(新课标)高考数学 三轮必考热点集中营(04)(教师版)
- 格式:doc
- 大小:1.07 MB
- 文档页数:15
(新课标)2013高考数学 三轮必考热点集中营(09)(教师版)【命题意图猜想】1.在2010年和2011年高考中,2010年没有考查二项式定理,但2011年考查一道,主要考查二项式定理系数和、通项公式的应用,且有一定的难度.在2012年本考点没有考查.故本热点具有隔年考查的特点,并且难度控制时高时低。
猜想2013年高考题很有可能考查,考查估计难度应为中低档,与积分或复数计算相联系均有可能。
为此,我们需全面掌握各种类型,以不变应万变.2.从近几年的高考试题来看,考查的重点是二项式定理的通项公式、二项式系数及项的系数;以考查基本概念、基础知识为主,如系数和、求某项的系数、求常数项、求有理项、求所含参数的值或范围等;难度不大,属于中档题和容易题,题型为选择题或填空题.预测2013年高考,求二项展开式的特定项和特定项的系数仍然是考查的重点,同时应注意二项式系数性质的应用. 【最新考纲解读】 二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】1.二项式定理的展开式011()n n n r n r r n nn n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二项式系数;展开式共有n +1项.注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数。
如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第r+1项的系数为r n r r n C a b -;而1()nx x+的展开式中的系数就是二项式系数;(2)当n 的数值不大时往往借助杨辉三角直接写出各项的二项式系数;(3)审题时要注意区分所求的是项还是第几项?求的是系数还是二项式系数?(4)特例:1(1)1n r rn n x C x C x x +=+++++2.二项式定理的通项二项展开式中第r +l 项1(0,1,2,r n r rr n T C a b r -+==,)n 称为二项展开式的通项,二项展开式通项的主要用途是求指定的项.主要用于求常数项、有理项和系数最大的项:求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性.注意:()1通项公式是表示第1r +项,而不是第r 项.()2展开式中第1r +项的二项式系数rnC 与第1r +项的系数不同.()3通项公式中含有1,,,,r a b n r T +五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组).这里必须注意n 是正整数,r 是非负整数且r ≤n . 3.项的系数和二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等(m n mn nC C -=). (2)增减性与最大值: 当12n r +≤时,二项式系数C r n 的值逐渐增大,当12n r +≥时,C r n 的值逐渐减小,且在中间取得最大值。
1 (新课标)2013高考数学 三轮必考热点集中营(05)(教师版)
2.【2010⋅新课标全国理】某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )
(A )100 (B )200 (C )300 (D )400
【答案】B
【解析】由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即~(1000,0.1)B ξ,而2X ξ=,则2210000.1200EX E ξ==⨯⨯=.应选B.
3.【2010年高考课标全国文】设函数y =f (x )在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,xN 和y 1,y 2,…,yN ,由此得到N 个点(xi ,yi )(i =1,2,…,N ).再数出其中满足yi ≤f (xi )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得S 的近似值为
