R +⊗=++∈ 、,若14k ⊗=,则函数()f x k x =⊗的值域A.(2,)+∞ B .),1(+∞ C .7[,)8+∞ D .7[,)4+∞ 【知识点】函数及其表示B1【答案解析】A 解析:由14k ⊗=得241k k +⇒=,()12f x k x x x ∴=⊗=⊗=222=>【思路点拨】新定义关键是会“套”模式,套的合适,准确。
2015年东北三省三校高三第一次联合模拟考试文科综合能力测试参考答案1-5 DCADB 6-10 CDBCA 11-15 CBBDB 16-20 DCDAC21-25 BDBAA 26-30 BCCDC 31-35 CABBA【地理】1.D 【解析】根据平均气温的季节变化可以确定甲河主要地处于亚热带地区、乙河和丁河主要处于热带地区、丙河处于温带地区;另根据降水量的差异可以确定乙河应为尼罗河,丁河为刚果河。
综合确定正确答案为D。
2.C 【解析】乌拉尔河为内流河,不参与海陆间水循环,A答案错误;根据各河径流季节分配来看,径流量季节变化率最小的是甲河,B答案错误;丙河地处于温带地区,径流量最大的季节出现在春季,其主要的补给水源应为季节性积雪融水,C答案正确;丁河径流量最大的季节出现在秋季,D答案错误。
3.A 【解析】材料中提到的技术是葡萄避雨栽培,所以应该在降水较多的地方可以发挥此技术的优势。
四个省份中福建的降水量最多,因此A答案正确。
4.D 【解析】材料中提到“下雨时使水顺膜流下再排除园外”,由此可以确定①的说法正确;材料中提到“该技术以防止和减轻葡萄病害发生,提高葡萄品质和生产效益为主要目的的一种栽培技术”,由此可以确定③的说法正确。
5.B 【解析】A、B选项对比分析可以看出B选项的说法更合理,符合曲线变化的趋势。
AC代表的是城市平均生活费用曲线,因此其上升或下降,分别表示平均生活费用的上升或下降。
C、D的说法都是错误的。
6.C 【解析】P1点出现时,平均效益曲线和平均生活费用差值达到最大,说明城市生活每人净效益达到最大,A选项错误;而因为城市生活每人净效益达到最大,所以对现有的城市居民是最佳规模,C选项正确。
当P2点出现时,AB和AC的差值为零并在P2点以后城市平均生活费用大于平均效益,说明这是该城市能容纳的最大的人口数量,人口不应继续增加,B、D选项错误。
7.D 【解析】图名为“某大陆东岸海岸线示意图”,再根据经纬度位置可以确定,该地区为澳大利亚东南部,处于亚热带季风性湿润气候区,只有D选项符合该地区的特征。
2015年东北三省三校第一次高考模拟考试文科数学参考答案二、填空题13.4030 14.-6 15.-16 16.②③④三、解答题 17.解:(1)设ΔABC 中,角A 、B 、C 的对边分别为 a 、b 、c ,则由已知:1sin 22bc θ=,0cos 4bcθ<≤,……4分可得,tan 1θ≥,所以:[,)42ππθ∈ ……6分(2)2()2sin ()[1cos(2)]42f ππθθθθθ=+=-+(1sin 2)sin 212sin(2)13πθθθθθ=+=+=-+ ……8分∵[,)42ππθ∈,∴22[,)363πππθ-∈,∴π22sin(2)133θ≤-+≤即当512πθ=时,max ()3f θ=;当4πθ=时,min ()2f θ= 所以:函数()f θ的取值范围是[2,3] ……12分 18.(本小题满分12分) 解:(1)150.00350100x x⨯=∴= 15401010035y y +++=∴= ……2分 400.00810050=⨯ 350.00710050=⨯ 100.00210050=⨯(3/g m μ)DCBAFE……5分(2)设A 市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种, ……8分 其中事件A“其中至少有一个为良”包含的 基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种, ……10分所以事件A“其中至少有一个为良”发生的概率是7()10P A =. ……12分 19.(本小题满分12分)(1)证明: ABCD 是菱形,//BC AD ∴. 又⊄BC 平面ADE ,AD ⊂平面ADE ,//BC ∴平面ADE . ……2分 又BDEF 是正方形,//BF DE ∴.BF ⊄平面ADE ,DE ⊂平面ADE ,//BF ∴平面ADE . ……4分 BC ⊂平面BCF ,BF ⊂平面BCF BC BF B =,∴平面BCF //平面AED .由于CF ⊂平面BCF ,知//CF 平面AED . ……6分 (2)解:连接AC ,记AC BD O =.ABCD 是菱形,AC ⊥BD ,且AO = BO .由DE ⊥平面ABCD ,AC ⊂平面ABCD ,DE AC ⊥.DE ⊂平面BDEF ,BD ⊂平面BDEF ,DE BD D =,∴AC ⊥平面BDEF 于O ,即AO 为四棱锥A BDEF -的高.……9分由ABCD 是菱形,60BCD ∠=,则ABD ∆为等边三角形,由AE =1AD DE ==,2AO =,1BDEF S =,136BDEF BDEF V S AO =⋅=, 23BDEF V V ==. ……12分 20.(本小题满分12分)解:(1)设动圆圆心坐标为(,)x y ,半径为r ,由题可知2222222(2)42x y r y x x r⎧-+=⎪⇒=⎨+=⎪⎩; ∴动圆圆心的轨迹方程为24y x = ……4分(2)设直线1l 斜率为k ,则12:2(1);:2(1).l y k x l y k x -=--=-- 点P (1,2)在抛物线24y x =上22448402(1)y xky y k y k x ⎧=∴⇒-+-=⎨-=-⎩设1122(,),(,)A x y B x y ,0>∆恒成立,即(),012>-k 有1≠k118442,2,,P P kky y y y kk--∴==∴=代入直线方程可得212(2)k x k-= ……6分 同理可得 2222(2)42,k kx y k k++==- ……7分 212221242421(2)(2)ABk ky y k k k k k x x k +----===-+--- ……9分 不妨设:AB l y x b =-+. 因为直线AB 与圆C2=解得3b =或1, 当3b =时, 直线AB 过点P ,舍 当1b =时, 由2216104y x x x y x=-+⎧⇒-+=⎨=⎩;32,||8AB ∆=P 到直线AB的距离为d =PAB的面积为 ……12分21.解:(1)由已知:()ln 12(0)f x x ax x '=++>,切点(1,)P a ……1分 切线方程:(21)(1)y a a x -=+-,把(0,2)-代入得:a = 1 ……3分 (2)(I )依题意:()0f x '=有两个不等实根设()ln 21g x x ax =++,则:1()2(0)g x a x x'=+> ①当0a ≥时:()0g x '>,所以()g x 是增函数,不符合题意; ……5分 ②当0a <时:由()0g x '=得:102x a=-> 列表如下:依题意:11()ln()022g a a -=->,解得:102a -<<综上所求:102a -<<,得证; ……8分(注:以下证明为补充证明此问的充要性,可使其证明更严谨,以此作为参考,学生证明步骤写出上述即可)方法一:当0>x 且0→x 时-∞→x ln ,112→+ax ,∴当0>x 且0→x 时-∞→)(x g)(x g ∴在1(0,)2a-上必有一个零点. 当a x 21->时,设x x x h -=ln )(,xx x x x h 22211)(/-=-=4>∴x 时,024ln )4()(<-=<h x h 即x x <ln 4>∴x 时,1221ln )(++<++=ax x ax x x g设x t =,12122++=++t at ax x 由0a <,+∞→x 时,0122<++t at0)(<∴x g )(x g ∴在1(,)2a-+∞上有一个零点 综上,函数)(x f y =有两个极值点时021<<-a ,得证.方法二2ln )(ax x x x f +=有两个极值点,即/()ln 12(0)f x x ax x =++>有两个零点,即xx a 1ln 2+=-有两不同实根. 设x x x h 1ln )(+=,2/ln )(x xx h -=,当0)(/>x h 时,10<<x ;当0)(/<x h 时,1>x当1=x 时)(x h 有极大值也是最大值为1)1(=f 12<-∴a ,2->a0)1(=eh ,故)(x h 在()1,0有一个零点当1>x 时,01ln 0ln >+∴>x x x 且011ln lim lim ==++∞→+∞→xx x x x 1>∴x 时1)1()(0=<<h x h0,02<∴>-∴a a综上函数)(x f y =有两个极值点时021<<-a ,得证.② 证明:由①知:/(),()f x f x 变化如下:由表可知:()f x 在12[,]x x 上为增函数,又/(1)(1)210f g a ==+> ,故211x x << (10)分所以:21)1()(,)1()(21->=><=<a f x f a f x f 即1()0f x <,21()2f x >-. ……12分22.选修4-1:几何证明选讲证明:(1)连结OE ,∵点D 是BC 的中点,点O 是AB 的中点,∴ OD 平行且等于12AC ,∴∠A =∠BOD , ∠AEO = ∠EOD , ∵OA = OE ,∴∠A = ∠AEO ,∴∠BOD = ∠EOD ……3分 在ΔEOD 和ΔBOD 中,∵OE = OB ,∠BOD= ∠EOD ,OD = OD , ∴ΔEOD ≌ ΔBOD ,∴∠OED = ∠OBD = 90°,即OE ⊥BD∵是圆O 上一点,∴DE 是圆O 的切线 ……5分 (II )延长DO 交圆O 于点F ∵ΔEOD ≌ ΔBOD ,∴DE = DB ,∵点D 是BC 的中点,∴BC = 2DB ,FC D MO BEA∵DE 、DB 是圆O 的切线,∴DE = DB ,∴DE ·BC = DE ·2DB = 2DE 2 ……7分 ∵AC = 2OD ,AB = 2OF ∴DM · AC + DM · AB = DM · (AC + AB ) = DM · (2OD + 2OF ) = 2DM · DF ∵DE 是圆O 的切线,DF 是圆O 的割线, ∴DE 2 = DM · DF ,∴DE · BC = DM · AC + DM · AB ……10分 23.选修4-4: 坐标系与参数方程解:(1)由 2cos ρθ=,得:22cos ρρθ=,∴ 222x y x +=,即22(1)1x y -+=, ∴曲线C 的直角坐标方程为22(1)1x y -+= ……3分由12x m y t⎧=+⎪⎪⎨⎪=⎪⎩,得x m +,即0x m -=,∴直线l的普通方程为0x m -= ……5分 (2)将12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩代入22(1)1x y -+=,得:221112m t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎝⎭,整理得:221)20t m t m m +-+-=,由0∆>,即223(1)4(2)0m m m --->,解得:-1 < m < 3设t 1、t 2是上述方程的两实根,则121)t t m +=-,2122t t m m =- ……8分 又直线l 过点(,0)P m ,由上式及t 的几何意义得212|||||||2|1PA PB t t m m ⋅==-=,解得:1m =或1m =,都符合-1 < m < 3, 因此实数m 的值为1或11 ……10分 24.选修4-5: 不等式选讲解:(1)当x < -2时,()|21||2|1223f x x x x x x =--+=-++=-+, ()0f x >,即30x -+>,解得3x <,又2x <-,∴2x <-;当122x -≤≤时,()|21||2|12231f x x x x x x =--+=---=--, ()0f x >,即310x -->,解得13x <-,又122x -≤≤,∴123x -≤<-;当12x >时,()|21||2|2123f x x x x x x =--+=---=-, ()0f x >,即30x ->,解得3x >,又12x >,∴3x >. ……3分 综上,不等式()0f x >的解集为1,(3,)3⎛⎫-∞-+∞ ⎪⎝⎭. ……5分(2)3,21()|21||2|31,2213,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=---≤≤⎨⎪⎪->⎪⎩ ∴min 15()22f x f ⎛⎫==- ⎪⎝⎭. ……8分 ∵0x R ∃∈,使得20()24f x m m +<,∴2min 542()2m m f x ->=-, 整理得:24850m m --<,解得:1522m -<<,因此m 的取值范围是15(,)22-. ……10分。
长春市2014—2015学年新高三起点调研考试数学试题卷(文科)【试卷综评】本试卷试题主要注重基本知识、基本能力、基本方法等当面的考察,覆盖面广,注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考等方面的考查。
第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)【题文】1. 已知集合{1,2,4}A =,{1,}B x =,若B A ⊆,则x = A. 1 B. 2 C. 2或4 D. 1或2或4【知识点】子集的概念;元素的互异性.A1【答案解析】C 解析:由题可得2x =或4x =才能满足集合的互异性. 故选C. 【思路点拨】利用集合的互异性即可.【题文】2. 如图,在复平面内,复数1z 和2z 对应的点分别是A 和B ,则12z z = A. 1233i - B. 1233i -+C. 1255i -D. 1255i -+【知识点】复数的除法运算.L4【答案解析】D 解析:由图可知:1z i =,22z i =-,则1212255z i i z i ==-+-. 故选D. 【思路点拨】由图得到复数1z 和2z求值.【题文】3. 下列函数中,既是奇函数又存在极值的是A. 3y x =B. ln()y x =-C. xy xe -= D.2y x x=+【知识点】函数奇偶性;函数单调性与函数极值. B4 B3 B12【答案解析】D 解析:由题可知,B 、C 选项不是奇函数,A 选项3y x =单调递增(无极值),而D 选项既为奇函数又存在极值. 故选D.【思路点拨】根据奇函数、存在极值的条件,即可得出结论.【题文】4. 已知向量m 、n 满足||2=m ,||3=n,||-=m n ⋅=m nA. B. 1- C. 2-D. 4-【知识点】向量的运算;向量的几何意义.F3【答案解析】C解析:由||-=m n 222||217-=+-⋅=m n m n m n 可知,2⋅=-m n . 故选C.【思路点拨】先把已知条件||-=m n . 【题文】5. 已知4sin cos 5αα+=,则sin 2α=A. 1225-B. 925-C. 925D.1225【知识点】同角基本关系;二倍角公式. C2 C6 【答案解析】B 解析:将4sin cos 5αα+=两边平方得,1612sin cos 1sin 225ααα=+=+,可得9sin 225α=-,故选B. 【思路点拨】将已知条件两边平方即可得到结果.【题文】6. 右图为一个半球挖去一个圆锥的几何体的三视图,则该几何体的体积为A.323πB. 8πC. 163πD.83π 【知识点】三视图;几何体体积. G2 G8【答案解析】D 解析:由题意知:该几何体体积=半球体积-圆锥体积=314182422333πππ⋅⋅-⋅⋅=,故选D. 【思路点拨】由题意知:该几何体体积=半球体积-圆锥体积,然后利用公式可求得结果. 【题文】7. 已知数列{}n a 为等差数列,其前n 项和为n S ,若420S =,6236S S -=,则该等差数列的公差d = A. 2- B. 2 C. 4-D. 4【知识点】数列基本量的求法. D2【答案解析】B 解析:由题意,123420a a a a +++=,345636a a a a +++=, 作差可得816d =,即2d =. 故选B.【思路点拨】由题意,123420a a a a +++=,345636a a a a +++=,作差可得结果.【题文】8. 若2xa =,12log b x =,则“a b >”是“1x >”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件 【知识点】初等函数的图像;充要条件.B6 B7 A2【答案解析】B 解析:如下图可知,“1x >”⇒“a b >”,而 “a b >”/⇒ “1x >”,因此“a b >”是“1x >”的必要不充分条件. 故选B.正视图侧视图俯视图【思路点拨】结合图形进行双向判断即可.【题文】9. 某圆的圆心在直线2y x =上,并且在两坐标轴上截得的弦长分别为4和8,则该圆的方程为 A. 22(2)(4)20x y -+-= B. 22(4)(2)20x y -+-=C. 22(2)(4)20x y -+-=或22(2)(4)20x y +++=D. 22(4)(2)20x y -+-=或22(4)(2)20x y +++= 【知识点】圆的标准方程;弦长. H3 H4【答案解析】C 解析:由题意可设圆心为(,2)a a ,半径为R ,则有2224416R a a =+=+或2221644R a a =+=+,解得2a =±,故选C.【思路点拨】由题意可设圆心为(,2)a a ,半径为R ,然后列出等式求解即可. 【题文】10. 执行如图所示的程序框图,则输出的结果是A. 14B. 15C. 16D. 17 【知识点】程序框图. L1【答案解析】C 解析:由程序框图可知,从1n =到15n =得到3S <-,因此将输出16n =. 故选C.【思路点拨】通过分析循环,推出循环规律,利用循环的次数,求出输出结果.【题文】11. 函数ln ||()x f x x=的图像可能是 OyxxOyOyxxOyA B C 【知识点】绝对值函数;函数的值域、奇偶性和单调性. B4 B3【答案解析】A 解析:由条件可知,该函数定义域为(,0)(0,)-∞+∞,且ln ||ln ||()()x x f x f x x x--==-=--,所以该函数为奇函数,图像关于原点对称,排除B 、C ,当01x <<时,ln 0x <,从而排除D. 故选A.【思路点拨】先根据已知判断函数的奇偶性,排除B 、C ,再利用当01x <<时,ln 0x <,从而排除D 即可.【题文】12. 过抛物线22y px =(0)p >的焦点F 作直线与此抛物线相交于A、B 两点,O 是坐标原点,当OB FB ≤时,直线AB 的斜率的取值范围是A. [(0,3]B. (,[22,)-∞-+∞C. (,[3,)-∞+∞D. [(0,22]-【知识点】抛物线的几何性质;直线与抛物线的位置关系. H7 H8【答案解析】D 解析:由题可知,点B 的横坐标4B px ≤时,满足OB FB ≤,此时B y ≤≤,故直线AB (即直线FB )的斜率的取值范围是[(0,22]-. 故选D.【思路点拨】由题可知,点B 的横坐标,结合已知条件,此时B y 的范围,即可求出直线AB (即直线FB )的斜率的取值范围.第Ⅱ卷(非选择题,共90分)二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).【题文】13. 若实数,x y 满足2211y x y x y x -⎧⎪-+⎨⎪+⎩≥≥≤,则2z x y =+的最小值为___________.【知识点】线性规划.E5【答案解析】1 解析:由题可知,可行域如右图,目标函数2z x y =+的几何意义为过区域内点的直线2y x z =-+的截距大小,故z 的最小值是1.【思路点拨】由题可知画出可行域,再结合目标函数2z x y =+的几何意义即可.【题文】14. 某渔民在鱼塘中随机打捞出60条大鱼,对它们做了标记后放回鱼塘,在几天后的又一次随机捕捞中打捞出80条大鱼,且其中包含标记后的大鱼5条,则鱼塘中大鱼的数量的估计值为___________. 【知识点】用样本估计总体. I2【答案解析】960 解析:设鱼塘中大鱼数量的估计值为M ,有56080M=,从而估算出M =960. 【思路点拨】设鱼塘中大鱼数量的估计值为M ,然后列出方程计算即可. 【题文】15. 若函数()sin()cos()f x x x ϕϕ=+++(||)2πϕ<为偶函数,则ϕ=__________.【知识点】三角函数奇偶性;两角和差公式;诱导公式. C3 C5 C2 【答案解析】4π解析:由题意可知())(||)42f x x ππϕϕ++<为偶函数,所以()42k k Z ππϕπ+=+∈,根据||2πϕ<,有4πϕ=【思路点拨】先根据已知条件判断出函数为偶函数,再利用ϕ的范围求之.【题文】16. 底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为a 的正三棱柱外接球的表面积为__________. 【知识点】几何体表面积. G8【答案解析】273a π,圆心到底面的距离为2a ,从而其外接圆的半径22227()212a R a =+=,则该球的表面积22743S R a ππ==. 【思路点拨】先根据已知条件求出外接圆的半径,再代入球的表面积公式即可求得结果. 三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).【题文】17.(本小题满分10分)已知等比数列}{n a 的各项均为正数,且24a =,3424a a +=. (1) 求数列}{n a 的通项公式;(2) 设n n a b 2log =,求数列{}n n a b +的前n 项和n T . 