________.
【答案】N 1N
【解析】由0≤f (x )≤1可知曲线y =f (x )与直线x =0,x =1,y =0
围成了一个曲边梯形.又产生的随机数对在如图所示的正方形内,
正方形的面积为1,共有N 对数,即有N 个点,且满足y i ≤f (x i )(i
=1,2,…,N )的有N 1个点,即在函数f (x )图象上及下方有N 1
个点,所以由几何概型的概。
(新课标)2013高考数学 三轮必考热点集中营(10)(教师版)【三年真题重温】1.【2011⋅新课标全国理,9】由曲线y =2y x =-及y 轴所围成的图形的面积为( ).A .103 B .4 C .163D .62.【2010⋅新课标全国理,4】曲线2xy x =+在点(-1,-1)处的切线方程为 A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】C【解析】命题意图:本题主要考查导数的几何意义,以及分式的导数运算和直线的点斜式等知识. 由2122x y x x ==-++可得122,2,12(1),21(2)x y k y y x y x x =-''===+=+=++应选A.3.【2012⋅新课标全国文】曲线y =x (3ln x +1)在点(1,1)处的切线方程为________ 【答案】43y x =-【解析】'3ln 4y x =+,4k =,所以点斜式方程得到切线方程为43y x =-考点定位:本小题考查导数的性质,利用导数求切线的斜率,求切线方程。
4.【2011⋅新课标全国理,20】在平面直角坐标系xOy 中,已知点(0,1)A -,B 点在直线3y =-上,M 点满足MB //OA ,MA ·AB =MB ·BA ,M 点的轨迹为曲线C .(Ⅰ) 求C 的方程;(Ⅱ) P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.【解析】本题以向量为载体考查求曲线方程的方法,考查了抛物线的切线、点到直线的距离公式、利用基本不等式求最值等.(Ⅰ) 设(),M x y ,由已知得(),3B x -,()0,1A -. 所以(),1,MA x y =---,()0,3,MB y =--,(),2AB x =-. 再由题意可知()0MA MB AB +⋅=,即()(),4,2,20x y x ---⋅=. 所以曲线C 的方程为2124y x =-. (Ⅱ) 设P (0x ,0y )为曲线C :2124y x =-上一点,∴200122y x =-,y '=12x , ∴l 的斜率为012x , ∴直线l 的方程为0y y -=001()2x x x -,即2000220x x y y x -+-=∴O 点到l 的距离d22014x +122≥,当00x =时取等号,∴O 点到l 的距离的最小值为2. 5.【2011 新课标全国文,21】已知函数ln ()1a x bf x x x=++,曲线()y f x = 在点(1,(1))f 处的切线方程为230x y +-=.求a ,b 的值.6.【2010 新课标全国文,4】曲线321y x x =-+在点(1,0)处的切线方程为 (A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ 【答案】A 【解析】232,3121, 1.y x k y x '=-∴=⨯-=∴=-【命题意图猜想】1.定积分属于理科内容,导数的几何含义文理均有.在2011高考中,理科考查了定积分的应用求封闭图形的面积,试题难度中等,在第20题中的第二问考查了利用导数的几何含义求解切线方程.在2010年高考中理科考查了导数的几何意义,没有考查定积分的应用;文科在2010年求的简单函数的切线问题,而2011年在解答题21中的第一问进行了考查.在2012年高考中,理科没有考查定积分,导数的几何含义放在解答题21中第一问进行了考查,而文科考查了导数的几何意义,求解切线方程.由此可看,导数的几何含义是一个非常热点的知识,尤其文科这三年均有所涉及.而理科定积分的应用出现了隔年交替出现的特征,且因和导数的运算法则能够有效的联系到一起,但试题难度一般不大,因考试说明只是了解此部分的内容。