【知识点】等比数列通项公式;等比数列前n 项和公式. D3【答案解析】(1) 2n n a = (2) 1(1)222n n n +++- 解析:(1) 设等比数列的公比为q ,有12311424a q a q a q =⎧⎨+=⎩,解得12,2a q ==,所以2n n a =;(5分)(2) 由(1)知2log 2n n b n ==,有2n n n a b n +=+,从而21(1)(222)(12)222n n n n n T n ++=+++++++=+-. (10分)【思路点拨】(1)先把已知条件联立可解得12,2a q ==,然后再利用等比数列通项公式求之即可; (2) 先由(1)求出2n n n a b n +=+,再分别求等差等比数列的和然后相加化简即可. 【题文】18.(本小题满分12分)在△ABC 中,三个内角A 、B 、C 所对的边分别为a 、b 、c ,且c a C b -=2cos 2. (1) 求角B ;(2) 若△ABC 的面积S =4=+c a ,求b 的值. 【知识点】正弦定理与余弦定理;三角形面积. C8 【答案解析】(1) 3B π=(2) 2b =解析:(1) 根据正弦定理c a C b -=2cos 2可化为2sin cos 2sin sin B C A C =- 即2sin cos 2sin()sin B C B C C =+- 整理得2sin cos sin CB C =,即1cos 2B =,3B π=. (6分)(2) 由面积1sin 2S ac B ==4ac =,而4a c +=, 所以2a c ==,由3B π=可得△ABC 为等边三角形,所以2b =.(12分)【思路点拨】(1) 先利用正弦定理把边转化为角,再利用三角形的内角和进行转化化简即可.(2) 由面积公式得到4ac =,与4a c +=联立可得结果.【题文】19.(本小题满分12分)每年5月17日为国际电信日,某市电50信公司在电信日当天对办理应用套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元. 电信日当天参与活动的人数统计结果如图所示,现将频率视为概率. (1) 求某人获得优惠金额不低于300元的概率;(2) 若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出两人,求这两人获得相等优惠金额的概率.【知识点】古典概型;随机抽样. K2 I1 【答案解析】(1)56 (2) 415解析:(1) 设事件A =“某人获得优惠金额不低于300元”,则1501005()501501006P A +==++(6分)(2) 设事件B =“从这6人中选出两人,他们获得相等优惠金额”,由题意按分层抽样方式选出的6人中,获得优惠200元的1人,获得优惠500元的3人,获得优惠300元的2人,分别记为112312,,,,,a b b b c c ,从中选出两人的所有基本事件如下:11a b , 12a b ,13a b ,11a c ,12a c ,12b b ,13b b ,11b c ,12b c ,23b b ,21b c ,22b c ,31b c ,32b c ,12c c ,共15个,其中使得事件B 成立的为12b b ,13b b ,23b b ,12c c ,共4个,则4()15P B =. (12分)【思路点拨】(1) 直接利用概率公式即可; (2) 设事件B =“从这6人中选出两人,他们获得相等优惠金额”,由题意按分层抽样方式选出的6人中,获得优惠200元的1人,获得优惠500元的3人,获得优惠300元的2人,分别记为112312,,,,,a b b b c c ,然后列举出所有基本事件,再找出使得事件B 成立事件,利用概率公式即可.【题文】20.(本小题满分12分)如图所示几何体是正方体1111ABCD A BC D -截去三棱锥111B A BC -后所得,点M 为11AC 的中点.(1) 求证:11AC ⊥平面MBD ; (2)11D A BC -的体积. 【知识点】空间直线与平面的垂直关系;几何体体积.B4 C3 D1【答案解析】(1) 见解析(2)解析:(1) 证明:因为几何体是正方体1111ABCD A B C D -截取三棱锥111B A BC -后所得,11111111111111DA DC DM AC A M C M BA BC AC MBD BM AC A M C M DM BM M ⎫=⎫⇒⊥⎬⎪=⎭⎪⎪=⎫⎪⇒⊥⇒⊥⎬⎬=⎪⎭⎪⎪⎪ =⎭平面 ; (6分) (2)由题意知BD =M 到BD则△MBD的面积为12MBD S ∆==,由(1)知11AC ⊥平面MBD所以11111133D A BC MBD V S A C -∆=⋅= (12分)【思路点拨】(1) 直接利用线面垂直的判定死定理即可; (2)由题意知BD M 到BDMBD 的面积,然后代入体MAC 1DBCD 1A1积公式.【题文】21.(本小题满分12分)如图,椭圆22221x y a b+=(0)a b >>的左焦点为F ,过点F 的直线交椭圆于,A B 两点. AF 的最大值是M ,BF 的最小值是m ,满足234M m a ⋅=. (1) 求该椭圆的离心率;(2) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于,D E 两点,O 是坐标原点. 记GFD ∆的面积为1S ,OED ∆的面积为2S ,求12S S 的取值范围. 【知识点】椭圆的离心率;直线和椭圆的综合应用. H5 H8 【答案解析】(1)12 (2) 12S S >9 解析:(1) 设(,0)(0)F c c ->,则根据椭圆性质得,,M a c m a c =+=-而234M m a ⋅=,所以有22234a c a -=, 即224a c =,2a c =,因此椭圆的离心率为12c e a ==. (4分)(2) 由(1)可知2a c =,b =,椭圆的方程为2222143x y c c+=.根据条件直线AB 的斜率一定存在且不为零,设直线AB 的方程为()y k x c =+,并设1122(,),(,)A x y B x y 则由2222()143y k x c x y c c=+⎧⎪⎨+=⎪⎩消去y 并整理得 222222(43)84120k x ck x k c c +++-=从而有21212122286,(2)4343ck ckx x y y k x x c k k +=-+=++=++,(6分)22243(,)4343ck ck G k k -++.因为DG AB ⊥,所以223431443D ck k k ckx k +⋅=---+,2243D ck x k =-+. 由Rt FGD ∆与Rt EOD ∆相似,所以22222222122222243()()943434399()43ck ck ck S GD k k k ck S OD k k -+++++===+>-+. (12分)【思路点拨】(1) 设(,0)(0)F c c ->,则根据椭圆性质得224a c =后即可求出离心率; (2) 先求出椭圆的方程,然后设直线AB 的方程,再联立转化为关于x 的方程,由Rt FGD ∆与Rt EOD ∆相似可得12S S 的表达式,最后求出范围即可. 【题文】22.(本小题满分12分)已知函数2()1xe f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值;(2) 当a 取正实数时,求函数()f x 的单调区间;(3) 当4a =-时,直接写出函数()f x 的所有减区间.【知识点】函数与导数;导数的运算,函数的单调性、极值;函数与不等式. B3 B11 B12【答案解析】(1) 95a = (2) ()f x 的单调递增区间为(,a a--∞,)+∞,单调减区间为;(3) ()f x 的单调减区间是1(,)2-∞-,1(,12-,(1)++∞解析:(1)解:222(21)()(1)xax ax e f x ax -+'=+ (2分)因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点. 因此95a =. (4分)(2) 当a 取正实数时,222(21)()(1)xax ax e f x ax -+'=+, 令()0f x '=得2210ax ax -+=,当1a >时,解得12x x ==. 所以当x 变化时,()f x '、()f x 的变化是单调减区间为()a a a a;当01a <≤时,()0f x '≥恒成立,故()f x 的单调增区间是(,)-∞+∞. (9分)(3) 当4a =-时, ()f x 的单调减区间是1(,)2-∞-,1(,1)22--,(1)2++∞(12分)【思路点拨】(1) 求出导数,由条件得1()03f '=,解出a ,并检验是否为极值即可; (2) 求出导数,令()0f x '=,讨论a >1时的两根.并求出极值,讨论它们的符号,再讨论当0<a ≤1时,f (x )的单调性,即可得到a 的取值范围. (3) 直接写出函数()f x 的所有减区间即可.。
2015年黑龙江省某校高考数学三模试卷(文科)一.选择题1. 已知集合M ={x|(1−x)x >0},N ={y|y =x 2+2x +3},则(∁R M)∩N =( ) A {x|0<x <1} B {x|x >1} C {x|x ≥2} D {x|1<x <2}2. 已知复数Z =√3i (√3+i)2,Z ¯是Z 的共轭复数,则Z ⋅Z ¯=( )A 12 B 14 C 2 D 43. 下列命题中,m ,n 表示两条不同的直线,α、β、γ表示三个不同的平面. ①若m ⊥α,n // α,则m ⊥n ; ②若α⊥γ,β⊥γ,则α // β; ③若m // α,n // α,则m // n ;④若α // β,β // γ,m ⊥α,则m ⊥γ. 正确的命题是( )A ①③B ②③C ①④D ②④4. 在△ABC 中,已知b =3,c =3√3,A =30∘,则角C 等于( ) A 30∘ B 60∘或120∘ C 60∘ D 120∘5. 函数f(x)=sin(2x +φ)(|φ<π2|)的图象向左平移π6个单位后关于原点对称,求函数f(x)在[0, π2]上的最小值为( ) A −√32 B −12 C 12 D √32 6. 执行如图所示的程序框图,若输入a =110011,k =2,n =6,则输出的b 的值是( )A 102B 49C 50D 51 7. 下列说法正确的个数为( )①统计学中用相关系数r 来衡量两个变量之间线性关系的强弱,且|r|∈[0.75, 1],则这两个变量的相关性很强;②在线性回归模型中,R 2表示解释变量对于预报变量变化的贡献率,R 2越接近于1,表示回归效果越好;③在2×2列联表中,|ad −bc|越小,说明两个分类变量之间的关系越弱; ④命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” A 4 B 3 C 2 D 18. 如图所示是一个几何体的三视图,则这个几何体外接球的表面积是( )A 16πB 9πC 12πD 36π9. 已知函数f(x)=2lnx +1在点(1, f(1))处的切线为l ,点(a n , a n+1)在l 上,且a 1=2,则a 2015=( )A 22014−1B 22014+1C 22015−1D 22015+110.如图在平行四边形ABCD 中,已知AB =3,AD =2,∠DAB =60∘,2DP →=PC →,BQ →=QC →,则AP →⋅AQ →=( ) A 132B 152C 172D 19211. 双曲线C:x 2−y 26=1的左焦点为F ,双曲线与直线l:y =kx 交于A 、B 两点,且∠AFB =π3,则FA →⋅FB →=( )A 2B 4C 8D 16 12. 给出下列命题:①在区间(0, +∞)上,函数y =x −1,y =x 12,y =(x −1)2,y =x 3中有三个是增函数; ②若log m 3<log n 3<0,则0<n <m <1;③若函数f(x)是奇函数,则f(x −1)的图象关于点A(1, 0)对称; ④若函数f(x)=3x −2x −3,则方程f(x)=0有2个实数根, 其中正确命题的个数为( ) A 1 B 2 C 3 D 4二.填空题13. 已知抛物线y 2=2ax 的准线为x =−14,则其焦点坐标为________.14. 设不等式组{0≤x ≤20≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于1 的概率是________.15. 设实数x,y满足不等式组{x+2y−5>02x+y−7>0x≥0,y≥0,且x,y为整数,则3x+4y的最小值是________.16. 若函数y=f(x)对定义域的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)f(x2)=1成立,则称该函数为“依赖函数”.给出以下命题:①y=x是“依赖函数”;②y=1x是“依赖函数”;③y=2x是“依赖函数”;④y=lnx是“依赖函数”;⑤y=f(x),y=g(x)都是“依赖函数”,且定义域相同,则y=f(x)⋅g(x)是“依赖函数”.其中所有真命题的序号是________.三.解答题17. 已知数列{a n}的前n项和S n满足:S n=t(S n−a n+1)(t>0),且4a3是a1与2a2的等差中项.(1)求t的值及数列{a n}的通项公式;(2)设b n=2n+1a n,求数列{b n}的前n项和T n.18. 某学校组织高一高二两个年级的50名学生干部利用假期参加社会实践活动,活动内容是:①到社会福利院慰问孤寡老人;②到车站做义工,帮助需要帮助的旅客.各位同学根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:(1)用分层抽样的方法在到车站做义工的同学中随机抽取6名,求在高二年级的学生中应抽取几名?(2)在(1)中抽取的6名同学中任取2名,求选到的同学为高二年级学生人数的数学期望;(3)如果“到社会福利院慰问老人”与“到车站做义工”是两个分类变量,并且计算出随机变量K2=2.981,那么,你有多大把握认为选择到社会福利院慰问老人与到车站做义工是与年级有关系的?19. 如图.在四棱锥P一ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点.(1)证明:PA // 平面EDB;(2)证明:平面PAC⊥平面PDB;(3)求三梭锥D一ECB的体积.20. 已知椭圆E的中心在原点,焦点在坐标轴上,且经过两点M(−√22, √32)和N(1, √22).(1)求椭圆E的标准方程;(2)设F为椭圆的右焦点,过点F作斜率为1的直线l交椭圆于AB两点,以AB为直径的圆O 交y轴于P、Q两点,劣弧长PQ记为d,求d|AB|的值.21. 已知函数f(x)=1+lnxx(1)写出f(x)的单调递增区间;(2)若函数在区间(a, a+12)(其中a>0)上存在极值,求实数a的取值范围;(3)求证:当x≥1时,不等式f(x)>2sinxx+1恒成立.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.(本小题满分10分)选修4-1:几何证明选讲22. 在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.(1)求证:PCAC =PDBD;(2)若AC=3,求AP⋅AD的值.选修4-4:坐标系与参数方程23. 以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两坐标系中取相同的长度.已知曲线C1的极坐标方程为ρ=2cosθ,将曲线C1向左平移一个单位,再将其横坐标伸长到原来的2倍得到曲线C2.(1)求曲线C 2的直角坐标方程;(2)过点P(1, 2)的直线与曲线C 2交于A 、B 两点,求|PA||PB|的最小值.选修4-5:不等式选讲24. 已知m 是常数,对任意实数x ,不等式|3x +1|+|2−3x|≥m 恒成立 (1)求m 的最大值; (2)设a >b >0,求证:a +4a 2−2ab+b 2≥b +m .2015年黑龙江省某校高考数学三模试卷(文科)答案1. C2. B3. C4. D5. A6. D7. B8. B9. B 10. C 11. B 12. C 13. (14,0) 14. 1−π1615. 16 16. ②③ 17. 解:(1)当n =1时,S 1=t(S 1−a 1+1),所以a 1=t , 当n ≥2时,S n =t(S n −a n +1)① S n−1=t(S n−1−a n−1+1),② ①-②,得a n =t ⋅a n−1,即a n a n−1=t .故{a n }是首项a 1=t ,公比等于t 的等比数列,所以a n =t n ,… 故a 2=t 2,a 3=t 3由4a 3是a 1与2a 2的等差中项,可得8a 3=a 1+2a 2,即8t 3=t +2t 2, 因t >0,整理得8t 2−2t −1=0,解得t =12或t =−14(舍去), 所以t =12,故a n =12n .… (2)由(1),得b n =2n+1a n=(2n +1)×2n ,所以T n=3×2+5×22+7×23+...+(2n−1)×2n−1+(2n+1)×2n,③2T n=3×22+5×23+7×24+...+(2n−1)×2n+(2n+1)×2n+1,④③-④,得−T n=3×2+2(22+23+...+2n)−(2n+1)×2n+1…=−2+2n+2−(2n+1)×2n+1=−2−(2n−1)×2n+1…所以T n=2+(2n−1)×2n+1.…18. 解:(1)∵ 50名学生中有24名学生到车站做义工,其中高一有16名学生到车站做义工,高二有8名学生到车站做义工,∴ 用分层抽样的方法在到车站做义工的同学中随机抽取6名,在高二年级的学生中应抽取:624×8=2名.(2)在(1)中抽取的6名同学中有高一学生4名,高二学生2名,从中任取2名,取到高二年级的学生人数X的可能取值为0,1,2,P(X=0)=C42C62=25,P(X=1)=C21C41C62=815,P(X=2)=C22C62=115,EX=0×25+1×815+2×115=23.(3)∵ K2=2.981>2.706,且P(K2≥2.706)=0.1=10%,∴ 认为“选择到社会福利院慰问老人与到车站做义工是与年级没有关系”的概率为10%,∴ 有90%把握认为选择到社会福利院慰问老人与到车站做义工是与年级有关系的.19. 解:(1)证明:设AC∩BD=O,连接EO.∵ 底面ABCD是正方形,∴ 点O是AC的中点,在△PAC中,EO是中位线,∴ EO // PA.∵ PA⊄平面EDB,EO⊂平面EDB,∴ PA // 平面EDB.(2)证明:∵ 底面ABCD是正方形,∴ AC⊥BD,∵ PD⊥底面ABCD,∴ PD⊥AC.∵ PD∩BD=D,∴ AC⊥平面PBD,∵ AC⊂平面PAC,∴ 平面PAC⊥平面PDB.(3)取CD的中点F,连接EF,则EF // PD,EF=12PD=1,∵ PD ⊥底面ABCD , ∴ EF ⊥底面ABCD .∴ V 三棱锥D−ECB =V 三棱锥E−BCD =13×12×22×1=23.20. 解:(1)设椭圆E 的标准方程为:x 2a2+y 2b 2=1,则{12a 2+34b 2=11a 2+12b 2=1,解得:{a 2=2b 2=1, ∴ 椭圆E 的标准方程为:x 22+y 2=1;(2)由(1)可知F(1, 0),则直线l 方程为:x −y −1=0,联立直线与椭圆方程,消去y 整理可知:3x 2−4x =0, 解得:x =0或x =43,不妨记A(0, −1)、B(43, 13),则线段AB 的中点T(23, −13),∴ AT =√(0−23)2+(−1+13)2=2√23, 设Q(0, y),则QT =2√23,即√(0−23)2+(y +13)2=2√23, 解得:y =13或y =−1,记P(0, −1)、Q(0, 13),则d =14⋅2π⋅AT ,∴d |AB|=π2AT 2AT=π4.21. 解:(1)f(x)=1+lnx x 的定义域为(0, +∞),f′(x)=1−1−lnx x 2=−lnxx 2,当x ∈(0, 1)时,f′(x)>0; 当x ∈(1, +∞)时,f′(x)<0; 故f(x)的单调增区间为(0, 1);(2)∵ 函数f(x)在区间(a, a +12)(其中a >0)上存在极值, ∴ a <1<a +12, 解得,12<a <1;(3)证明:令g(x)=1+lnx x−2x+1=(x+1)(1+lnx)−2xx(x+1),令ℎ(x)=(x +1)(lnx +1)−2x ,ℎ′(x)=lnx +1+1x +1−2=lnx +1x >0; 故ℎ(x)在[1, +∞)上是增函数, 故g(x)≥g(1)=0; 故1+lnx x≥2x+1,(当且仅当x =1时,等号成立);又∵ 2sinxx+1≤2x+1,(当且仅当sinx =1时,等号成立); ∴ 在x =1时,等号不能同时成立; 故当x ≥1时,不等式f(x)>2sinx x+1恒成立.22. (1)证明:∵ ∠CPD =∠ABC ,∠D =∠D ,∴ △DPC ∼△DBA , ∴PC AB=PD BD,又∵ AB =AC , ∴PC AC=PD BD.(2)解:∵ AB =AC , ∴ ∠B =∠ACB =12∠ACD ,∴ ∠ACD =∠APC ,∠CAP =∠CAP , ∴ △APC ∼△ACD , ∴AP AC=AC AD,∴ AC 2=AP ⋅AD =9. 23. 解:(1)曲线C 1的极坐标方程为ρ=2cosθ, 由x =ρcosθ,y =ρsinθ,x 2+y 2=ρ2,可得曲线C 1的方程为x 2+y 2=2x ,即为(x −1)2+y 2=1, 曲线C 1向左平移一个单位,可得x 2+y 2=1, 再将其横坐标伸长到原来的2倍得到曲线C 2:x 24+y 2=1;(2)过点P(1, 2)的直线方程设为{x =1+tcosαy =2+tsinα(t 为参数),代入椭圆方程可得(cos 2α+4sin 2α)t 2+(2cosα+16sinα)t +13=0,① 可得|PA|⋅|PB|=t 1t 2=13cos 2α+4sin 2α=131+3sin 2α,当sinα=1,即cosα=0时,方程①即为4t 2+16t +13=0,△=256−16×13>0成立, 故|PA|⋅|PB|的最小值为134.24. (1)解:对任意实数x ,不等式|3x +1|+|2−3x|≥m 恒成立,所以|x +13|+|x −2 3|min=1≥m3恒成立,所以m≤3,所以m的最大值为3;(2)证明:a>b>0,a−b+4a2−2ab+b2=a−b2+a−b2+4(a−b)2≥3√a−b2⋅a−b2⋅4(a−b)23=3,所以a−b+4a2−2ab+b2≥m,即a+4a2−2ab+b2≥b+m.。