第一节 集合与常用逻辑用语一、集合的含义与表示1、 集合中元素的性质: 、 、 .2、 集合A 、元素a 的关系:a A 或 a A .3、 常用数集符号:正整数集: ;自然数集: ;整数集: ;有理数集: ;实数集: .4、 集合的表示方法:列举法、描述法(形式可具有多样性)、图示法(一种解题工具或方法,常用的有数轴和韦恩图)、区间法(可用于表示某些数集). 二、集合间的基本关系 1、集合A 与集合B 的关系①子集:若x A ∀∈,都有x B ∈,则记为 .规定:空集(∅)是任何集合的 . ②集合相等:只要构成两个集合的元素是一样的,就称这两个集合相等.③真子集: 如果集合B A ⊆,但x B ∃∈,且A x ∉,则记为 ,等价于B A ⊆且 . 空集(∅)是任何非空集合的 .2、若集合A 有(1)n n ≥个元素,则集合A 的所有子集个数为 ,所有真子集的个数为 ,所有非空子集的个数为 ,所有非空真子集的个数为 . 三、集合间的基本运算1、交集:{},x x A x B ∈∈且,记作: ,韦恩图: . 2、并集:{},x x A x B ∈∈或,记作: ,韦恩图: . 3、补集:{},x x U x A ∈∉且,记作: ,韦恩图: . 四、充要条件的判断:p q ⇒,p 是q 的 条件,q 是p 的 条件;q p ⇒,p 是q 的 条件,q 是p 的 条件;p q ⇔,,p q 互为 条件.若命题p 对应集合A ,命题q 对应集合B ,则p q ⇒等价于 ,p q ⇔等价于 . 注意区分:“甲是乙的充分条件(甲⇒乙)”与“甲的充分条件是乙(乙⇒甲)”; 五、全称量词与存在量词:1、全称量词——“所有的”、“任意一个”等,用∀表示;全称量词命题p :)(,x p M x ∈∀;全称量词命题p 的否定p ¬: ; 2、存在量词--------“存在一个”、“至少有一个”等,用∃表示;存在量词命题p :)(,x p M x ∈∃;存在量词命题p 的否定p ¬: .第二节不等式一、二次函数、一元二次方程、一元二次不等式1、二次函数cbxaxy++=2(a≠0)的图象的对称轴方程是,顶点坐标是;判别式acb42−=∆;0>∆时,图象与x轴有个交点;0=∆时,图象与x轴有个交点;<∆时,图象与x轴交点.2、韦达定理:若21,xx是一元二次方程)0(02≠=++acbxax的两个根(前提:0≥∆),则=+21xx,=21xx,=−21xx.二、不等式的性质1、传递性:,a b b c>>⇒;2、对称性:a b b a>⇔<;3、可加性:a b a c b c>⇔+>+;4、同向可加性:,a b c d>>⇒;5、可乘性:,0a b c>>⇒;,0a b c>=⇒;,0a b c><⇒;6、同正同向可乘性:0,0a b c d>>>>⇒;7、正数的可乘方、可开放性:*0,a b n N>>∈⇒,;8、倒数性:11,0aba b>>⇒;11,0aba b><⇒.三、基本不等式1、重要不等式:,a b R∈,,当且仅当时,等号成立.2、基本不等式:,a b,2a b+≥,当且仅当时,等号成立.>∆0=∆0<∆二次函数2(0)y ax bx c a++>的图象一元二次方程的根20(0)ax bx c a++=>的解集)0(2>>++acbxax的解集)0(2><++acbxax其中,2a b+称为,a b 的称为,a b 的 平均数. 常用变形:a b + (前提:,0a b >,取等条件:当且仅当 时,等号成立) ab (,a b R ∈,取等条件:当且仅当 时,等号成立) 记忆口诀:一正.二定.三相等..口诀解读:正.是前提,在正的条件下才能使用基本不等式,因此使用前先看“,a b ”是否满足大于0;定.是关键,构造出“和”或“积”为定值,或者利用已知的定值构造出所求形式,“积”定“和”最小,“和”定“积”最大;相等..是要检验能否取得最值,尤其是用了两次不等式时,要看两次的取等条件是否一致. 3、常用不等式链: 4、应用基本不等式求最值:已知y x ,都是正数,则有:(1)如果积xy 是定值p ,那么当且仅当==y x 时,和y x +有最小值 ; (2)如果和y x +是定值s ,那么当且仅当==y x 时,积xy 有最大值 . 5、对勾函数()0,0by ax a b x=+>>的图像,画出下列函数图象.第三节 函数与导数一、函数的性质 1、单调性(1)增函数:定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有 ,那么就说函数()f x 在区间D 上是增函数;减函数:定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有 ,那么就说函数()f x 在区间D 上是减函数; 注意:求单调性和求单调区间答法不同 .(2)定义域I 内某个区间D 上的任意两个自变量的值12,x x ,且12x x ≠,那么:(填“增”、“减”)()()()12120x x f x f x −−> ⇔()()12120f x f x x x −>−⇔()f x 在区间D 上是 函数; ()()()12120x x f x f x −−< ⇔()()12120f x f x x x −<−⇔()f x 在区间D 上是 函数;(3)如果0)(>′x f ,则)(x f 为 函数;0)(<′x f ,则)(x f 为 函数; (4)复合函数的单调性:根据“同 异 ”来判断原函数在其定义域内的单调性.(5)常用性质:增+增= ,减+减= ,增-减= ,减-增= ,增+减= . 2、偶函数:对于函数()x f 的定义域内任意..一个x ,都有 ,那么就称函数()x f 为偶函数,偶函数图象关于 对称.奇函数:对于函数()x f 的定义域内任意..一个x ,都有 ,那么就称函数()x f 为奇函数,奇函数图象关于 对称.注:要判断函数的奇偶性先判断定义域是否关于 对称; 常用性质:①()f x 为奇函数且在0x =处有定义,则(0)f = ;②()f x 为偶函数,则()()()f x f x fx =−=;③在关于原点对称的单调区间内:奇函数有 的单调性,偶函数有 的单调性;④奇±奇= ,偶±偶= ,奇±偶= ,奇×奇= ,偶×偶= ,奇×偶= . 3、函数的周期性与对称性(1)若函数()x f y =在定义域内都有()()x b f a x f +=+成立,则()x f 是周期函数,周期T = ; (2)若函数()x f y =在定义域内都有()()x f a x f −=+或()()x f a x f 1=+或()()x f a x f 1−=+成立,则()x f 是周期函数,周期T = ;(3)若函数()x f y =在定义域内都有()()x b f a x f −=+成立,则()x f 关于 对称; (4)若函数()x f y =在定义域内都有()()c x b f a x f =−++成立,则()x f 关于 对称; 二、指对数的运算1、当n = ;当n = .2、根式与分数指数幂的互化()1,,,0*>∈>m N n m a ①nma= ;②n ma−= .3、运算性质:(),0,,a b r s Q >∈ ①rsa a = ;②rsa a ÷= ;③()sr a= ;④()rab = .4、指数式与对数式的互化:x a N =⇔ (0,1,0)a a N >≠>.5、几个重要的对数恒等式 log 1a = ,log a a = ,log ba a = ,log a ba = .6、两种特殊对数:常用对数: ,即10log N ;自然对数: ,即log e N (其中 2.71828e =…). 7、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么:①log log a a M N +=;② log log a a M N −= ;③log n a M = ()n R ∈; ④换底公式:log a b = (01,b 0,01)a a c c >≠>>≠且且, 推论:log log a b b a ⋅= ,即log a b = ;log m na b = . 三、基本初等函数 1、指数函数及其性质2、对数函数及其性质定义函数 (0a >且1)a ≠叫做对数函数图象1a > 01a <<定义域、值域、定点定义域: ,值域: ,必过点单调性a 变化对 图象的影响在第一象限内,a 越大图象越往右3、幂函数(1)幂函数的定义:一般地,函数y = 叫做幂函数,其中x 为自变量,α是常数,R α∈.(2)图象(五个典型的幂函数:y x =,2y x =,3y x =,1y x=,y =),在下列图象中标出对应函数 (3)幂函数的性质①图象必过第一象限,必不过第四象限,一定过点 ; ②单调性:α ,y x α=在()0,+∞上单调递增; α ,y x α=在()0,+∞上单调递减.③奇偶性:α=奇数或α=奇数奇数时,y x α=为 函数; t α=偶数或α=偶数奇数时,y x α=为 函数;α=奇数偶数时,y x α=为 函数.四、方程的根与函数的零点1、函数的零点:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点. 注意:函数的零点不是 .2、函数)(x f y =的零点⇔方程0)(=x f 的实数根⇔函数)(x f y =的图象与x 轴交点的 .3、零点存在性定理:如果函数()x f y =在区间[]b a ,上的图象是 的一条曲线,并且满足 ,则函数()x f y =在区间()b a ,内有零点,即()b a x ,0∈∃,使得()00=x f ,这个0x 也就是方程()0=x f 的根.4、函数零点个数的常用方法:①(代数法)求方程 的实数根,有几个解则有几个零点;②(数形结合法)将0)(=x f 移项转化为()()g x h x =,画出 和 的图象,有几个交点则函数)(x f 有几个零点. 