东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2015届高考数学一模试卷(文科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求.1.(5分)已知集合A={0,b},B={x∈Z|x2﹣3x<0},若A∩B≠∅,则b等于()A.1 B.2 C.3 D.1或22.(5分)复数=()A.i B.﹣i C.2(+i)D.1+i3.(5分)△ABC的内角A、B、C的对边分别为a、b、c,则“a>b”是“cos2A<cos2B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)向量,满足||=1,||=,(+)⊥(2﹣),则向量与的夹角为()A.45°B.60°C.90°D.120°5.(5分)实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.6.(5分)已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.7.(5分)椭圆两个焦点分别是F1,F2,点P是椭圆上任意一点,则的取值范围是()A.[1,4] B.[1,3] C.[﹣2,1] D.[﹣1,1]8.(5分)半径为1的球面上有四个点A,B,C,D,球心为点O,AB过点O,CA=CB,DA=DB,DC=1,则三棱锥A﹣BCD的体积为()A.B.C.D.9.(5分)已知数列{a n}满足•••…•=(n∈N*),则a10=()A.e26B.e29C.e32D.e3510.(5分)执行如图所示的程序框图,要使输出的S的值小于1,则输入的t值不能是下面的()A.8 B.9 C.10 D.1111.(5分)若函数f(x)=2x3﹣3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是()A.(﹣∞,2)B.(﹣∞,2] C.(﹣∞,)D.(﹣∞,]12.(5分)函数f(x)=lg(|x|+1)﹣sin2x的零点个数为()A.9 B.10 C.11 D.12二.填空题(本大题共4小题,每小题5分.)13.(5分)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015=.14.(5分)若变量x,y满足约束条件则z=x+2y的最小值为.15.(5分)已知双曲线C:﹣=1,点P与双曲线C的焦点不重合,若点P关于双曲线C的上、下焦点的对称点分别为A、B,点Q在双曲线C的上支上,点P关于点Q的对称点P1,则|P1A|﹣|P1B|=.16.(5分)若函数f(x)满足:(Ⅰ)函数f(x)的定义域是R;(Ⅱ)对任意x1,x2∈R,有f(x1+x2)+f(x1﹣x2)=2f(x1)f(x2);(Ⅲ)f(1)=,则下列命题正确的是(只写出所有正确命题的序号)①函数f(x)是奇函数;②函数f(x)是偶函数;③对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2);④对任意x∈R,有f(x)≥﹣1.三.解答题(解答应写出文字说明,证明过程或演算步骤)17.(12分)已知△ABC的面积为2,且满足0<•≤4,设和的夹角为θ.(1)求θ的取值范围;(2)求函数f(θ)=2sin2(+θ)﹣cos2θ的取值范围.18.(12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.1月某日某省x个监测点数据统计如下:空气污染指数(单位:μg/m3)[0,50] (50,100] (100,150] (150,200]监测点个数15 40 y 10(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.20.(12分)在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.(Ⅰ)求动圆圆心的轨迹C1的方程;(Ⅱ)过点P(1,2)分别作斜率为k1,k2的两条直线l1,l2,交C1于A,B两点(点A,B异于点P),若k1+k2=0,且直线AB与圆C2:(x﹣2)2+y2=相切,求△PAB的面积.21.(12分)已知a是实常数,函数f(x)=xlnx+ax2.(1)若曲线y=f(x)在x=1处的切线过点A(0,﹣2),求实数a的值;(2)若f(x)有两个极值点x1,x2(x1<x2),①求证:﹣<a<0;②求证:f(x2)>f(x1)>﹣.二、请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边上的中点,连接OD交圆O与点M.(1)求证:DE是圆O的切线;(2)求证:DE•BC=DM•AC+DM•AB.【选修4-4:坐标系与参数方程】23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.【选修4-5:不等式选讲】24.设函数f(x)=|2x﹣1|﹣|x+2|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2015届高考数学一模试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求.1.(5分)已知集合A={0,b},B={x∈Z|x2﹣3x<0},若A∩B≠∅,则b等于()A.1 B.2 C.3 D.1或2考点:交集及其运算.专题:集合.分析:解不等式求出集合B,进而根据A∩B≠∅,可得b值.解答:解:∵集合B={x∈Z|x2﹣3x<0}={1,2},集合A={0,b},若A∩B≠∅,则b=1或b=2,故选:D.点评:本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)复数=()A.i B.﹣i C.2(+i)D.1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:复数==i,故选:A.点评:本题考查了复数的运算法则,属于基础题.3.(5分)△ABC的内角A、B、C的对边分别为a、b、c,则“a>b”是“cos2A<cos2B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:在三角形中,结合正弦定理,利用充分条件和必要条件的定义进行判断.解答:解:在三角形中,cos2A<cos2B等价为1﹣2sin2A<1﹣2sin2B,即sinA>sinB.若a>b,由正弦定理,得sinA>sinB.充分性成立.若sinA>sinB,则正弦定理,得a>b,必要性成立.所以,“a>b”是“sinA>sinB”的充要条件.即a>b是cos2A<cos2B成立的充要条件,故选C.点评:本题主要考查了充分条件和必要条件的应用,利用正弦定理确定边角关系,注意三角形中大边对大角的关系的应用.4.(5分)向量,满足||=1,||=,(+)⊥(2﹣),则向量与的夹角为()A.45°B.60°C.90°D.120°考点:平面向量数量积的运算.专题:平面向量及应用.分析:设向量与的夹角为θ.利用(+)⊥(2﹣),可得(+)•(2﹣)=+=0,即可解出.解答:解:设向量与的夹角为θ.∵(+)⊥(2﹣),∴(+)•(2﹣)=+==0,化为cosθ=0,∵θ∈[0,π],∴θ=90°.故选:C.点评:本题考查了数量积运算性质、向量垂直与数量积的关系,属于基础题.5.(5分)实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:根据几何概型计算公式,首先求出方程有实根的m的范围,然后用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,即可得到所求的概率.解答:解:∵方程x2﹣mx+4=0有实根,∴判别式△=m2﹣16≥0,∴m≤﹣4或m≥4时方程有实根,∵实数m是[0,6]上的随机数,区间长度为6,[4,6]的区间长度为2,∴所求的概率为P==.故选:B.点评:本题着重考查了几何概型计算公式及其应用的知识,给出在区间上取数的事件,求相应的概率值.关键是明确事件对应的是区间长度或者是面积或者体积.6.(5分)已知三棱锥的三视图,则该三棱锥的体积是()考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:如图所示,AB=BC=CA=2,点P在侧面ABC的射影为O,OP=2.利用三棱锥的体积计算公式即可得出.解答:解:如图所示,AB=BC=CA=2,点P在侧面ABC的射影为O,OP=2.∴该三棱锥的体积V===.故选:B.点评:本题考查了三棱锥的三视图及其体积计算公式,属于基础题.7.(5分)椭圆两个焦点分别是F1,F2,点P是椭圆上任意一点,则的取值范围是()A.[1,4] B.[1,3] C.[﹣2,1] D.[﹣1,1]考点:直线与圆锥曲线的关系;平面向量数量积的运算;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出椭圆的焦点坐标,设P(2cosθ,sinθ)(θ∈∈[0,2π)).利用向量的数量积运算和余弦函数的单调性即可得出.解答:解:椭圆的焦点坐标F1(,0),F2(,0).设P(2cosθ,sinθ)(θ∈∈[0,2π)).∴═(﹣﹣2cosθ,﹣sinθ)•(﹣2cosθ,﹣sinθ)=4cos2θ﹣3+sin2θ=3cos2θ﹣2,∵0≤cos2θ≤1,∴﹣2≤3cos2θ﹣2≤1.即的最大值与最小值分别是1,﹣2.故选:C.点评:本题考查了椭圆的标准方程与性质、向量的数量积运算、余弦函数的单调性等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.8.(5分)半径为1的球面上有四个点A,B,C,D,球心为点O,AB过点O,CA=CB,DA=DB,DC=1,则三棱锥A﹣BCD的体积为()考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:画出图形,连结OD,OC判断棱锥的特征,求解体积即可.解答:解:由题意可知图形如图:AB过点O,CA=CB,DA=DB,三角形ABD与ACB都是等腰直角三角形,半径为1的球面上有四个点A,B,C,D,球心为点O,∴AD=BD=AC=BC=,DC=1,OD=0C=1,AB⊥OD,AB⊥OC,几何体的体积为:×S△OCD•(AO+OB)==故选:A.点评:本题考查球的内接体知识,几何体的体积的求法,空间想象能力以及计算能力.9.(5分)已知数列{a n}满足•••…•=(n∈N*),则a10=()A.e26B.e29C.e32D.e35考点:数列递推式;数列的求和.专题:等差数列与等比数列.分析:利用已知条件,得到通项公式,然后求解a10.解答:解:数列{a n}满足•••…•=(n∈N*),可知•••…•=,两式作商可得:==,可得lna n=3n+2.a10=e32.故选:C.点评:本题考查数列递推关系式的应用,数列的通项公式的求法,考查计算能力.10.(5分)执行如图所示的程序框图,要使输出的S的值小于1,则输入的t值不能是下面的()A.8 B.9 C.10 D.11考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin,k∈Z的值,观察规律可得sin的值以6为周期,且sin+sin+…+sin=0,依次验证选项即可得解.解答:解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin,k∈Z的值,∵sin的值以6为周期,且sin+sin+…+sin=0,∴当t=8时,S=sin+sin+…+sin=sin+sin+sin=>1,故A符合要求;当t=9时,S=sin+sin+…+sin+sin=sin+sin+sin+sin=<1,故B不符合要求;当t=10时,S=sin+sin+…+sin+sin+sin=sin+sin+sin+sin+sin=0<1,故C不符合要求;当t=11时,S=sin+sin+…+sin+sin+sin+sin=0<1,故D不符合要求;故选:A.点评:本题主要考察了循环结构的程序框图,考查了正弦函数的周期性,模拟执行程序框图正确得到程序框图的功能是解题的关键,属于基本知识的考查.11.(5分)若函数f(x)=2x3﹣3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是()A.(﹣∞,2)B.(﹣∞,2] C.(﹣∞,)D.(﹣∞,]考点:二次函数的性质.专题:函数的性质及应用;导数的综合应用.分析:先求f′(x)=6x2﹣6mx+6,根据题意可知f′(x)≥0在(2,+∞)上恒成立,可设g(x)=6x2﹣6mx+6,所以讨论△的取值,从而判断g(x)≥0是否在(2,+∞)上恒成立:△≤0时,容易求出﹣2≤m≤2,显然满足g(x)≥0;△<0时,m需要满足,这样求出m的范围,和前面求出的m范围求并集即可.解答:解:f′(x)=6x2﹣6mx+6;由已知条件知x∈(2,+∞)时,f′(x)≥0恒成立;设g(x)=6x2﹣6mx+6,则g(x)≥0在(2,+∞)上恒成立;∴(1)若△=36(m2﹣4)≤0,即﹣2≤m≤2,满足g(x)≥0在(2,+∞)上恒成立;(2)若△=36(m2﹣4)>0,即m<﹣2,或m>2,则需:;解得;∴;∴综上得;∴实数m的取值范围是(﹣∞,].故选D.点评:考查函数单调性和函数导数符号的关系,熟练掌握二次函数的图象,以及判别式△的取值情况和二次函数取值的关系.12.(5分)函数f(x)=lg(|x|+1)﹣sin2x的零点个数为()A.9 B.10 C.11 D.12考点:函数零点的判定定理.专题:计算题;作图题;函数的性质及应用.分析:函数f(x)=lg(|x|+1)﹣sin2x的零点个数即y=lg(|x|+1)与y=sin2x的图象的交点的个数,作图并利用三角函数的图象特征求解.解答:解:函数f(x)=lg(|x|+1)﹣sin2x的零点个数即y=lg(|x|+1)与y=sin2x的图象的交点的个数,作函数y=lg(|x|+1)与y=sin2x的图象如下,结合图象及三角函数的最值知,图象在y轴左侧有6个交点,在y轴右侧有5个交点,在y轴上有一个交点;故选D.点评:本题考查了函数的图象的应用及函数的零点的个数的判断,属于基础题.二.填空题(本大题共4小题,每小题5分.)13.(5分)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015=4030.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:利用等差数列的通项公式性质及其前n项和公式即可得出解答:解:∵a2012+a4=a6+a2010=a1+a2015,a4+a6+a2010+a2012=8,∴2(a1+a2015)=8,∴a1+a2015=4,∴S2015==4030.故答案为:4030.点评:本题考查了等差数列的通项公式性质及其前n项和公式,属于基础题.14.(5分)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.考点:简单线性规划.专题:计算题.分析:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.解答:解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.点评:本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)已知双曲线C:﹣=1,点P与双曲线C的焦点不重合,若点P关于双曲线C的上、下焦点的对称点分别为A、B,点Q在双曲线C的上支上,点P关于点Q的对称点P1,则|P1A|﹣|P1B|=﹣16.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设双曲线的上下焦点分别为F,F',连接QF,QF'.运用对称和三角形的中位线定理,结合双曲线的定义,即可得到结论.解答:解:设双曲线的上下焦点分别为F,F',连接QF,QF'.由点P关于双曲线C的上、下焦点的对称点分别为A、B,则F为PA的中点,F'为PB的中点,由点Q在双曲线C的上支上,点P关于点Q的对称点P1,则Q为PP1的中点,由中位线定理可得,|P1A|=2|QF|,|P1B|=2|QF'|,由双曲线的定义可得|QF'|﹣|QF|=2a=8,则|P1A|﹣|P1B|=2(|QF|﹣|QF'|)=﹣2×8=﹣16.故答案为:﹣16.点评:本题考查双曲线的定义,考查三角形的中位线定理的运用,考查运算能力,属于基础题.16.(5分)若函数f(x)满足:(Ⅰ)函数f(x)的定义域是R;(Ⅱ)对任意x1,x2∈R,有f(x1+x2)+f(x1﹣x2)=2f(x1)f(x2);(Ⅲ)f(1)=,则下列命题正确的是②③④(只写出所有正确命题的序号)①函数f(x)是奇函数;②函数f(x)是偶函数;③对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2);④对任意x∈R,有f(x)≥﹣1.考点:抽象函数及其应用.专题:函数的性质及应用.分析:根据抽象函数的定义和关系式结合函数奇偶性的定义即可判断①②,利用赋值法可以判断③④.解答:解:令x1=1,x2=0,f(1+0)+f(1﹣0)=2f(1)f(0),即2f(1)=2f(1)f(0),∵f(1)=,∴f(0)=1.令x1=0,x2=x,则f(x)+f(﹣x)=2f(0)f(x)=2f(x),则f(﹣x)=f(x),故函数f(x)为偶函数,故②正确,①错误.∵f(1)=,∴f(1+1)+f(1﹣1)=2f(1)f(1),即f(2)=2f2(1)﹣f(0)=2×()2﹣1=,f(2+1)+f(1)=2f(1)f(2),即f(3)=2f(1)f(2)﹣f(1)=2××﹣=,同理f(4)=,由归纳推理得对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2)正确;故③正确,令x1=x2=x,则由f(x1+x2)+f(x1﹣x2)=2f(x1)f(x2)得f(2x)+f(0)=2f(x)f(x)=2f2(x),即f(2x)+1=2f2(x)≥0,∴f(2x)+1≥0,即f(2x)≥﹣1.∴对任意x∈R,有f(x)≥﹣1.故④正确.点评:本题主要考查抽象函数的应用,利用赋值法结合函数奇偶性的定义是解决本题的关键.综合性较强,有一定的难度.三.解答题(解答应写出文字说明,证明过程或演算步骤)17.(12分)已知△ABC的面积为2,且满足0<•≤4,设和的夹角为θ.(1)求θ的取值范围;(2)求函数f(θ)=2sin2(+θ)﹣cos2θ的取值范围.考点:两角和与差的正弦函数;数量积表示两个向量的夹角;三角函数的最值.专题:三角函数的求值.分析:(1)由数量积和三角形的面积公式可得tanθ的范围,进而可得θ的取值范围;(2)化简可得f(θ)=1+2sin(2θ﹣),由θ的范围和三角函数公式可得.解答:解:(1)由题意可得•=cbcosθ,∵△ABC的面积为2,∴bcsinθ=2,变形可得cb=,∴•=cbcosθ==,由0<•≤4,可得0<≤4解得tanθ≥1,又∵0<θ<π,∴向量夹角θ的范围为[,);(2)化简可得f(θ)=2sin2(+θ)﹣cos2θ=2×﹣cos2θ=1+sin2θ﹣cos2θ=1+2sin(2θ﹣)∵由(1)知θ∈[,),∴2θ﹣∈[﹣,),∴sin(2θ﹣)∈[﹣,1],∴1+sin(2θ﹣)∈[,2],∴f(θ)的取值范围为:[,2]点评:本题考查两角和与差的三角函数公式,涉及向量的数量积和三角函数的值域,属中档题.18.(12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.1月某日某省x个监测点数据统计如下:空气污染指数(单位:μg/m3)[0,50] (50,100] (100,150] (150,200]监测点个数15 40 y 10(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?考点:频率分布直方图;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(Ⅰ)根据频率分布直方图,利用频率=,求出x、y的值,计算直方图中各小进行对应的高,补全频率分布直方图;(Ⅱ)利用列举法求出基本事件数,计算对应的概率即可.解答:解:(Ⅰ)根据频率分布直方图,得;0.003×50=,∴x=100;又∵15+40+y+10=100,∴y=35;…(2分)∴直方图中(50,100]对应矩形的高为=0.008,(100,150]对应矩形的高为=0.007,(150,200]对应矩形的高为=0.002;补全频率分布直方图,如图所示;…(5分)(Ⅱ)设A市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,…(8分)其中事件A“其中至少有一个为良”包含的基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种,…(10分)所以事件A“其中至少有一个为良”发生的概率是P(A)=.…(12分)点评:本题考查了频率分布直方图的应用问题,也考查了用列举法求古典概型的概率问题,是基础题目.19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)由已知得AD∥BC,DE∥BF,从而平面ADE∥平面BCF,由此能证明CF∥平面ADE.(Ⅱ)连结AC,交BD于O,由线面垂直得AC⊥DE,由菱形性质得AC⊥BD,从而AC⊥平面BDEF,进而多面体ABCDEF的体积V=2V A﹣BDEF,由此能求出多面体ABCDEF的体积V.解答:(Ⅰ)证明:∵底面ABCD是菱形,∴AD∥BC,∵四边形BDEF是正方形,∴DE∥BF,∵BF∩BC=B,∴平面ADE∥平面BCF,∵CF⊂平面BCF,∴CF∥平面ADE.(Ⅱ)解:连结AC,交BD于O,∵四边形BDEF是正方形且DE⊥平面ABCD.∴DE⊥平面ABCD,又AC⊂平面ABCD,∴AC⊥DE,∵底面ABCD是菱形,∴AC⊥BD,又BD∩DE=D,∴AC⊥平面BDEF,∵AE=,∠BCD=60°,∴AD=DE=BD=1,∴AO=CO=,∴多面体ABCDEF的体积:V=2V A﹣BDEF=2×=2×=.点评:本题考查线面平行证明,考查多面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.(Ⅰ)求动圆圆心的轨迹C1的方程;(Ⅱ)过点P(1,2)分别作斜率为k1,k2的两条直线l1,l2,交C1于A,B两点(点A,B异于点P),若k1+k2=0,且直线AB与圆C2:(x﹣2)2+y2=相切,求△PAB的面积.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设动圆圆心坐标为(x,y),半径为r,利用点(2,0)在圆上及被y轴所截得的弦长为4,计算即可;(Ⅱ)设直线l1的斜率为k,通过将点P(1,2)代入抛物线y2=4x并与直线l1联立,计算可得直线AB的斜率,不妨设l AB:y=﹣x+b,利用直线AB与圆C相切可得b=3或1,分b=3、b=1两种情况讨论即可.解答:解:(Ⅰ)设动圆圆心坐标为(x,y),半径为r,由题可知,∴动圆圆心的轨迹方程为:y2=4x;(Ⅱ)设直线l1的斜率为k,则l1:y﹣2=k(x﹣1),l2:y﹣2=﹣k(x﹣1),点P(1,2)在抛物线y2=4x上,联立,消去x得:ky2﹣4y+8﹣4k=0,设A(x1,y1),B(x2,y2),△>0恒成立,即(k﹣1)2>0,有k≠1,∴y1y P=,∵y P=2,∴y1=,代入直线方程可得:,同理可得:x2=,,k AB===﹣1,不妨设l AB:y=﹣x+b,∵直线AB与圆C相切,∴=,解得b=3或1,当b=3时,直线AB过点P,舍去,当b=1时,由,可得x2﹣6x+1=0,此时△=32,∴|AB|==8,∴P到直线AB的距离d=,△PAB的面积为=4.点评:本题是一道直线与圆锥曲线的综合题,考查运算求解能力,考查分类讨论的思想,注意解题方法的积累,属于中档题.21.(12分)已知a是实常数,函数f(x)=xlnx+ax2.(1)若曲线y=f(x)在x=1处的切线过点A(0,﹣2),求实数a的值;(2)若f(x)有两个极值点x1,x2(x1<x2),①求证:﹣<a<0;②求证:f(x2)>f(x1)>﹣.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(1)求出f(x)的导数,求得切线的斜率和切点,由点斜式方程可得切线方程,代入点(0,﹣2),即可解得a;(2)①依题意:f′(x)=0 有两个不等实根x1,x2(x1<x2),设g(x)=lnx+2ax+1,求出导数,讨论当a≥0时,当a<0时,求得函数g(x)的单调性,令极大值大于0,解不等式即可得证;②由①知:f(x),f′(x)变化,求得f(x)的增区间,通过导数,判断x1∈(0,1),设h(x)=(xlnx﹣x)(0<x<1),求得h(x)的单调性,即可得证.解答:(1)解:由已知可得,f′(x)=lnx+1+2ax(x>0),切点P(1,a),f(x)在x=1处的切线斜率为k=1+2a,切线方程:y﹣a=(2a+1)(x﹣1),把(0,﹣2)代入得:a=1;(2)证明:①依题意:f′(x)=0 有两个不等实根x1,x2(x1<x2),设g(x)=lnx+2ax+1 则:g′(x)=+2a(x>0)当a≥0时,有g′(x)>0,所以g(x)是增函数,不符合题意;当a<0时:由g′(x)=0得:x=﹣>0,列表如下:x (0,﹣)﹣(﹣,+∞)g′(x)+ 0 ﹣g(x)↗极大值↘依题意:g(﹣)=ln(﹣)>0,解得:﹣<a<0,综上可得,﹣<a<0得证;②由①知:f(x),f′(x)变化如下:x (0,x1) x1(x1,x2)x2(x2,+∞)f′(x)﹣0 + 0 ﹣f(x)↘↗↘由表可知:f(x)在[x1,x2]上为增函数,所以:f(x2)>f(x1)又f′(1)=g(1)=1+2a>0,故x1∈(0,1),由(1)知:ax1=,f(x1)=x1lnx1+ax12=(x1lnx1﹣x1)(0<x1<1)设h(x)=(xlnx﹣x)(0<x<1),则h′(x)=lnx<0成立,所以h(x)单调递减,故:h(x)>h(1)=﹣,也就是f(x1)>﹣综上所证:f(x2)>f(x1)>﹣成立.点评:本题考查导数的运用:求切线方程和单调区间、极值,主要考查导数的几何意义和分类讨论的思想方法,注意函数的单调性的运用,属于中档题.二、请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边上的中点,连接OD交圆O与点M.(1)求证:DE是圆O的切线;(2)求证:DE•BC=DM•AC+DM•AB.考点:与圆有关的比例线段;圆的切线的判定定理的证明.专题:推理和证明.分析:(1)连接BE,OE,由已知得∠ABC=90°=∠AEB,∠A=∠A,从而△AEB∽△ABC,进而∠ABE=∠C,进而∠BEO+∠DEB=∠DCE+∠CBE=90°,由此能证明DE是圆O的切线.(2)DM=OD﹣OM=(AC﹣AB),从而DM•AC+DM•AB=(AC﹣AB)•(AC+AB)=BC2,由此能证明DE•BC=DM•AC+DM•AB.解答:证明:(1)连接BE,OE,∵AB是直径,∴∠AEB=90°,∵∠ABC=90°=∠AEB,∠A=∠A,∴△AEB∽△ABC,∴∠ABE=∠C,∵BE⊥AC,D为BC的中点,∴DE=BD=DC,∴∠DEC=∠DCE=∠ABE=∠BEO,∠DBE=∠DEB,∴∠BEO+∠DEB=∠DCE+∠CBE=90°,∴∠OEE=90°,∴DE是圆O的切线.(2)证明:∵O、D分别为AB、BC的中点,∴DM=OD﹣OM=(AC﹣AB),∴DM•AC+DM•AB=DM•(AC+AB)=(AC﹣AB)•(AC+AB)=(AC2﹣AB2)=BC2=DE•BC.∴DE•BC=DM•AC+DM•AB.点评:本题考查DE是圆O的切线的证明,考查DE•BC=DM•AC+DM•AB的证明,是中档题,解题时要认真审题,注意弦切角定理的合理运用.【选修4-4:坐标系与参数方程】23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,利用可得直角坐标方程.直线L的参数方程是(t为参数),把t=2y代入+m消去参数t即可得出.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA|•|PB|=t1t2,即可得出.解答:解:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.直线L的参数方程是(t为参数),消去参数t可得.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,解得﹣1<m<3.∴t1t2=m2﹣2m.∵|PA|•|PB|=1=t1t2,∴m2﹣2m=1,解得.又满足△>0.∴实数m=1.点评:本题考查了极坐标方程化为直角坐标方程、参数方程的应用,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设函数f(x)=|2x﹣1|﹣|x+2|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)不等式f(x)>0,即|2x﹣1|>|x+2|,平方后解一元二次不等式求得它的解集.(Ⅱ)根据f(x)的解析式,求出f(x)的最小值为f(),再根据f()+2m2<4m,求得m的范围.解答:解:(Ⅰ)不等式f(x)>0,即|2x﹣1|>|x+2|,即 4x2﹣4x+1>x2+4x+4,即 3x2﹣8x+3>0,求得它的解集为{x|x<﹣,或x>3}.(Ⅱ)f(x)=|2x﹣1|﹣|x+2|=,故f(x)的最小值为f()=﹣,根据∃x0∈R,使得f(x0)+2m2<4m,可得4m﹣2m2>﹣,即4m2﹣8m﹣5<0,求得﹣<m<.点评:本题主要考查绝对值不等式的解法,带有绝对会的函数,函数的能成立问题,体现了等价转化和分类讨论的数学思想,属于中档题.。
哈尔滨师大附中 2015年高三第一次联合模拟考试文科综合能力测试东北师大附中 辽宁省实验中学12.中国人民银行决定,自2014年11月22日起下调金融机构人民币贷款和存款基准利率。
当前我国经济运行总体平稳,此次下调贷款和存款基准利率,重点是发挥基准利率对企业和居民的引导作用。
下列选项符合央行此举目的的是A .促进货币回笼,释放通货膨胀压力B .降低融资成本,激发企业投资需求C .增加货币投放,促进经济快速增长D .拓宽投资渠道,促进居民收入增长13.图5是“环境库兹涅茨曲线”,它指出在后工业化阶段,技术效应和结构效应超过规模效应,环境质量随着经济增长逐步改善。
为加速拐点到来,我国可以采取的措施是①加快转变经济发展方式,促进经济结构升级 ②推动中西部地区快速发展,增强发展持续性 ③实施创新驱动战略,提高科技自主创新能力 ④扩大能源和资源投入,进一步扩大生产规模 A .①② B .①③ C .②④ D .②③14.粮食是关系国家经济安全的重要战略物资,粮食安全与社会的和谐、政治的稳定、经济的持续发展息息相关。
为保障粮食安全,需要增加粮食供给,下列选项中正确的是①加大科技投入→大力发展转基因技术→提高谷物生产能力→增加粮食供给 ②降低人民币汇率→降低粮食进口成本→提高粮食进口量→增加粮食供给③加大对农业的财政补贴→增加神粮农民收入→提高粮食生产积极性→增加粮食供给④深化农村土地制度改革→引导土地承包经营权有序流转→发展农业适度规模经营→增加粮食供给A .①③B .②③C .②④D .③④15.领导人借出访之机推销产品,为双方签署大单提供支持,是和平发展时代的一种国际惯例。
李克强总理2014年五次出访签定近1400亿美元大单。
其中“铁路单唱主角,中土集团获得的尼日利亚131亿美元铁路大单,刷新了我国对外承包工程单体合同额最高记录;“能源单”金额高,其中英国石油公司与中国海洋石油总公司签署的液化天然气供应协议,达200亿美元。
第Ⅰ卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合}0|{≥=x x A ,且B B A = ,则集合B 可能是 A.}2,1{B.}1|{≤x xC.}1,0,1{-D.R2.下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是A.)62sin(π+=x y B.)32sin(π+=x yC.)32sin(π-=x yD.)62sin(π-=x y3.已知110a b<<,则下列结论错误的是 A.22b a < B.2b a a b+> C.2b ab > D.2lg lg a ab <4.规定2,a b a b a b R +⊗=++∈ 、,若14k ⊗=,则函数()f x k x =⊗的值域A.(2,)+∞ B .),1(+∞ C .7[,)8+∞ D .7[,)4+∞5.设命题:p 函数xy 1=在定义域上为减函数;命题:q ,(0,)a b ∃∈+∞,当1a b +=时,113a b +=,以下说法正确的是A.p ∨q 为真B.p ∧q 为真C.p 真q 假D.p ,q 均假6.若向量a 、b 满足)1,2(-=+b a ,)2,1(=a,则向量a 与b 的夹角等于A.︒45 B .︒60 C .︒120 D .︒135 7.某流程图如图所示,现输入如下四个函数,则可以输出的A C 8.已知锐角α且α5的终边上有一点)130cos ),50(sin(00-P ,则α的值为A .08B .044 C .026 D .040 9.下列命题正确的个数是①“在三角形ABC 中,若sin sin A B >,则A B >”的否命题是真命题; ②命题:2p x ≠或3y ≠,命题:5q x y +≠则p 是q 的必要不充分条件; ③“32,10x R x x ∀∈-+≤”的否定是“01,23>+-∈∃x x R x ”. A.0 B.1 C.2 D.310.已知锐角B A ,满足)tan(tan 2B A A +=,则B tan 的最大值为 A . 22 B .2 C .22 D .42 11.已知函数()2014sin (01)(),log 1x x f x x x π⎧≤≤⎪=⎨>⎪⎩若c b a 、、互不相等,且)()()(c f b f a f ==,则c b a ++的取值范围是A .(1,2014)B .(1,2015)C .(2,2015)D .[2,2015]12.下列四个图中,函数10ln 11x y x +=+的图象可能是二、填空题:本大题共4小题,每小题5分,共20分13. 已知2||=a,3||=b ,b a ,的夹角为60,则=-|2|b a ___________.14.设420cos =a ,函数,0,()log ,0,x a a x f x x x ⎧<=⎨≥⎩,则211()(log )46f f +的值等于 .15. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,已知6π=C ,1=a ,3=b ,则=B ____________. 16.实数y x ,满足⎪⎩⎪⎨⎧≤->≤≥,0),1(,1y x a a y x 若目标函数y x z +=的最大值为4,则实数a 的值为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知α为锐角,且tan()24πα+=.(Ⅰ)求tan α的值;(Ⅱ)求sin 2cos sin cos 2αααα-的值.18.(本小题满分12分)已知幂函数2242()(1)m m f x m x-+=-在(0,)+∞上单调递增,函数()2xg x k =-.(Ⅰ)求m 的值;(Ⅱ)当[1,2]x ∈时,记()f x ,()g x 的值域分别为集合,A B ,若A B A ⋃=,求实数k 的取值范围.20.(本小题满分12分)已知函数]1)1()1lg[()(22+++-=x a x a x f ,设命题p :“()f x 的定义域为R ”; 命题q :“()f x 的值域为R ” .(Ⅰ)分别求命题p 、q 为真时实数a 的取值范围; (Ⅱ)p ⌝是q 的什么条件?请说明理由.21.(本小题满分12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且55sin ,43==A C π. (Ⅰ)求B sin 的值;(Ⅱ)若105-=-a c ,求ABC ∆的面积.22.(本小题满分12分)已知函数()()()22211xf x ax a x a a e ⎡⎤=+-+--⎣⎦(其中R a ∈).(Ⅰ)若0x =为()f x 的极值点,求a 的值; (Ⅱ)在(Ⅰ)的条件下,解不等式()()21112f x x x x ⎛⎫>-++ ⎪⎝⎭.东北育才学校高中部2015届高三第一次模拟数学试题(文)答案因为1tan 3α=,所以cos 3sin αα=,又22sin cos 1αα+=, 所以21sin 10α=,…………………9分又α为锐角,所以sin α=所以sin 2cos sin cos 2αααα-=.…………………10分 18.解:(Ⅰ)依题意得:2(1)1,0m m -=⇒=或2m =当2m =时,2()f x x -=在(0,)+∞上单调递减,与题设矛盾,舍去∴0m =. ……………5分(Ⅱ)当[1,2]x ∈时,()f x ,()g x 单调递增,∴[1,4],[2,4]A B k k ==--,A B A ⋃=,∴B A ⊆,∴210144k k k -≥⎧⇒≤≤⎨-≤⎩. ……………12分 19. (Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x . ……………4分当226222πππππ+≤-≤-k x k 时,解得36ππππ+≤≤-k x k ,)62sin()(π-=∴x x f 的单调递增区间为)](3,6[Z k k k ∈+-ππππ. ……………8分(Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈. ]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f .所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-. ……………12分20.解:(Ⅰ)命题p 为真,即)(x f 的定义域是R ,等价于01)1()1(22>+++-x a x a 恒成立,等价于1-=a 或⎩⎨⎧<--+=>-.0)1(4)1(Δ,01222a a a 解得1-≤a 或35>a .∴实数a 的取值范围为-∞(,35(]1 -,)∞+ ……………4分命题q 为真,即)(x f 的值域是R , 等价于1)1()1(22+++-=x a x a u 的值域),0(∞+⊇,等价于1=a 或⎩⎨⎧≥--+=>-.0)1(4)1(Δ,01222a a a 解得351≤≤a .∴实数a 的取值范围为1[,]35……………8分 (Ⅱ)由(Ⅰ)(Ⅱ)知,p ⌝:]35,1(-∈a ;q :]35,1[∈a .而]35,1[]35,1(≠⊃-,∴p ⌝是q 的必要而不充分的条件 ……………12分 21. 解:(1)因为55sin ,43==A C π 所以552sin 1cos 2=-=A A由已知得A B -=4π.所以A A A B sin 4coscos 4sin)4sin(sin πππ-=-=1010552225222=⋅-⋅=……………………………………………………6分 (2)由(1)知43π=C 所以22sin =C 且1010sin =B .由正弦定理得510sin sin ==C A c a . 又因为105-=-a c ,所以10,5==a c .所以25101051021sin 21=⋅⋅==∆B ac S ABC ………………………………12分 22. (Ⅰ)因为()()()22211x f x ax a x a a e ⎡⎤=+-+--⎣⎦()()()()()22222221111x x x f x ax a e ax a x a a e ax a x a e ⎡⎤⎡⎤⎡⎤'∴=+-++-+--=+++⎣⎦⎣⎦⎣⎦因为0x =为()f x 的极值点,所以由()000f ae '==,解得0a =检验,当0a =时,()xf x xe '=,当0x <时,()0f x '<,当0x >时,()0f x '>.所以0x =为()f x 的极值点,故0a =. ……………4分 (Ⅱ) 当0a =时,不等式()()21112f x x x x ⎛⎫>-++ ⎪⎝⎭()()211112x x e x x x ⎛⎫⇔-⋅>-++ ⎪⎝⎭, 整理得()211102x x e x x ⎡⎤⎛⎫--++>⎪⎢⎥⎝⎭⎣⎦, 即2101102x x e x x ->⎧⎪⎨⎛⎫-++> ⎪⎪⎝⎭⎩或2101102x x e x x -<⎧⎪⎨⎛⎫-++< ⎪⎪⎝⎭⎩令()2112x g x e x x ⎛⎫=-++⎪⎝⎭,()()()1x h x g x e x '==-+,()1x h x e '=-, 当0x >时,()10xh x e '=->;当0x <时,()10xh x e '=-<,所以()h x 在(),0-∞单调递减,在(0,)+∞单调递增,所以()()00h x h >=,即()0g x '>, 所以()g x 在R 上单调递增,而()00g =; 故211002x e x x x ⎛⎫-++>⇔>⎪⎝⎭;211002x e x x x ⎛⎫-++<⇔< ⎪⎝⎭, 所以原不等式的解集为{}01x x x <>或. ……………12分。