五、函数的图象图象的变换:(在箭头上填写......图象..是如何变换的......,下列0a >) (1)图象的平移:()y f x =()y f x a +;(y f x =()y f x a +;(2)图象的伸缩(y f x =()y f ax =;(3)图象的翻折:(y f x=()y f x =;()y f x =()y fx =;(4)图象的对称:(y f x =()y f x =−;(y f x =()y f x =−;()y f x =()y f x =−−;y x x y a ==← →关于对称.六、导数1、平均变化率:()y f x =从1x 到2x 的平均变化率定义式:()()2121f x f x x x −−.2、导数(瞬时变化率)(1)定义式:()00'|x x f x y ===()()000lim x f x x f x x∆→+∆−∆,(2)几何意义: . 曲线的切线方程:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率为 , 相应的切线方程是 .练习:求函数x y e =在0x =处的切线方程 ,所以1xe x ≥+,可用于放缩证明不等式;求函数ln y x =在1x =处的切线方程 ,所以ln 1x x ≤−,可用于放缩证明不等式. 3、基本初等函数的导数公式 ()()'f x g x ±= ,()()'f x g x ⋅=,()'c f x ⋅= ,()()'f x g x=. 5、复合函数的求导公式(1)定义:一般形式()()y f g x =,可分解为()y f u =和()u g x =,(2)求导法则:'x y = 6、导数与函数的单调性:在某区间[],a b 上,()'0f x >(()'0f x <)是()f x 在[],a b 上单调递增(减)的 条件, 在某区间[],a b 上,()'0f x ≥(()'0f x ≤)是()f x 在[],a b 上单调递增(减)的 条件 (填:“充要”、 “充分不必要”、 “必要不充分或既不充分也不必要”);即:在某区间[],a b 上, ⇒()f x 在[],a b 上单调递增⇒在某区间[],a b 上, . 导函数()'f x 的正负可以反映原函数()y f x =的增减,()'f x 的大小还能体现原函数()y f x =的变化快慢,()'f x 的值从 到 ,则()y f x =的图象从“平缓”到“陡峭”(反之同理). 7、导数与函数的极值: (注意:函数的极值点不是 .)()0'0f x =,且0x 左边()'0f x <,0x 右边()'0f x >,则0x 是()y f x =的 ,()0f x 是()y f x =的 ;()0'0f x =,且0x 左边()'0f x >,0x 右边()'0f x <,则0x 是()y f x =的 ,()0f x 是()y f x =的 .()0'0f x =是0x 为()y f x =的极值点的 条件.8、画出常见函数大致的走势图一、弧度制1、角度与弧度的转化:360°= rad ,180°= rad ,1°= rad ,1rad= ≈ .2、扇形的弧长l = ,面积S = = ,周长C = (圆心角的弧度为α,半径为r ) 二、三角函数1、角α终边上任意一点(),P x y ,则sin α= ,cos α= ,tan α= . 特别的:角α终边与单位圆交于点(),P x y ,则sin α= ,cos α= ,tan α= .2、三角函数值在各象限的符号:sin α cos α tan α3、诱导公式(奇变偶不变,符号看象限)、变名公式(变名公式就是诱导公式的逆用)sin cos 2παα = ,cos sin 2παα=(填“+”或“−”). 4、同角三角函数的关系①平方关系: ,商数关系: ;②()2sin cos αα±= ,()()22sin cos sin cos αααα++−= ; ③应用:“1”的妙用,弦切互化,齐次式(同除cosnα弦化切):(用tan α表示 ) sin cos αα⋅=,2sin α= ,2cos α= ; 三、三角恒等变换 1、两角和差公式:()sin αβ±= ,()cos αβ±= ,()tan αβ±= .2、二倍角公式:sin 2α= ,cos 2α= = = ,tan 2α= .3、降幂公式(由二倍角公式推导而来)sin cos αα⋅= ,2sin α= ,2cos α= .4、辅助角公式:sin cos a x b x ωω+= (其中sin ϕ= ,cos ϕ= ,tan ϕ= ). 四、三角函数的图像及性质1、三角函数的图像及性质(以下k ∈Z )函数sin y x =cos y x =tan y x =图像定义域 值域 奇偶性 最小正周期 单调性 对称轴 对称中心2、利用图像记忆特殊的三角函数值:角α 0°30°45°60°90°120°135°150°180°270°弧度αsinαcos αtan3、函数()sin yA xB ωϕ++()0,0A ω>>的图象及性质:(1)五点作图法(列表,描点),(x ,连线)(2)函数()sin yA xB ωϕ++()0,0A ω>>的性质:①x R ∈时,最值:()sin yA xB ωϕ++的最大值为 ,最小值为 ;②周期性:最小正周期T = (ω指的是x 的 ); ③奇偶性:0B =时,当ϕ= 时,()sin yA x ωϕ+为奇函数;当ϕ= 时,()sin yA x ωϕ+为偶函数;④单调性: 求()sin yA xB ωϕ++的单调增区间,将x ωϕ+代入正弦函数的单调增区间,即: x ωϕ≤+≤ ()k Z ∈,解出的x 的区间就是函数的()sin y A x B ωϕ++的单调增区间;求()sin yA xB ωϕ++的单调减区间,将x ωϕ+代入正弦函数的单调减区间,即: x ωϕ≤+≤ ()k Z ∈,解出的x 的区间就是函数的()sin y A x B ωϕ++的单调减区间;注意:若0,0A ω><,乘以负数单调性相反,求单调区间时,反着代入. ⑤对称性:求()sin y A x B ωϕ++的对称轴,令x ωϕ+= 解出x ,则对称轴为 ;求()sin yA xB ωϕ++的对称中心,令x ωϕ+= 解出x ,则对称中心为 . 4、三角函数的图像平移伸缩变换: ①左右平移(左加右减):由sin y x ω=得到()sin y x ωϕ+是向左(或右)平移了 个单位;将sin y xω=向右平移m 个单位得 ;②横坐标伸缩:由sin y x =得到sin y x ω=是横坐标伸长(或缩短)为原来的 倍;将()sin y x ϕ+横坐标伸长(或缩短)为原来的ω倍得 ; ③纵坐标伸缩:由()sin yx ωϕ+得到()sin y A x ωϕ+是纵坐标伸长(或缩短)为原来的 倍;④上下平移(上加下减):由()sin y A x ωϕ+得到()sin yA xB ωϕ++是向上(或向下)平移 个单位;五、解三角形1、正弦定理: (其中R 为ABC ∆的 圆半径,几何中有时也用到正弦定理). 变形:①边化正弦:a = ,b = ,c = ; ②正弦化边:sin A = ,sin B = ,sin C = ; ③2sin sin sin sin sin sin sin sin ab c a b a b c R A B C A B A B C+++=====+++ 2、余弦定理:2a = ,常见变形:()22a b c =+− , 余弦定理的推论:cos A = .3、面积公式:S = = = .4、诱导公式在三角形中的应用(利用内角和A B C π++=和诱导公式): ()sin A B +=()sin sin C C π−=,()cos A B +=,()tan A B += , sin2A B+= ,cos2A B += . 5、正弦定理可用于解已知什么条件的三角形:①已知两角及任意一边 ;(已知两角等价于已知三个角,利用内角和为180°)②已知两边及一边的对角; 余弦定理可用于解已知什么条件的三角形:①已知三条边 ;②已知两边及其夹角 ;③已知两边及一边的对角 ;(由②③可知已知两边及任意一角都可以用余弦定理来解三角形,先求出第三边,用哪个余弦定理是由已知的角决定的)第五节 向量一、向量的概念1、向量:既有大小又有方向的量,用有向线段表示,记作: 或 (其中A 为起点,B 为终点);表示向量的有向线段的长度叫做该向量的模,记作: 或 .2、两个特殊的向量:①零向量:长度为 ,方向任意的向量,记作: ;②单位向量:长度为 ,任意方向上都有单位向量,与a同向的单位向量为 .3、平行向量(共线向量):方向 或者 的两个非零向量叫做平行向量,也叫共线向量。
2019年高考数学第三轮复习的核心考点九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容非常重要。
当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。
此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。
而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。