2015年东北三省三校第一次高考模拟考试文科数学参考答案13.4030 14.-6 15.-16 16.②③④三、解答题 17.解:(1)设ΔABC 中,角A 、B 、C 的对边分别为 a 、b 、c ,则由已知:1sin 22bc θ=,0cos 4bc θ<≤, ……4分可得,tan 1θ≥,所以:[,)42ππθ∈ ……6分(2)2()2sin ()[1cos(2)]42f ππθθθθθ=+=-+(1sin 2)sin 212sin(2)13πθθθθθ=+=+=-+ ……8分∵[,)42ππθ∈,∴22[,)363πππθ-∈,∴π22sin(2)133θ≤-+≤即当512πθ=时,max ()3f θ=;当4πθ=时,min ()2f θ= 所以:函数()f θ的取值范围是[2,3] ……12分 18.(本小题满分12分) 解:(1)150.00350100x x⨯=∴= 15401010035y y +++=∴= ……2分 400.00810050=⨯ 350.00710050=⨯ 100.00210050=⨯DCBAFE……5分(2)设A 市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种, ……8分 其中事件A“其中至少有一个为良”包含的 基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种, ……10分所以事件A“其中至少有一个为良”发生的概率是7()10P A =. ……12分 19.(本小题满分12分)(1)证明: ABCD 是菱形,//BC AD ∴. 又⊄BC 平面ADE ,AD ⊂平面ADE ,//BC ∴平面ADE . ……2分 又BDEF 是正方形,//BF DE ∴.BF ⊄平面ADE ,DE ⊂平面ADE ,//BF ∴平面ADE . ……4分 BC ⊂平面BCF ,BF ⊂平面BCF BC BF B =,∴平面BCF //平面AED .由于CF ⊂平面BCF ,知//CF 平面AED . ……6分 (2)解:连接AC ,记AC BD O =. ABCD 是菱形,AC ⊥BD ,且AO = BO .由DE ⊥平面ABCD ,AC ⊂平面ABCD ,DE AC ⊥.DE ⊂平面BDEF ,BD ⊂平面BDEF ,DE BD D =,∴AC ⊥平面BDEF 于O ,即AO 为四棱锥A BDEF-的高. ……9分由ABCD 是菱形,60BCD ∠=,则ABD ∆为等边三角形,由AE ,则(3/g m μ)1AD DE ==,2AO =,1BDEF S =,136BDEF BDEF V S AO =⋅=,23BDEF V V ==. ……12分 20.(本小题满分12分)解:(1)设动圆圆心坐标为(,)x y ,半径为r ,由题可知2222222(2)42x y r y x x r⎧-+=⎪⇒=⎨+=⎪⎩; ∴动圆圆心的轨迹方程为24y x = ……4分(2)设直线1l 斜率为k ,则12:2(1);:2(1).l y k x l y k x -=--=-- 点P (1,2)在抛物线24y x =上22448402(1)y xky y k y k x ⎧=∴⇒-+-=⎨-=-⎩ 设1122(,),(,)A x y B x y ,0>∆恒成立,即(),012>-k 有1≠k118442,2,,P P kky y y y kk--∴==∴=代入直线方程可得212(2)k x k -= ……6分同理可得 2222(2)42,k kx y k k++==- ……7分 212221242421(2)(2)ABk ky y k k k k k x x k +----===-+--- ……9分 不妨设:AB l y x b =-+. 因为直线AB 与圆C=解得3b =或1, 当3b =时, 直线AB 过点P ,舍当1b =时, 由2216104y x x x y x=-+⎧⇒-+=⎨=⎩;32,||8AB ∆===P 到直线AB 的距离为d =PAB 的面积为 ……12分21.解:(1)由已知:()ln 12(0)f x x ax x '=++>,切点(1,)P a ……1分 切线方程:(21)(1)y a a x -=+-,把(0,2)-代入得:a = 1 ……3分 (2)(I )依题意:()0f x '=有两个不等实根设()ln 21g x x ax =++,则:1()2(0)g x a x x'=+> ①当0a ≥时:()0g x '>,所以()g x 是增函数,不符合题意; ……5分 ②当0a <时:由()0g x '=得:102x a=->依题意:11()ln()022g a a -=->,解得:102a -<< 综上所求:102a -<<,得证; ……8分(注:以下证明为补充证明此问的充要性,可使其证明更严谨,以此作为参考,学生证明步骤写出上述即可)方法一:当0>x 且0→x 时-∞→x ln ,112→+ax ,∴当0>x 且0→x 时-∞→)(x g)(x g ∴在1(0,)2a-上必有一个零点. 当a x 21->时,设x x x h -=ln )(,xx x x x h 22211)(/-=-=4>∴x 时,024ln )4()(<-=<h x h 即x x <ln 4>∴x 时,1221ln )(++<++=ax x ax x x g设x t =,12122++=++t at ax x 由0a <,+∞→x 时,0122<++t at0)(<∴x g )(x g ∴在1(,)2a-+∞上有一个零点 综上,函数)(x f y =有两个极值点时021<<-a ,得证.方法二2ln )(ax x x x f +=有两个极值点,即/()ln 12(0)f x x ax x =++>有两个零点,即xx a 1ln 2+=-有两不同实根. 设x x x h 1ln )(+=,2/ln )(x xx h -=,当0)(/>x h 时,10<<x ;当0)(/<x h 时,1>x当1=x 时)(x h 有极大值也是最大值为1)1(=f 12<-∴a ,2->a 0)1(=eh ,故)(x h 在()1,0有一个零点当1>x 时,01ln 0ln >+∴>x x x 且011ln lim lim ==++∞→+∞→xx x x x 1>∴x 时1)1()(0=<<h x h0,02<∴>-∴a a综上函数)(x f y =有两个极值点时021<<-a ,得证.② 证明:由①知:/(),()f x f x 变化如下:由表可知:()f x 在12[,]x x 上为增函数,又/(1)(1)210f g a ==+> ,故211x x << (10)分所以:21)1()(,)1()(21->=><=<a f x f a f x f 即1()0f x <,21()2f x >-. ……12分22.选修4-1:几何证明选讲证明:(1)连结OE ,∵点D 是BC 的中点,点O 是AB 的中点,∴ OD 平行且等于12AC ,∴∠A =∠BOD , ∠AEO = ∠EOD , ∵OA = OE ,∴∠A = ∠AEO ,∴∠BOD = ∠EOD ……3分 在ΔEOD 和ΔBOD 中,∵OE = OB ,∠BOD= ∠EOD ,OD = OD , ∴ΔEOD ≌ ΔBOD ,∴∠OED = ∠OBD = 90°,即OE ⊥BD∵是圆O 上一点,∴DE 是圆O 的切线 ……5分 (II )延长DO 交圆O 于点F ∵ΔEOD ≌ ΔBOD ,∴DE = DB ,∵点D 是BC 的中点,∴BC = 2DB , ∵DE 、DB 是圆O 的切线,∴DE = DB ,∴DE ·BC = DE ·2DB = 2DE 2 ……7分 ∵AC = 2OD ,AB = 2OF ∴DM · AC + DM · AB = DM · (AC + AB ) = DM · (2OD + 2OF ) = 2DM · DF ∵DE 是圆O 的切线,DF 是圆O 的割线, ∴DE 2 = DM · DF ,∴DE · BC = DM · AC + DM · AB ……10分 23.选修4-4: 坐标系与参数方程FC D MO BEA解:(1)由 2cos ρθ=,得:22cos ρρθ=,∴ 222x y x +=,即22(1)1x y -+=, ∴曲线C 的直角坐标方程为22(1)1x y -+= ……3分由12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,得x m +,即0x m -=, ∴直线l的普通方程为0x m -= ……5分(2)将12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩代入22(1)1x y -+=,得:221112m t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎝⎭,整理得:221)20t m t m m -+-=,由0∆>,即223(1)4(2)0m m m --->,解得:-1 < m < 3设t 1、t 2是上述方程的两实根,则121)t t m +=-,2122t t m m =- ……8分 又直线l 过点(,0)P m ,由上式及t 的几何意义得212|||||||2|1PA PB t t m m ⋅==-=,解得:1m =或1m =,都符合-1 < m < 3, 因此实数m 的值为1或11 ……10分24.选修4-5: 不等式选讲解:(1)当x < -2时,()|21||2|1223f x x x x x x =--+=-++=-+,()0f x >,即30x -+>,解得3x <,又2x <-,∴2x <-; 当122x -≤≤时,()|21||2|12231f x x x x x x =--+=---=--, ()0f x >,即310x -->,解得13x <-,又122x -≤≤,∴123x -≤<-; 当12x >时,()|21||2|2123f x x x x x x =--+=---=-, ()0f x >,即30x ->,解得3x >,又12x >,∴3x >. ……3分 综上,不等式()0f x >的解集为1,(3,)3⎛⎫-∞-+∞ ⎪⎝⎭. ……5分(2)3,21()|21||2|31,2213,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=---≤≤⎨⎪⎪->⎪⎩ ∴min 15()22f x f ⎛⎫==- ⎪⎝⎭. ……8分 ∵0x R ∃∈,使得20()24f x m m +<,∴2min 542()2m m f x ->=-, 整理得:24850m m --<,解得:1522m -<<,因此m 的取值范围是15(,)22-.……10分。
2015年黑龙江省哈尔滨三中高考数学一模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)集合P={x|>0},Q={x|y=},则P∩Q=()A.(1,2]B.[1,2]C.(﹣∞,﹣3)∪(1,+∞)D.[1,2)2.(5分)等差数列{a n}的前n项和为S n,且S3=6,a1=4,则公差d等于()A.1B.C.﹣2D.33.(5分)在△ABC中,,AC=1,∠B=30°,△ABC的面积为,则∠C=()A.30°B.45°C.60°D.75°4.(5分)下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1|B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)5.(5分)设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)6.(5分)将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0D.7.(5分)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③8.(5分)变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.5D.9.(5分)如图,△AOB为等腰直角三角形,OA=1,OC为斜边AB的高,P为线段OC的中点,则•=()A.﹣1B.﹣C.﹣D.﹣10.(5分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△P AB和△P AD都是等边三角形,则异面直线CD与PB所成角的大小为()A.90°B.75°C.60°D.45°11.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=3,则|QF|=()A.B.C.3D.212.(5分)设f(x)=|lgx|,若函数g(x)=f(x)﹣ax在区间(0,4)上有三个零点,则实数a的取值范围是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.(5分)正项等比数列{a n}中,a2=4,a4=16,则数列{a n}的前9项和等于.14.(5分)某几何体的三视图如图所示,则它的体积为.15.(5分)已知椭圆C:,点M与C的焦点不重合,若M关于C的两焦点的对称点分别为P,Q,线段MN的中点在C上,则|PN|+|QN|=.16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a <x0<b),满足,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.如y=x2是[﹣1,1]上的平均值函数,0就是它的均值点.现有函数f(x)=x3+mx是区间[﹣1,1]上的平均值函数,则实数m的取值范围是.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(12分)设△ABC是锐角三角形,三个内角A,B,C所对的边分别记为a,b,c,并且(sin A﹣sin B)(sin A+sin B)=sin(﹣B)sin(+B).(Ⅰ)求角A的值;(Ⅱ)若•=12,a=2,求b,c(其中b<c).18.(12分)已知数列{a n}满足(a n+1﹣1)(a n﹣1)=3(a n﹣a n+1),a1=2,令.(Ⅰ)证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的通项公式.19.(12分)△ABC为等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分别是边AC和AB的中点,现将△ADE沿DE折起,使面ADE⊥面DEBC,H 是边AD的中点,平面BCH与AE交于点I.(Ⅰ)求证:IH∥BC;(Ⅱ)求三棱锥A﹣HIC的体积.20.(12分)如图,抛物线C1:y2=2px与椭圆C2:在第一象限的交点为B,O为坐标原点,A为椭圆的右顶点,△OAB的面积为.(Ⅰ)求抛物线C1的方程;(Ⅱ)过A点作直线l交C1于C、D两点,求△OCD面积的最小值.21.(12分)设函数f(x)=ax2lnx+b(x﹣1)(x>0),曲线y=f(x)过点(e,e2﹣e+1),且在点(1,0)处的切线方程为y=0.(Ⅰ)求a,b的值;(Ⅱ)证明:当x≥1时,f(x)≥(x﹣1)2;(Ⅲ)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,延长BA和CD相交于点P,=,=.(Ⅰ)求的值;(Ⅱ)若BD为⊙O的直径,且P A=1,求BC的长.选修4-4:坐标系与参数方程23.已知在平面直角坐标系xOy中,直线l的参数方程是(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标,曲线C的极坐标方程ρ=2cos(θ+).(Ⅰ)判断直线l与曲线C的位置关系;(Ⅱ)设M为曲线C上任意一点,求x+y的取值范围.选修4-5:不等式选讲24.已知函数f(x)=|2x+1|﹣|x|﹣2(Ⅰ)解不等式f(x)≥0(Ⅱ)若存在实数x,使得f(x)≤|x|+a,求实数a的取值范围.2015年黑龙江省哈尔滨三中高考数学一模试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)集合P={x|>0},Q={x|y=},则P∩Q=()A.(1,2]B.[1,2]C.(﹣∞,﹣3)∪(1,+∞)D.[1,2)【解答】解:集合P={x|>0}={x|x>1或x<﹣3},Q={x|y=}={x|﹣2≤x≤2},P∩Q={x|1<x≤2}=(1,2].故选:A.2.(5分)等差数列{a n}的前n项和为S n,且S3=6,a1=4,则公差d等于()A.1B.C.﹣2D.3【解答】解:∵S3=6=(a1+a3),且a3=a1+2d,a1=4,∴d=﹣2,故选:C.3.(5分)在△ABC中,,AC=1,∠B=30°,△ABC的面积为,则∠C=()A.30°B.45°C.60°D.75°【解答】解:∵△ABC中,B=30°,AC=1,AB=,由正弦定理可得:=,∴sin C=,∴C=60°或120°,C=60°时,A=90°;C=120°时A=30°,当A=90°时,∴△ABC的面积为•AB•AC•sin A=,当A=30°时,∴△ABC的面积为•AB•AC•sin A=,不满足题意,则C=60°.故选:C.4.(5分)下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1|B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)【解答】解:①y=﹣|x﹣1|=∴(0,+∞)不是减函数,故A不正确.②y=e x,在(﹣∞,+∞)上为增函数,故B不正确.③y=ln(x+1)在(﹣1,+∞)上为增函数,故C不正确.④y=﹣x(x+2)在(﹣1,+∞)上为减函数,所以在(0,+∞)上为减函数故D正确.故选:D.5.(5分)设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)【解答】解:∵f(x)=x2﹣4(x>0),∴当x>0时,若f(x)>0,则x>2,又由函数f(x)是定义在R上的奇函数,当x<0时,﹣x>0,若f(x)>0,则f(﹣x)<0,则0<﹣x<2,即﹣2<x <0,故f(x)>0的解集为(﹣2,0)∪(2,+∞),故f(x﹣2)>0时,x﹣2∈(﹣2,0)∪(2,+∞),x∈(0,2)∪(4,+∞),即f(x﹣2)>0的解集为(0,2)∪(4,+∞).故选:B.6.(5分)将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0D.【解答】解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.7.(5分)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③【解答】解:①若m⊂α,l∩α=A,点A∉m,则l与m不共面,正确;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,利用线面垂直的判定定理即可判断出:n⊥α正确;③若l∥α,α∥β,α∥β,则l与m不一定平行,不正确;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,利用面面平行的判定定理可得:α∥β,正确.其中为真命题的是①②④.故选:C.8.(5分)变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.5D.【解答】解:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C(0,1),此时z=(x﹣2)2+y2=4+1=5,故选:C.9.(5分)如图,△AOB为等腰直角三角形,OA=1,OC为斜边AB的高,P为线段OC的中点,则•=()A.﹣1B.﹣C.﹣D.﹣【解答】解:由题意可得AB=,OC=,OP=,∠AOP=45°,则•=(﹣)•=﹣=()2﹣1×=﹣.故选:B.10.(5分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△P AB和△P AD都是等边三角形,则异面直线CD与PB所成角的大小为()A.90°B.75°C.60°D.45°【解答】解:设AD=1,则BC=2,过A作AE∥CD,则AD=CE,过E作EF ∥PB,则∠AEF为所求,如图过F作FG∥CD,连接AG,则四边形AEFG是梯形,其中FG∥AE,EF=PB =,AG=,AE>FG,过G作GH∥EF,则∠GHA=∠AEF,在△GHA中,GH=EF=,AH=AE﹣FG=﹣=,AG=,AG2=GH2+AH2,所以∠AEF=90°,故选:A.11.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=3,则|QF|=()A.B.C.3D.2【解答】解:设l与x轴的交点为M,过Q向准线l作垂线,垂足为N,∵=3,∴=,又|MF|=p=4,∴|NQ|=,∵|NQ|=|QF|,∴|QF|=.故选:A.12.(5分)设f(x)=|lgx|,若函数g(x)=f(x)﹣ax在区间(0,4)上有三个零点,则实数a的取值范围是()A.B.C.D.【解答】解:函数g(x)=f(x)﹣ax在区间(0,4)上有三个零点,就是g(x)=f(x)﹣ax=0在区间(0,4)上有三个根,也就是f(x)=ax的根有3个,即两个函数y=f(x)与y=ax图象在区间(0,4)上的交点个数为3个.如图:由题意以及函数的图象可知函数有3个零点,直线y=ax过A,与l之间时,满足题意.A(4,lg4),k OA=.设l与y=lgx的切点为(t,f(t)),可得y′=,切线的斜率为:==,即lgt=lge,t=e.可得切线l的斜率为:,a∈.故选:B.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.(5分)正项等比数列{a n}中,a2=4,a4=16,则数列{a n}的前9项和等于1022.【解答】解:由a2=4,a4=16,得到q2===4,解得:q=2(舍去负值),∴a1==2,则数列的前9项之和S9==,即S9=1022.故答案是:1022.14.(5分)某几何体的三视图如图所示,则它的体积为.【解答】解:由三视图知几何体为倒放的半个圆锥,圆锥的底面圆半径为2,高为4,∴圆锥的母线长为2,∴几何体的体积V=××π×22×4=.故答案为:.15.(5分)已知椭圆C:,点M与C的焦点不重合,若M关于C的两焦点的对称点分别为P,Q,线段MN的中点在C上,则|PN|+|QN|=16.