这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。
直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。
这是从我们的一个角度来说。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
高考数学第三轮复习核心考点总结高考数学复习到了第三轮复习时,需要掌握几个核心考点,下面小编给大家带来的高考数学第三轮复习核心考点,希望对你有帮助。
高考数学第三轮复习核心考点关注核心考点非常重要,核心考点一个是九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容非常重要。
当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。
此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。
而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。
这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。
直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。
这是从我们的一个角度来说。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。
再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。
再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。
再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
应当说我们后面六个大题基本上是围绕着这样六个板块来进行。
(新课标)2013高考数学 三轮必考热点集中营(02)(教师版){||2,}{22}A x R x x R x =∈≤=∈-≤≤{|4}{016}B x Z x x Z x =∈≤=∈≤≤{0,1,2}A B =I 2.【2011⋅新课标全国】已知a r 与b r 均为单位向量,其夹角为θ,有下列四个命题:1p :2||1[0,)3a b πθ+>⇔∈r r ; 2p :2||1(,]3a b πθπ+>⇔∈r r ; 3p :||1[0,)3a b πθ->⇔∈r r ; 4p :||1(,]3a b πθπ->⇔∈r r . 其中的真命题是( )A .1p ,4pB .1p ,3pC .2p ,3pD .2p ,4p【答案】A命题意图:本题主要考查向量的夹角的计算、命题真假的判定.属于中档题。
||1+>a b 221⋅>a +2a b+b ⋅a b 12-cos θ||||⋅a b a b 12-θπθ23π||1->a b 22-1⋅>a 2a b+b ⋅a b 12cos θ||||⋅a b a b 12θπθ3ππ3.【2012⋅新课标全国理】已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,则B 中所含元素的个数为( )A 、3B 、6C 、8D 、10【答案】D()()()()()()()()()(){}2,1,3,1,4,1,5,1,3,2,4,2,5,2,4,3,5,3,5,4B = 4.【2012⋅新课标全国文】已知集合已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅【答案】B x -x 【命题意图猜想】1.高考对集合问题的考查,主要以考查概念和计算为主,考查两个集合的交集、并集、补集运算;从考查形式上看,主要以小题形式出现,常联系不等式的解集与不等关系,试题难度较低,一般出现在前三道题中,常考查数形结合、分类讨论等数学思想方法,2010年考查集合的运算,2011年没有单纯考查集合问题,2012年高考题中集合的概念作为小题,考查学生对基本知识的掌握程度.预测2013年可能不在单独命题,或者与其他知识为载体考查,如与条件的判断结合考查.2.命题及其关系,此部分知识在高考命题中多以选择题和填空题的形式出现,主要考查基本概念,四种命题中互为等价的命题是考查的重点.常以本节知识作为载体考查函数、立体几何、解析几何等内容;以逻辑推理知识为命题背景的解答题也会出现.预测2013年高考题中单独考查命题之间的关系不会出现,还是以其它的知识为载体考查命题的真假。