【解答】解:设椭圆C的长轴长为2a,则由,得a=4,又设F1,F2分别是椭圆C的左、右焦点,K为线段MN的中点,如右图所示,由已知条件,易得F1,F2分别是线段MB,MA的中点,则在△NBM和△NAM中,有|NB|=2|KF1|,|NA|=2|KF2|,又由椭圆定义,得|KF1|+|KF2|=2a=8,故|AN|+|BN|=2(|KF1|+|KF2|)=16.故答案为:16.16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a <x0<b),满足,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.如y=x2是[﹣1,1]上的平均值函数,0就是它的均值点.现有函数f(x)=x3+mx是区间[﹣1,1]上的平均值函数,则实数m的取值范围是﹣3<m≤.【解答】解:函数f(x)=x3+mx是区间[﹣1,1]上的平均值函数,故有x3+mx=在(﹣1,1)内有实数根.由x 3+mx =⇒x 3+mx ﹣m ﹣1=0,解得x 2+m +1+x =0或x =1.又1∉(﹣1,1)∴x 2+m +1+x =0的解为:,必为均值点,即⇒﹣3<m ≤.⇒<m ≤∴所求实数m 的取值范围是﹣3<m ≤.故答案为:﹣3<m ≤.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(12分)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别记为a ,b ,c ,并且(sin A ﹣sin B )(sin A +sin B )=sin (﹣B )sin (+B ).(Ⅰ)求角A 的值; (Ⅱ)若•=12,a =2,求b ,c (其中b <c ).【解答】解:(Ⅰ)(sin A ﹣sin B )(sin A +sin B )=sin (﹣B )sin (+B ).可得:=,∴,∴. …(6分)(Ⅱ),∴bc =24,又a 2=b 2+c 2﹣2bc cos A =(b +c )2﹣3bc , ∴b +c =10,∵b <c ,∴b =4,c =6.…(12分)18.(12分)已知数列{a n }满足(a n +1﹣1)(a n ﹣1)=3(a n ﹣a n +1),a 1=2,令.(Ⅰ)证明:数列{b n }是等差数列;(Ⅱ)求数列{a n }的通项公式.【解答】解:(Ⅰ)(a n +1﹣1)(a n ﹣1)=3[(a n ﹣1)﹣(a n +1﹣1)],两边同除:(a n +1﹣1)(a n ﹣1), ∴,即,∴{b n }是等差数列.…(6分) (Ⅱ)∵b 1=1,∴,…(10分),∴.…(12分)19.(12分)△ABC 为等腰直角三角形,AC =BC =4,∠ACB =90°,D 、E 分别是边AC 和AB 的中点,现将△ADE 沿DE 折起,使面ADE ⊥面DEBC ,H 是边AD 的中点,平面BCH 与AE 交于点I .(Ⅰ)求证:IH ∥BC ;(Ⅱ)求三棱锥A ﹣HIC 的体积.【解答】(Ⅰ)证明:因为D 、E 分别是边AC 和AB 的中点, 所以ED ∥BC ,因为BC ⊂平面BCH ,ED ⊄平面BCH , 所以ED ∥平面BCH因为ED ⊄平面BCH ,ED ⊂平面AED ,平面BCH ∩平面AED =HI 所以ED ∥HI 又因为ED ∥BC , 所以IH ∥BC .…(6分) (Ⅱ)解:V A ﹣CIH =V C ﹣AIH ,高CD=2,…(12分)20.(12分)如图,抛物线C1:y2=2px与椭圆C2:在第一象限的交点为B,O为坐标原点,A为椭圆的右顶点,△OAB的面积为.(Ⅰ)求抛物线C1的方程;(Ⅱ)过A点作直线l交C1于C、D两点,求△OCD面积的最小值.【解答】解:(Ⅰ)因为△OAB的面积为,所以,…(2分)代入椭圆方程得,抛物线的方程是:y2=8x…(6分)(Ⅱ)直线CD斜率不存在时,;直线CD斜率存在时,设直线CD方程为y=k(x﹣4),代入抛物线,得ky2﹣8y ﹣32k=0,y1+y2=,y1•y2=32,,最小值为.…(12分)综上S△OCD21.(12分)设函数f(x)=ax2lnx+b(x﹣1)(x>0),曲线y=f(x)过点(e,e2﹣e+1),且在点(1,0)处的切线方程为y=0.(Ⅰ)求a,b的值;(Ⅱ)证明:当x≥1时,f(x)≥(x﹣1)2;(Ⅲ)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.【解答】解:(Ⅰ)函数f(x)=ax2lnx+b(x﹣1)(x>0),可得f′(x)=2alnx+ax+b,∵f′(1)=a+b=0,f(e)=ae2+b(e﹣1)=a(e2﹣e+1)=e2﹣e+1∴a=1,b=﹣1.…(4分)(Ⅱ)f(x)=x2lnx﹣x+1,设g(x)=x2lnx+x﹣x2,(x≥1),g′(x)=2xlnx﹣x+1,(g′(x))′=2lnx+1>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(1)=0,∴g (x)在[0,+∞)上单调递增,∴g(x)≥g(1)=0.∴f(x)≥(x﹣1)2.…(8分)(Ⅲ)设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,h′(x)=2xlnx+x﹣2m(x﹣1)﹣1,(Ⅱ)中知x2lnx≥(x﹣1)2+x﹣1=x(x﹣1),∴xlnx≥x﹣1,∴h′(x)≥3(x﹣1)﹣2m(x﹣1),①当3﹣2m≥0即时,h′(x)≥0,∴h(x)在[1,+∞)单调递增,∴h(x)≥h(1)=0,成立.②当3﹣m<0即时,h′(x)=2xlnx﹣(1﹣2m)(x﹣1),(h′(x))′=2lnx+3﹣2m,令(h′(x))=0,得,当x∈[1,x0)时,h′(x)<h′(1)=0,∴h(x)在[1,x0)上单调递减∴h (x)<h(1)=0,不成立.综上,.…(12分)请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,延长BA和CD相交于点P,=,=.(Ⅰ)求的值;(Ⅱ)若BD为⊙O的直径,且P A=1,求BC的长.【解答】解:(Ⅰ)由∠P AD=∠PCB,∠A=∠A,得△P AD与△PCB相似,设P A=x,PD=y则有,所以…(5分)(Ⅱ)因为P A=1,=,所以PB=4,因为P A•PB=PD•PC,=,所以PC=2,因为BD为⊙O的直径,所以∠C=90°,所以BC==2.…(10分)选修4-4:坐标系与参数方程23.已知在平面直角坐标系xOy中,直线l的参数方程是(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标,曲线C的极坐标方程ρ=2cos(θ+).(Ⅰ)判断直线l与曲线C的位置关系;(Ⅱ)设M为曲线C上任意一点,求x+y的取值范围.【解答】解:(Ⅰ)由,消去t得:y=x+.由,得,即,∴,即.化为标准方程得:.圆心坐标为,半径为1,圆心到直线x﹣y+=0的距离d=>1.∴直线l与曲线C相离;(Ⅱ)由M为曲线C上任意一点,可设,则x+y=sinθ+cosθ=,∴x+y的取值范围是.选修4-5:不等式选讲24.已知函数f(x)=|2x+1|﹣|x|﹣2(Ⅰ)解不等式f(x)≥0(Ⅱ)若存在实数x,使得f(x)≤|x|+a,求实数a的取值范围.【解答】解:(Ⅰ)函数f(x)=|2x+1|﹣|x|﹣2=,当x<﹣时,由﹣x﹣3≥0,可得x≤﹣3.当﹣≤x<0时,由3x﹣1≥0,求得x∈∅.当x≥0时,由x﹣1≥0,求得x≥1.综上可得,不等式的解集为{x|x≤﹣3 或x≥1}.(Ⅱ)f(x)≤|x|+a,即|x+|﹣|x|≤+1①,由题意可得,不等式①有解.由于|x+|﹣|x|表示数轴上的x对应点到﹣对应点的距离减去它到原点的距离,故|x+|﹣|x|∈[﹣,],故有+1≥﹣,求得a≥﹣3.。
2015年某某省某某市高考数学一模试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•某某一模)若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合(∁U M)∩N等于()A. {2,3} B. {2,3,5,6} C. {1,4} D. {1,4,5,6}【考点】:交、并、补集的混合运算.【专题】:集合.【分析】:根据集合的基本运算即可得到结论.【解析】:解:由补集的定义可得∁U N={2,3,5},则(∁U N)∩M={2,3},故选:A【点评】:本题主要考查集合的基本运算,比较基础.2.(5分)(2015•某某一模)设复数z满足(1﹣i)z=2i,则z=() A.﹣1+i B.﹣1﹣i C. 1+i D. 1﹣i【考点】:复数代数形式的乘除运算.【专题】:计算题.【分析】:根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解析】:解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.【点评】:本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.3.(5分)(2014•某某)“x<0”是“ln(x+1)<0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】:充要条件.【专题】:计算题;简易逻辑.【分析】:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解析】:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.【点评】:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.4.(5分)(2015•某某一模)抛物线y=4ax2(a≠0)的焦点坐标是()A.(0,a) B.(a,0) C.(0,) D.(,0)【考点】:抛物线的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:先将抛物线的方程化为标准式,再求出抛物线的焦点坐标.【解析】:解:由题意知,y=4ax2(a≠0),则x2=,所以抛物线y=4ax2(a≠0)的焦点坐标是(0,),故选:C.【点评】:本题考查抛物线的标准方程、焦点坐标,属于基础题.5.(5分)(2015•某某一模)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2﹣S n=36,则n=()A. 5 B. 6 C. 7 D. 8【考点】:等差数列的性质.【专题】:等差数列与等比数列.【分析】:由S n+2﹣S n=36,得a n+1+a n+2=36,代入等差数列的通项公式求解n.【解析】:解:由S n+2﹣S n=36,得:a n+1+a n+2=36,即a1+nd+a1+(n+1)d=36,又a1=1,d=2,∴2+2n+2(n+1)=36.解得:n=8.故选:D.【点评】:本题考查了等差数列的性质,考查了等差数列的通项公式,是基础题.6.(5分)(2015•某某一模)已知某几何体的三视图如,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A. B. C. 2cm3 D. 4cm3【考点】:棱柱、棱锥、棱台的体积.【专题】:空间位置关系与距离.【分析】:由题目给出的几何体的三视图,还原得到原几何体,然后直接利用三棱锥的体积公式求解.【解析】:解:由三视图可知,该几何体为底面是正方形,且边长为2cm,高为2cm的四棱锥,如图,故,故选B.【点评】:本题考查了棱锥的体积,考查了空间几何体的三视图,能够由三视图还原得到原几何体是解答该题的关键,是基础题.7.(5分)(2015•某某一模)已知x,y满足约束条件,则z=2x+y的最大值为() A. 3 B.﹣3 C. 1 D.【考点】:简单线性规划.【专题】:计算题.【分析】:先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解析】:解:作图易知可行域为一个三角形,当直线z=2x+y过点A(2,﹣1)时,z最大是3,故选A.【点评】:本小题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.8.(5分)(2015•某某一模)执行如图所示的程序框图,则输出的k的值为()A. 4 B. 5 C. 6 D. 7【考点】:程序框图.【专题】:计算题;规律型;算法和程序框图.【分析】:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出输出不满足条件S=0+1+2+8+…<100时,k+1的值.【解析】:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出不满足条件S=0+1+2+8+…<100时,k+1的值.第一次运行:满足条件,s=1,k=1;第二次运行:满足条件,s=3,k=2;第三次运行:满足条件,s=11<100,k=3;满足判断框的条件,继续运行,第四次运行:s=1+2+8+211>100,k=4,不满足判断框的条件,退出循环.故最后输出k的值为4.故选:A.【点评】:本题考查根据流程图(或伪代码)输出程序的运行结果.这是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2015•某某一模)已知函数,若,则f(﹣a)=() A. B. C. D.【考点】:函数的值.【专题】:计算题.【分析】:利用f(x)=1+,f(x)+f(﹣x)=2即可求得答案.【解析】:解:∵f(x)==1+,∴f(﹣x)=1﹣,∴f(x)+f(﹣x)=2;∵f(a)=,∴f(﹣a)=2﹣f(a)=2﹣=.故选C.【点评】:本题考查函数的值,求得f(x)+f(﹣x)=2是关键,属于中档题.10.(5分)(2015•某某一模)在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=()A. B. C. D.【考点】:平面向量数量积的运算.【专题】:计算题;平面向量及应用.【分析】:运用向量的平方即为模的平方,可得=0,再由向量的三角形法则,以及向量共线的知识,化简即可得到所求.【解析】:解:若|+|=|﹣|,则=,即有=0,E,F为BC边的三等分点,则=(+)•(+)=()•()=(+)•(+)=++=×(1+4)+0=.故选B.【点评】:本题考查平面向量的数量积的定义和性质,考查向量的平方即为模的平方,考查向量共线的定理,考查运算能力,属于中档题.11.(5分)(2015•某某一模)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A. 2 B. 4 C. 6 D. 8【考点】:奇偶函数图象的对称性;三角函数的周期性及其求法;正弦函数的图象.【专题】:压轴题;数形结合.【分析】:的图象由奇函数的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.【解析】:解:函数,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在和上是减函数;在和上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:x A+x H=x B+x G═x C+x F=x D+x E=2,故所求的横坐标之和为8故选D【点评】:发现两个图象公共的对称中心是解决本题的入口,讨论函数y2=2sinπx的单调性找出区间(1,4)上的交点个数是本题的难点所在.12.(5分)(2015•某某校级一模)定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞) B.(﹣∞,0)∪(3,+∞) C.(﹣∞,0)∪(0,+∞) D.(3,+∞)【考点】:利用导数研究函数的单调性;导数的运算.【专题】:导数的综合应用.【分析】:构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解析】:解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.【点评】:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题纸上.)13.(5分)(2015•某某一模)若双曲线E的标准方程是,则双曲线E的渐进线的方程是y=x .【考点】:双曲线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:求出双曲线的a,b,再由渐近线方程y=x,即可得到所求方程.【解析】:解:双曲线E的标准方程是,则a=2,b=1,即有渐近线方程为y=x,即为y=x.故答案为:y=x.【点评】:本题考查双曲线的方程和性质:渐近线方程,考查运算能力,属于基础题.14.(5分)(2015•某某一模)已知{a n}是等比数列,,则a1a2+a2a3+…+a n a n+1=.【考点】:数列的求和;等比数列的通项公式.【专题】:计算题.【分析】:首先根据a2和a5求出公比q,根据数列{a n a n+1}每项的特点发现仍是等比数列,根据等比数列求和公式可得出答案.【解析】:解:由,解得.数列{a n a n+1}仍是等比数列:其首项是a1a2=8,公比为,所以,故答案为.【点评】:本题主要考查等比数列通项的性质和求和公式的应用.应善于从题设条件中发现规律,充分挖掘有效信息.15.(5分)(2015•某某一模)若直线l:(a>0,b>0)经过点(1,2)则直线l 在x轴和y轴的截距之和的最小值是3+2.【考点】:直线的截距式方程.【专题】:直线与圆.【分析】:把点(1,1)代入直线方程,得到=1,然后利用a+b=(a+b)(),展开后利用基本不等式求最值.【解析】:解:∵直线l:(a>0,b>0)经过点(1,2)∴=1,∴a+b=(a+b)()=3+≥3+2,当且仅当b=a时上式等号成立.∴直线在x轴,y轴上的截距之和的最小值为3+2.故答案为:3+2.【点评】:本题考查了直线的截距式方程,考查利用基本不等式求最值,是中档题.16.(5分)(2015•某某一模)在直三棱柱ABC﹣A1B1C1中,若BC⊥AC,∠A=,AC=4,AA1=4,M为AA1的中点,点P为BM中点,Q在线段CA1上,且A1Q=3QC.则异面直线PQ与AC所成角的正弦值.【考点】:异面直线及其所成的角.【专题】:空间角.【分析】:以C为原点,CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出异面直线PQ与AC所成角的正弦值.【解析】:解:以C为原点,CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,则由题意得A(0,4,0),C(0,0,0),B(4,0,0),M(0,4,2),A1(0,4,4),P(2,2,1),==(0,4,4)=(0,1,1),∴Q(0,1,1),=(0,﹣4,0),=(﹣2,﹣1,0),设异面直线PQ与AC所成角为θ,cosθ=|cos<>|=||=,∴sinθ==.故答案为:.【点评】:本题考查异面直线PQ与AC所成角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.三、解答题:(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.(12分)(2015•某某一模)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)当x∈[0,]时,求函数f(x)的值域.【考点】:三角函数中的恒等变换应用;正弦函数的图象.【专题】:三角函数的求值;三角函数的图像与性质.【分析】:(I)先化简求得解析式f(x)=sin(2x﹣)+,从而可求函数f(x)的最小正周期和单调递增区间;(Ⅱ)先求2x﹣的X围,可得sin(2x﹣)的X围,从而可求函数f(x)的值域.【解析】:解:(I)f(x)=sin2x+sinxcosx=+sin2x …(2分)=sin(2x﹣)+.…(4分)函数f(x)的最小正周期为T=π.…(6分)因为﹣+2kπ≤2x﹣≤+2kπ,解得﹣+kπ≤x≤+kπ,k∈Z,所以函数f(x)的单调递增区间是[﹣+kπ,+kπ],k∈Z,.…(8分)(Ⅱ)当x∈[0,]时,2x﹣∈[﹣,]sin(2x﹣)∈[﹣,1],…(10分)所以函数f(x)的值域为f(x)∈[0,1+].…(12分)【点评】:本题主要考查了三角函数中的恒等变换应用,三角函数的图象与性质,属于基本知识的考查.18.(12分)(2015•某某一模)某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表所示参加社团活动不参加社团活动合计学习积极性高 17 8 25学习积极性一般 5 20 25合计 22 28 50(Ⅰ)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?(Ⅱ)试运用独立性检验的思想方法【分析】:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.x2=.P(x2≥k) 0.05 0.01 0.001K 3.841 6.635 10.828【考点】:独立性检验的应用.【专题】:计算题;概率与统计.【分析】:(Ⅰ)求出积极参加社团活动的学生有22人,总人数为50人,得到概率,不参加社团活动且学习积极性一般的学生为20人,得到概率.(Ⅱ)根据条件中所给的数据,代入求这组数据的观测值的公式,求出观测值,把观测值同临界值进行比较,得到有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.【解析】:解:(Ⅰ)积极参加社团活动的学生有22人,总人数为50人,所以随机从该班抽查一名学生,抽到参加社团活动的学生的概率是=;抽到不参加社团活动且学习积极性一般的学生为20人,所以其概率为=;(Ⅱ)x2=≈11.7∵x2>10.828,∴有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.【点评】:本题考查独立性检验的意义,是一个基础题,题目一般给出公式,只要我们代入数据进行运算就可以,注意数字的运算不要出错.19.(12分)(2015•某某一模)如图,设四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=.(Ⅰ)证明:平面EAB⊥平面ABCD;(Ⅱ)求四棱锥E﹣ABCD的体积.【考点】:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】:空间位置关系与距离.【分析】:(I)取AB的中点O,连结EO、CO,由已知得△ABC是等边三角形,由此能证明平面EAB⊥平面ABCD.(II)V E﹣ABCD=,由此能求出四棱锥E﹣ABCD的体积.【解析】:(I)证明:取AB的中点O,连结EO、CO.由AE=BE=,知△AEB为等腰直角三角形.故EO⊥AB,EO=1,又AB=BC,∠ABC=60°,则△ABC是等边三角形,从而CO=.又因为EC=2,所以EC2=EO2+CO2,所以EO⊥CO.又EO⊥AB,CO∩AB=O,因此EO⊥平面ABCD.又EO⊂平面EAB,故平面EAB⊥平面ABCD.…(8分)(II)解:V E﹣ABCD===.…(12分)【点评】:本题考查平面与平面垂直的证明,考查四棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.20.(12分)(2015•某某一模)已知椭圆C:+=1(a>b>0),e=,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为,且=λ(其中λ>1).(Ⅰ)求椭圆C的标准方程;(Ⅱ)某某数λ的值.【考点】:直线与圆锥曲线的综合问题.【专题】:圆锥曲线中的最值与X围问题.【分析】:(I)由条件可知c=1,a=2,由此能求出椭圆的标准方程.(Ⅱ)由,可知A,B,F三点共线,设A(x1,y1),B(x2,y2),直线AB⊥x轴,则x1=x2=1,不合意题意.当AB所在直线l的斜率k存在时,设方程为y=k(x﹣1).由,得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出实数λ的值.【解析】:解:(I)由条件可知c=1,a=2,故b2=a2﹣c2=3,椭圆的标准方程是.…(4分)(Ⅱ)由,可知A,B,F三点共线,设A(x1,y1),B(x2,y2),若直线AB⊥x轴,则x1=x2=1,不合题意.当AB所在直线l的斜率k存在时,设方程为y=k(x﹣1).由,消去y得(3+4k2)x2﹣8k2x+4k2﹣12=0.①由①的判别式△=64k4﹣4(4k2+3)(4k2﹣12)=144(k2+1)>0.因为,…(6分)所以=,所以.…(8分)将代入方程①,得4x2﹣2x﹣11=0,解得x=.…(10分)又因为=(1﹣x1,﹣y1),=(x2﹣1,y2),,,解得.…(12分)【点评】:本题考查椭圆的标准方程的求法,考查满足条件的实数的值的求法,解题时要认真审题,注意函数与方程思想的合理运用.21.(12分)(2015•某某一模)已知函数f(x)=alnx(a>0),e为自然对数的底数.(Ⅰ)若过点A(2,f(2))的切线斜率为2,某某数a的值;(Ⅱ)当x>0时,求证:f(x)≥a(1﹣);(Ⅲ)在区间(1,e)上>1恒成立,某某数a的取值X围.【考点】:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】:导数的综合应用.【分析】:(Ⅰ)求函数的导数,根据函数导数和切线斜率之间的关系即可某某数a的值;(Ⅱ)构造函数,利用导数证明不等式即可;(Ⅲ)利用参数分离法结合导数的应用即可得到结论.【解析】:【解析】:(I)函数的f(x)的导数f′(x)=,∵过点A(2,f(2))的切线斜率为2,∴f′(2)==2,解得a=4.…(2分)(Ⅱ)令g(x)=f(x)﹣a(1﹣)=a(lnx﹣1+);则函数的导数g′(x)=a().…(4分)令g′(x)>0,即a()>0,解得x>1,∴g(x)在(0,1)上递减,在(1,+∞)上递增.∴g(x)最小值为g(1)=0,故f(x)≥a(1﹣)成立.…(6分)(Ⅲ)令h(x)=alnx+1﹣x,则h′(x)=﹣1,令h′(x)>0,解得x<a.…(8分)当a>e时,h(x)在(1,e)是增函数,所以h(x)>h(1)=0.…(9分)当1<a≤e时,h(x)在(1,a)上递增,(a,e)上递减,∴只需h(x)≥0,即a≥e﹣1.…(10分)当a≤1时,h(x)在(1,e)上递减,则需h(e)≥0,∵h(e)=a+1﹣e<0不合题意.…(11分)综上,a≥e﹣1…(12分)【点评】:本题主要考查导数的综合应用,要求熟练掌握导数的几何意义,函数单调性最值和导数之间的关系,考查学生的综合应用能力.选修4-1:几何证明选讲22.(10分)(2015•某某一模)如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE ⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧BD的中点;(Ⅱ)求证:BF=FG.【考点】:与圆有关的比例线段.【专题】:计算题.【分析】:(I)要证明C是劣弧BD的中点,即证明弧BC与弧CD相等,即证明∠CAB=∠DAC,根据已知中CF=FG,AB是圆O的直径,CE⊥AB于E,我们易根据同角的余角相等,得到结论.(II)由已知及(I)的结论,我们易证明△BFC及△GFC均为等腰三角形,即CF=BF,CF=GF,进而得到结论.【解析】:解:(I)∵CF=FG∴∠CGF=∠FCG∴AB圆O的直径∴∵CE⊥AB∴∵∴∠CBA=∠ACE∵∠CGF=∠DGA∴∴∠CAB=∠DAC∴C为劣弧BD的中点(5分)(II)∵∴∠GBC=∠FCB∴CF=FB同理可证:CF=GF∴BF=FG(10分)【点评】:本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB 是圆O的直径,CE⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.选修4-4:坐标系与参数方程23.(2015•某某一模)在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角α=.(Ⅰ)写出圆C的标准方程和直线l的参数方程;(Ⅱ)设直线l与圆C相交于A、B两点,求|PA|•|PB|的值.【考点】:参数方程化成普通方程.【专题】:坐标系和参数方程.【分析】:(Ⅰ)利用同角的三角函数的平方关系消去θ,得到圆的普通方程,再由直线过定点和倾斜角确定直线的参数方程;(Ⅱ)把直线方程代入圆的方程,得到关于t的方程,利用根与系数的关系得到所求.【解析】:解:(I)消去θ,得圆的标准方程为2+y2=16.…(2分)直线l的参数方程为,即(t为参数)…(5分)(Ⅱ)把直线的方程代入x2+y2=16,得(1+t)2+(2+t)2=16,即t2+(2+)t﹣11=0,…(8分)所以t1t2=﹣11,即|PA|•|PB|=11.…(10分)【点评】:本题考查了圆的参数方程化为普通方程、直线的参数方程以及直线与圆的位置关系问题,属于基础题.选修4-5:不等式选讲24.(2015•某某一模)设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值X围.【考点】:绝对值不等式的解法;函数最值的应用.【专题】:计算题;压轴题;分类讨论.【分析】:(1)分类讨论,当x≥4时,当时,当时,分别求出不等式的解集,再把解集取交集.(2)利用绝对值的性质,求出f(x)+3|x﹣4|的最小值为9,故m<9.【解析】:解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得 x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当,所以,f(x)+3|x﹣4|的最小值为9,故 m<9.【点评】:本题考查绝对值不等式的解法,求函数的最小值的方法,绝对值不等式的性质,体现了分类讨论的数学思想.。
2015年校联考数学试题(文科)第I 卷(选择题 60分)一、选择题 (本大题共12小题, 每小题5分, 共60分. 在每小题给出的四个选项中, 有且只有一项是符合题目要求的)1.已知集合{11}A x x =-≤≤,{02}B x x =≤≤,则A B =A. [1,0]-B. [1,2]-C. [0,1]D. (,1][2,)-∞+∞2.已知向量a=(1,-2),b=(x ,4),且a ∥b ,,则a ⋅b= A .5 B . -5 C .10 D .-103.若复数z 满足(1)1i z i -=+,则z i += A .0 B .1 C .2 D .34.已知△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,222a b c bc =+-,4bc =,则△ABC 的 面积为12D. 25.执行如图所示的程序框图,若输入n 的值为8,则输出S 的值为A.4B.8C.10D.126.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列命题中不正确的一个是A .若a ⊥α,b ∥α,则a ⊥bB .若a⊥α,a ∥b ,β⊂b 则αβ⊥C .若a ⊥α,b ⊥β,α∥β,则a ∥bD .若a ∥α,a ∥β则α∥β7. 已知,x y 满足约束条件1323x x y x y ≥⎧⎪+≤⎨⎪-≤⎩,若2z x y =+的最大值和最小值分别为,a b ,则a b += A.7B.6C.5D.48.正项等比数列{}n a 满足:3212a a a =+,若存在,m n a a ,使得2116m n a a a ⋅=,则19m n+的最小值为A.2B.16C.83 D.329.已知函数()x x f x +=2,()x x x g +=3log ,()xx x h 1-=的零点依次为a ,b ,c ,则A .a <b <c B.c <b <a C.c <a <b D.b <a <c10.一个几何体的三视图如图所示,它的一条体对角线的两个端点为 A 、B ,则经过这个几何体的面,A 、B 间的最短路程是A .B..74 D .11.已知点P 在双曲线()222210,0x y a b a b-=>>上,12,F F 是这条双曲线的两个焦点,∠F 1PF 2=90°,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是D.512.对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为M 函数: (i) 对任意的[0,1]x ∈,恒有()0f x ≥;(ii) 当12120,0,1x x x x +≥≥≤时,总有1212()()()f x f x f x x ++≥成立. 则下列三个函数中不是..M 函数的个数有① 2()f x x =② 2()1f x x =+ ③ ()21xf x =- A. 0 B. 1C. 2D. 3第II 卷(非选择题 90分)本卷包括必考题和选考题两部分。
吉林省东北师大附中2015届高三上学期第一次摸底考试数学(文)试题(解析版)试卷满分:150分 考试时间:120分钟【试卷综评】本试卷试题主要注重基本知识、基本能力、基本方法等当面的考察,覆盖面广,注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考等方面的考查。
第I 卷一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的)【题文】(1)设集合M={|1x Z x ∈≤},N={|(2)0x R x x ∈-≤},则如图所示的Venn 图的阴影部分所表示的集合为(A){0} (B){0,1} (C)[0,1](D)[-1,1]【知识点】交集及其运算.A1 【答案解析】B 解析:M={|1x Z x ∈≤}= {}1,0,1-,N={|(2)0x R x x ∈-≤}= {}|02x x #,则{}0,1M N =I【思路点拨】先把集合化简,再求交集即可。
【题文】(2)“21x <”是“1x <”成立的(A )充分必要条件 (B )必要不充分条件(C )充分不必要条件 (D )既不充分也不必要条件【知识点】充要条件.A2【答案解析】C 解析:由21x <解得11x -<<Þ1x <,但1x <不能推出11x -<<,所以“21x <”是“1x <”成立的充分不必要条件,故选C.【思路点拨】先解出21x <,再做出双向判断即可。
【题文】(3)函数()f x =的定义域为 (A )[-2,2] (B)(0,2] (C)(0,1)(1,2) (D)(0,1)(1,2]【知识点】函数的定义域。
B1【答案解析】C 解析:由题意可知满足:24001x x x ì- ïí> ïî且,解得其定义域为(0,1)(1,2),故选C.【思路点拨】由题意列出不等式组即可。
2015年黑龙江省齐齐哈尔市高考数学一模试卷(文科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数等于()A.1+2i B.1﹣2i C.2﹣i D.2+i2.(5分)设集合A={x|﹣1<x≤2,x∈N},集合B={2,3},则A∪B等于()A.{2}B.{1,2,3}C.{﹣1,0,1,2,3}D.{0,1,2,3}3.(5分)等差数列{a n}中,a4+a8=10,a10=6,则公差d等于()A.B.C.2D.﹣4.(5分)我校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到编号之和为48,则抽到的最小编号为()A.2B.3C.4D.55.(5分)已知向量=(m,2),向量=(2,﹣3),若⊥,则实数m的值是()A.﹣2B.3C.D.﹣36.(5分)三棱锥D﹣ABC及其三视图中的正视图和俯视图如图所示,则棱BD 的长为()A.2B.2C.3D.47.(5分)下列命题中,真命题是()A.∃x∈R,sin x+cos x>2B.m2+n2=0(m,n∈R),则m=0且n=0C.“x=4”是“x2﹣3x﹣4=0”的充要条件D.“0<ab<1”是“b<”的充分条件8.(5分)为得到函数y=sin(x+)的图象,可将函数y=sin x的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数),则|m﹣n|的最小值是()A.B.C.D.9.(5分)执行如图所示的程序框图,ze输出S的值为()A.10B.﹣6C.3D.1210.(5分)已知P(x,y)为区域内的任意一点,其中a>0,当该区域的面积为4时,z=2x﹣y的最大值是()A.6B.0C.2D.211.(5分)已知F1、F2是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P与点F2关于直线y=对称,则该双曲线的离心率为()A.B.C.D.212.(5分)已知直线y=kx与函数f(x)=的图象恰好有3个不同的公共点,则实数k的取值范围是()A.(﹣1,+∞)B.(0,﹣1)C.(﹣﹣1,﹣1)D.(﹣∞,﹣﹣1)∪(﹣1,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知sinα=﹣,且α为第三象限角,那么tanα的值等于.14.(5分)设p在[0,5]上随机地取值,则关于x的方程x2+px+1=0有实数根的概率为.15.(5分)在数列{a n}中,已知a1=1,a n+1﹣a n=sin,记S n为数列{a n}的前n项和,则S2014=.16.(5分)点A,B,C,D在同一球面上,AB=BC=,AC=2,若球的表面积为,则四面体ABCD体积的最大值为.三、解答题17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,C=,a=5,△ABC的面积为10.(1)求b,c的值;(2)求cos(B﹣)的值.18.(12分)随机抽取100名学生,测得他们的身高(单位:cm),按照区间[160,165),[165,170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图(如图).(1)求频率分布直方图中x的值及身高在170cm以上的学生人数;(2)将身高在[170,175],[175,180),[180,185]内的学生依次记为A,B,C 三个组,用分层抽样的方法从这三个组中抽取6人,求从这三个组分别抽取的学生人数;(3)在(2)的条件下,要从6名学生中抽取2人,用列举法计算B组中至少有1人被抽中的概率.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,AB=AC,D,E分别为BC,BB1的中点,四边形B1BCC1是正方形.(1)求证:A1B∥平面AC1D;(2)求证:CE⊥平面AC1D.20.(12分)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为B,Q点坐标为(3,0),且•=0,2+=0.(1)求椭圆C的标准方程;(2)过定点P(0,2)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k(k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.21.(12分)已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)e x(a为实数).(1)求f(x)在区间[t,t+2](t>0)上的最小值;(2)若存在两个不等实根x1,x2∈(,e),使方程g(x)=2e x f(x)成立,求实数a的取值范围.[选修4-1:几何证明选讲]22.(10分)如图,△ABO三边上的点C、D、E都在⊙O上,已知AB∥DE,AC=CB.(1)求证:直线AB是⊙O的切线;(2)若AD=2,且tan∠ACD=,求⊙O的半径r的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l 的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣3|﹣5,g(x)=|x+2|﹣2.(1)求不等式f(x)≤2的解集;(2)若不等式f(x)﹣g(x)≥m﹣3有解,求实数m的取值范围.2015年黑龙江省齐齐哈尔市高考数学一模试卷(文科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数等于()A.1+2i B.1﹣2i C.2﹣i D.2+i【解答】解:原式===2﹣i,故选:C.2.(5分)设集合A={x|﹣1<x≤2,x∈N},集合B={2,3},则A∪B等于()A.{2}B.{1,2,3}C.{﹣1,0,1,2,3}D.{0,1,2,3}【解答】解:∵A={x|﹣1<x≤2,x∈N}={0,1,2},集合B={2,3},∴A∪B={0,1,2,3},故选:D.3.(5分)等差数列{a n}中,a4+a8=10,a10=6,则公差d等于()A.B.C.2D.﹣【解答】解:在等差数列{a n}中,由a4+a8=10,得2a6=10,a6=5.又a10=6,则.故选:A.4.(5分)我校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到编号之和为48,则抽到的最小编号为()A.2B.3C.4D.5【解答】解:系统抽样的抽取间隔为=6.设抽到的最小编号x,则x+(6+x)+(12+x)+(18+x)=48,所以x=3.故选:B.5.(5分)已知向量=(m,2),向量=(2,﹣3),若⊥,则实数m的值是()A.﹣2B.3C.D.﹣3【解答】解:∵向量=(m,2),向量=(2,﹣3),⊥,∴=2m﹣6=0,解得m=3.故选:B.6.(5分)三棱锥D﹣ABC及其三视图中的正视图和俯视图如图所示,则棱BD 的长为()A.2B.2C.3D.4【解答】解:三视图中的正视图和俯视图如图所示可知:可得AC=4,DC=4,△ACD和△BCD是直角三角形,△ACB边AC的高是2,B正视图投影在AC的中点上,∴BC=4,∵△BCD是直角三角形,∴BD==.故选:D.7.(5分)下列命题中,真命题是()A.∃x∈R,sin x+cos x>2B.m2+n2=0(m,n∈R),则m=0且n=0C.“x=4”是“x2﹣3x﹣4=0”的充要条件D.“0<ab<1”是“b<”的充分条件【解答】解:对于A,由于sin x+cos x=sin(x+)≤,故不存在x∈R,使得sin x+cos x>2,即A错误;对于B,m2+n2=0(m,n∈R),则m=0且n=0,正确;对于C,由x2﹣3x﹣4=0得:x=4或x=﹣1,故“x=4”是“x2﹣3x﹣4=0”的充分不必要条件,故C错误;对于D,由0<ab<1知,a、b同号,又b<⇒<0⇒,或,故“0<ab<1”是“b<”的不充分也不必要条件,即D错误.故选:B.8.(5分)为得到函数y=sin(x+)的图象,可将函数y=sin x的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数),则|m﹣n|的最小值是()A.B.C.D.【解答】解:由条件可得m=2k1π+,n=2k2π+(k1、k2∈N),则|m﹣n|=|2(k1﹣k2)π﹣|,易知(k1﹣k2)=1时,|m﹣n|min=.故选:B.9.(5分)执行如图所示的程序框图,ze输出S的值为()A.10B.﹣6C.3D.12【解答】解:模拟程序框图的运行过程,得;该程序的功能是计算并输出S=﹣12+22﹣32+42的值,所以S=﹣12+22﹣32+42=10.故选:A.10.(5分)已知P(x,y)为区域内的任意一点,其中a>0,当该区域的面积为4时,z=2x﹣y的最大值是()A.6B.0C.2D.2【解答】解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),=•2a•a=4,得a=2.由S△OAB∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.故选:A.11.(5分)已知F1、F2是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P与点F2关于直线y=对称,则该双曲线的离心率为()A.B.C.D.2【解答】解:过焦点F2且垂直渐近线的直线方程为:y﹣0=﹣(x﹣c),联立渐近线方程y=与y﹣0=﹣(x﹣c),解之可得x=,y=故对称中心的点坐标为(,),由中点坐标公式可得对称点的坐标为(﹣c,),将其代入双曲线的方程可得,结合a2+b2=c2,化简可得c2=5a2,故可得e==.故选:B.12.(5分)已知直线y=kx与函数f(x)=的图象恰好有3个不同的公共点,则实数k的取值范围是()A.(﹣1,+∞)B.(0,﹣1)C.(﹣﹣1,﹣1)D.(﹣∞,﹣﹣1)∪(﹣1,+∞)【解答】解:作直线y=kx与函数f(x)=的图象如下,由图象可知,k不可能是负数,故排除C,D;且k可以取到1,故排除B;故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知sinα=﹣,且α为第三象限角,那么tanα的值等于.【解答】解:∵sinα=﹣,且α为第三象限角,∴cosα=﹣=﹣,∴tanα==,故答案为:.14.(5分)设p在[0,5]上随机地取值,则关于x的方程x2+px+1=0有实数根的概率为.【解答】解:若方程x2+px+1=0有实根,则△=p2﹣4≥0,解得,p≥2或p≤﹣2;∵记事件A:“P在[0,5]上随机地取值,关于x的方程x2+px+1=0有实数根”,由方程x2+px+1=0有实根符合几何概型,∴P(A)=.故答案为:.15.(5分)在数列{a n}中,已知a1=1,a n+1﹣a n=sin,记S n为数列{a n}的前n项和,则S2014=1008.【解答】解:由a n+1﹣a n=sin,所以a n+1=a n+sin,∴a2=a1+sinπ=1,a3=a2+sin=1﹣1=0,a4=a3+sin2π=0,a5=a4+sin=0+1=1,∴a5=a1=1可以判断:a n+4=a n数列{a n}是一个以4为周期的数列,2014=4×503+2因为S2014=503×(a1+a2+a3+a4)+a1+a2=503×(1+1+0+0)+1+1=1008,故答案为:100816.(5分)点A,B,C,D在同一球面上,AB=BC=,AC=2,若球的表面积为,则四面体ABCD体积的最大值为.【解答】解:根据题意知,△ABC是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC的中点上,设小圆的圆心为Q,球的半径为r,因为球的表面积为,所以4πr2=所以r=,不变,高最大时体积最大,四面体ABCD的体积的最大值,底面积S△ABC就是D到底面ABC距离最大值时,h=r+=2.四面体ABCD体积的最大值为×S×h==,△ABC故答案为:.三、解答题17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,C=,a=5,△ABC的面积为10.(1)求b,c的值;(2)求cos(B﹣)的值.【解答】解:(1)∵△ABC的面积为10.即S=ab sin C=,C=,a=5,∴b=8.由余弦定理:c2=b2+a2﹣2ba cos C,可得c=7.(2)由(1)可知b=8,C=,c=7.正弦定理:,∴sin B=那么:cos B=则cos(B﹣)=cos B cos+sin B sin==.18.(12分)随机抽取100名学生,测得他们的身高(单位:cm),按照区间[160,165),[165,170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图(如图).(1)求频率分布直方图中x的值及身高在170cm以上的学生人数;(2)将身高在[170,175],[175,180),[180,185]内的学生依次记为A,B,C 三个组,用分层抽样的方法从这三个组中抽取6人,求从这三个组分别抽取的学生人数;(3)在(2)的条件下,要从6名学生中抽取2人,用列举法计算B组中至少有1人被抽中的概率.【解答】解:(1)由频率分布直方图可知5x=1﹣5×(0.07+0.04+0.02+0.01)所以.(3分)100×(0.06×5+0.04×5+0.02×5)=60(人).(5分)(2)A,B,C三组的人数分别为30人,20人,10人.因此应该从A,B,C组中每组各抽取(人),20×=4(人),10×=2(人).(8分)(3)在(2)的条件下,设A组的3位同学为A1,A2,A3,B组的2位同学为B1,B2,C组的1位同学为C1,则从6名学生中抽取2人有15种可能:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中B组的2位学生至少有1人被抽中有9种可能;(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),(B1,C1),(B2,C1)所以B组中至少有1人被抽中的概率为.(13分)19.(12分)如图,在三棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,AB=AC,D,E分别为BC,BB1的中点,四边形B1BCC1是正方形.(1)求证:A1B∥平面AC1D;(2)求证:CE⊥平面AC1D.【解答】(1)证明:设A1C∩AC1=0,则由三棱柱的性质可得O、D分别为CA1、CB的中点,∴OD∥A1B.∵A1B⊄平面AC1D,OD⊂平面AC1D,∴A1B∥平面AC1D.(2)证明:由BB1⊥平面ABC,可得三棱柱ABC﹣A1B1C1为直三棱柱,∵AB=AC,∴AD⊥BC.由平面ABC⊥平面BCC1B1,AD⊂平面BCC1B1,平面ABC∩平面BCC1B1=BC,可得AD⊥平面BCC1B1.又CE⊂平面BCC1B1,故有AD⊥CE.∵B1BCC1是正方形,D、E分别为BC、BB1的中点,故有C1D⊥CE.这样,CE垂直于平面AC1D内的两条相交直线AD、C1E,∴CE⊥平面AC1D.20.(12分)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为B,Q点坐标为(3,0),且•=0,2+=0.(1)求椭圆C的标准方程;(2)过定点P(0,2)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k(k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.【解答】解:(1)由已知Q(3,0),F1B⊥QB,|QF1|=4c=3+c,∴c=1.在Rt△F1BQ中,F2为线段F1Q的中点,故|BF2|=2c=2,∴a=2.于是椭圆C的标准方程为;(2)设l:y=kx+2(k>0),M(x1,y1),N(x2,y2),取MN的中点为E(x0,y0).假设存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形,则AE⊥MN.联立,得(4k2+3)x2+16kx+4=0,由△=256k2﹣16(4k2+3)>0,得,又k>0,∴k>.∵,∴,.∵AE⊥MN,∴,即,整理得m =﹣=﹣.∵k >时,4k+≥4, ∴m =﹣∈[﹣,0).21.(12分)已知函数f (x )=xlnx ,g (x )=(﹣x 2+ax ﹣3)e x (a 为实数). (1)求f (x )在区间[t ,t +2](t >0)上的最小值;(2)若存在两个不等实根x 1,x 2∈(,e ),使方程g (x )=2e x f (x )成立,求实数a 的取值范围.【解答】解:(Ⅰ)由已知得f ′(x )=lnx +1,)①当t ≥时,在区间(t ,t +2)上f (x )为增函数,∴f (x )min =f (t )=tlnt ;②当0<t <时,在区间(t ,)上f (x )为减函数,在区间(,+∞)上f (x )为增函数,∴f (x )min =f ();(Ⅱ) 由g (x )=2e x f (x ),可得:2xlnx =﹣x 2+ax ﹣3,a =x +2lnx +, 令h (x )=x +2lnx +,h ′(x )=1+﹣.因为h ()=+3e ﹣2,h (1)=4,h (e )=+e +2.h (e )﹣h ()=4﹣2e +<0.∴使方程g (x )=2e x f (x )存在两不等实根的实数a 的取值范围为4<a <e +2+. [选修4-1:几何证明选讲]22.(10分)如图,△ABO 三边上的点C 、D 、E都在⊙O 上,已知AB ∥DE ,AC =CB .(1)求证:直线AB 是⊙O 的切线;(2)若AD =2,且tan ∠ACD =,求⊙O 的半径r 的长.【解答】证明:(1)∵AB ∥DE ,∴=,又OD =OE ,∴OA =OB ,如图,连结OC ,∵AC =CB ,∴OC ⊥AB , 又点C 在⊙O 上,∴直线AB 与⊙O 相切. 解:(2)如图,延长DO 交⊙O 于点F ,连结FC , 由(1)知AB 是⊙O 的切线,∴弦切角∠ACD =∠F , ∴△ACD ∽△AFC ,∴tan ∠ACD =tan ∠F =, 又∠DCF =90°,∴=,∵AD =2,∴AC =6,又AC 2=AD •AF ,∴2(2+2r )=62, 解得⊙O 的半径r =8.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l 的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.【解答】解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣3|﹣5,g(x)=|x+2|﹣2.(1)求不等式f(x)≤2的解集;(2)若不等式f(x)﹣g(x)≥m﹣3有解,求实数m的取值范围.【解答】解:(Ⅰ)由题意得f(x)≤2,得|x﹣3|≤7,∴﹣7≤x﹣3≤7,解得﹣4≤x≤10,∴x的取值范围是[﹣4,10].(Ⅱ)∵f(x)﹣g(x)≥m﹣3有解,∴|x﹣3|﹣|x+2|≥m有解,∵||x﹣3|﹣|x+2||≤|(x﹣3)﹣(x+2)|=5,∴﹣5≤|x﹣3|﹣|x+2|≤5∴m≤5,即m的取值范围是(﹣∞,5].。
2015年东北三省三校第一次高考模拟考试文科数学参考答案13.4030 14.-6 15.-16 16.②③④三、解答题 17.解:(1)设ΔABC 中,角A 、B 、C 的对边分别为 a 、b 、c ,则由已知:1sin 22bc θ=,0cos 4bc θ<≤, ……4分可得,tan 1θ≥,所以:[,)42ππθ∈ ……6分(2)2()2sin ()[1cos(2)]42f ππθθθθθ=+=-+(1sin 2)sin 212sin(2)13πθθθθθ=+=+=-+ ……8分∵[,)42ππθ∈,∴22[,)363πππθ-∈,∴π22sin(2)133θ≤-+≤即当512πθ=时,max ()3f θ=;当4πθ=时,min ()2f θ= 所以:函数()f θ的取值范围是[2,3] ……12分 18.(本小题满分12分) 解:(1)150.00350100x x⨯=∴= 15401010035y y +++=∴= ……2分 400.00810050=⨯ 350.00710050=⨯ 100.00210050=⨯DCBAFE……5分(2)设A 市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种, ……8分 其中事件A“其中至少有一个为良”包含的 基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种, ……10分所以事件A“其中至少有一个为良”发生的概率是7()10P A =. ……12分 19.(本小题满分12分)(1)证明: ABCD 是菱形,//BC AD ∴. 又⊄BC 平面ADE ,AD ⊂平面ADE ,//BC ∴平面ADE . ……2分 又BDEF 是正方形,//BF DE ∴.BF ⊄ 平面ADE ,DE ⊂平面ADE ,//BF ∴平面ADE . ……4分 BC ⊂ 平面BCF ,BF ⊂平面BCF BC BF B = ,∴平面BCF //平面AED .由于CF ⊂平面BCF ,知//CF 平面AED . ……6分 (2)解:连接AC ,记AC BD O = .ABCD 是菱形,AC ⊥BD ,且AO = BO .由DE ⊥平面ABCD ,AC ⊂平面ABCD ,DE AC ⊥.DE ⊂ 平面BDEF ,BD ⊂平面BDEF ,DE BD D = , ∴AC ⊥平面BDEF 于O ,即AO 为四棱锥A BDEF -的高. ……9分由ABCD 是菱形,60BCD ∠=,则ABD ∆为等边三角形,由AE ,则(3/g m μ)1AD DE ==,2AO =,1BDEF S =,136BDEF BDEF V S AO =⋅=,23BDEF V V ==. ……12分 20.(本小题满分12分)解:(1)设动圆圆心坐标为(,)x y ,半径为r ,由题可知2222222(2)42x y r y x x r⎧-+=⎪⇒=⎨+=⎪⎩; ∴动圆圆心的轨迹方程为24y x = ……4分(2)设直线1l 斜率为k ,则12:2(1);:2(1).l y k x l y k x -=--=-- 点P (1,2)在抛物线24y x =上22448402(1)y xky y k y k x ⎧=∴⇒-+-=⎨-=-⎩ 设1122(,),(,)A x y B x y ,0>∆恒成立,即(),012>-k 有1≠k118442,2,,P P k ky y y y k k--∴==∴= 代入直线方程可得212(2)k x k -= ……6分同理可得 2222(2)42,k kx y k k++==- ……7分 212221242421(2)(2)ABk ky y k k k k k x x k +----===-+--- ……9分 不妨设:AB l y x b =-+. 因为直线AB 与圆C=解得3b =或1, 当3b =时, 直线AB 过点P ,舍当1b =时, 由2216104y x x x y x=-+⎧⇒-+=⎨=⎩;32,||8AB ∆===P 到直线AB 的距离为d =PAB 的面积为 ……12分21.解:(1)由已知:()ln 12(0)f x x ax x '=++>,切点(1,)P a ……1分 切线方程:(21)(1)y a a x -=+-,把(0,2)-代入得:a = 1 ……3分 (2)(I )依题意:()0f x '=有两个不等实根设()ln 21g x x ax =++,则:1()2(0)g x a x x'=+> ①当0a ≥时:()0g x '>,所以()g x 是增函数,不符合题意; ……5分 ②当0a <时:由()0g x '=得:102x a=->依题意:11()ln()022g a a -=->,解得:102a -<< 综上所求:102a -<<,得证; ……8分(注:以下证明为补充证明此问的充要性,可使其证明更严谨,以此作为参考,学生证明步骤写出上述即可)方法一:当0>x 且0→x 时-∞→x ln ,112→+ax ,∴当0>x 且0→x 时-∞→)(x g)(x g ∴在1(0,)2a-上必有一个零点. 当a x 21->时,设x x x h -=ln )(,xx x x x h 22211)(/-=-=4>∴x 时,024ln )4()(<-=<h x h 即x x <ln 4>∴x 时,1221ln )(++<++=ax x ax x x g设x t =,12122++=++t at ax x 由0a <,+∞→x 时,0122<++t at0)(<∴x g )(x g ∴在1(,)2a-+∞上有一个零点 综上,函数)(x f y =有两个极值点时021<<-a ,得证.方法二2ln )(ax x x x f +=有两个极值点,即/()ln 12(0)f x x ax x =++>有两个零点,即xx a 1ln 2+=-有两不同实根. 设x x x h 1ln )(+=,2/ln )(x xx h -=,当0)(/>x h 时,10<<x ;当0)(/<x h 时,1>x当1=x 时)(x h 有极大值也是最大值为1)1(=f 12<-∴a ,2->a 0)1(=eh ,故)(x h 在()1,0有一个零点当1>x 时,01ln 0ln >+∴>x x x 且011ln lim lim ==++∞→+∞→xx x x x 1>∴x 时1)1()(0=<<h x h0,02<∴>-∴a a综上函数)(x f y =有两个极值点时021<<-a ,得证.② 证明:由①知:/(),()f x f x 变化如下:由表可知:()f x 在12[,]x x 上为增函数,又/(1)(1)210f g a ==+> ,故211x x << (10)分所以:21)1()(,)1()(21->=><=<a f x f a f x f 即1()0f x <,21()2f x >-. ……12分22.选修4-1:几何证明选讲证明:(1)连结OE ,∵点D 是BC 的中点,点O 是AB 的中点, ∴ OD 平行且等于12AC ,∴∠A =∠BOD , ∠AEO = ∠EOD ,∵OA = OE ,∴∠A = ∠AEO ,∴∠BOD = ∠EOD ……3分 在ΔEOD 和ΔBOD 中,∵OE = OB ,∠BOD= ∠EOD ,OD = OD , ∴ΔEOD ≌ ΔBOD ,∴∠OED = ∠OBD = 90°,即OE ⊥BD∵是圆O 上一点,∴DE 是圆O 的切线 ……5分 (II )延长DO 交圆O 于点F∵ΔEOD ≌ ΔBOD ,∴DE = DB ,∵点D 是BC 的中点,∴BC = 2DB , ∵DE 、DB 是圆O 的切线,∴DE = DB ,∴DE ·BC = DE ·2DB = 2DE 2 ……7分 ∵AC = 2OD ,AB = 2OF ∴DM · AC + DM · AB = DM · (AC + AB ) = DM · (2OD + 2OF ) = 2DM · DF ∵DE 是圆O 的切线,DF 是圆O 的割线, ∴DE 2 = DM · DF ,∴DE · BC = DM · AC + DM · AB ……10分 23.选修4-4: 坐标系与参数方程FC D MO BEA解:(1)由 2cos ρθ=,得:22cos ρρθ=,∴ 222x y x +=,即22(1)1x y -+=, ∴曲线C 的直角坐标方程为22(1)1x y -+= ……3分由12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,得x m =+,即0x m -=, ∴直线l的普通方程为0x m -= ……5分(2)将12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩代入22(1)1x y -+=,得:221112m t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎝⎭,整理得:221)20t m t m m -+-=,由0∆>,即223(1)4(2)0m m m --->,解得:-1 < m < 3设t 1、t 2是上述方程的两实根,则121)t t m +=-,2122t t m m =- ……8分 又直线l 过点(,0)P m ,由上式及t 的几何意义得212|||||||2|1PA PB t t m m ⋅==-=,解得:1m =或1m =,都符合-1 < m < 3, 因此实数m 的值为1或1或1 ……10分24.选修4-5: 不等式选讲解:(1)当x < -2时,()|21||2|1223f x x x x x x =--+=-++=-+,()0f x >,即30x -+>,解得3x <,又2x <-,∴2x <-; 当122x -≤≤时,()|21||2|12231f x x x x x x =--+=---=--, ()0f x >,即310x -->,解得13x <-,又122x -≤≤,∴123x -≤<-; 当12x >时,()|21||2|2123f x x x x x x =--+=---=-, ()0f x >,即30x ->,解得3x >,又12x >,∴3x >. ……3分 综上,不等式()0f x >的解集为1,(3,)3⎛⎫-∞-+∞ ⎪⎝⎭ . ……5分(2)3,21()|21||2|31,2213,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=---≤≤⎨⎪⎪->⎪⎩ ∴min 15()22f x f ⎛⎫==- ⎪⎝⎭. ……8分 ∵0x R ∃∈,使得20()24f x m m +<,∴2min 542()2m m f x ->=-, 整理得:24850m m --<,解得:1522m -<<,因此m 的取值范围是15(,)22-. ……10分。