(新课标)2013高考数学 三轮必考热点集中营(01)(教师版)2.【2010⋅新课标全国理,2】已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z •= A.14 B.12C.1D.2 【答案】A 【解析】2331311(3)(13)(3)284(13)22313i i i z i i i i i i+++===-=+-=----+ 111(3)(3)444z z i i •=-⋅+=.应选A.另解:由222332122(13)13i i z i i++====--可得214z z z •==. 3. 【2012⋅新课标全国理,2】下面关于复数21z i=-+的四个命题: 1:2,p z = 22:2,p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-其中真命题为( )A 、23,p pB 、12,p pC 、24,p pD 、34,p p 【答案】C 【解析】复数22221,2,(1)(1)2,1z i z z i i i i==--∴==--=+=-+,z 的共轭复数为1i -+,z 的虚部为1-,综上可知24,p p 正确.【命题意图猜想】从近两年的高考试题来看,复数的基本概念、复数相等的充要条件以及复数的代数运算是高考的热点,每套高考试卷都有一个小题,并且一般在前三题的位置上,主要考查对复数概念的理解以及复数的加减乘除四则运算.2010年考查了复数的除法运算和共轭复数的概念和运算,2011年考查了复数的除法运算和共轭复数的概念,2012年以命题形式考查了复数的除法运算、复数的模、复数的概念和共轭复数等综合基础知识,从考纲来看,复数相等和复数的几何含义还没有考查,共轭复数的考查长久不衰,故预测2013年高考仍将以复数的基本概念以及复数的代数运算为主要考点,其中复数相等的应用是最可能出现的命题角度! 【最新考纲解读】1. 理解复数的基本概念. 2.理解复数相等的充要条件.3.了解复数的代数表示法及几何意义.4.会进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义. 【回归课本整合】 1.基本概念:⑴a bi c di a c +=+⇔=且(,,,)c d a b c d R =∈;⑵复数是实数的条件:①0(,)z a bi R b a b R =+∈⇔=∈;②z R z z ∈⇔=;③20z R z ∈⇔≥.(3)复数是纯虚数的条件: ①z a bi =+是纯虚数0a ⇔=且0(,)b a b R ≠∈; ②z 是纯虚数0(0)z z z ⇔+=≠;③z 是纯虚数20z ⇔<. 2.复数运算公式:设1z a bi =+,2(,,,)z c di a b c d R =+∈,12()()z z a c b d i +=+++,12()()()()z z a bi c di ac bd ad bc i =++=-++,1222222(0)z ac bd bc ad i z z c d c d +-=+≠++. 3.几个重要的结论:⑴2222121212||||2(||||)z z z z z z ++-=+;⑵22||||z z z z ⋅==;⑶若z 为虚数,则22||z z ≠. 4.常用计算结论: ⑴2(1)2i i ±=±;⑵11i ii +-=,11i ii -+=-;⑶1230()n n n n i i i i n N ++++++=∈;⑷1||11zz zz z =⇔=⇔=.【方法技巧提炼】1.复数部分的考点就是复数的概念、复数相等的充要条件、复数代数形式的四则运算,其考查带有综合性.要注意复数相等的充要条件中必须把两个复数都化为“标准的代数形式”.2.复数的四则运算类似于多项式的四则运算,此时含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可,但要注意把i 的幂写成最简单的形式,在运算过程中,要熟悉i 的特点及熟练应用运算技巧. 【考场经验分享】1.目标要求:新课标对复数的要求较低,根据课标的要求,本部分内容的考查不会太难,至多出一道选择题(或填空题)考查基本概念与运算,与概率等结合的题目可能会出,但都比较容易解决.所以本热点必须得全分。
(新课标)2013高考数学 三轮必考热点集中营(04)(教师版)2.【2011⋅新课标全国】执行右面的程序框图,如果输入的N 是 6,那么输出的p 是( )A .120B .720C .1440D .5040 【答案】B【解析】 运行第1次,N=6,k =1,p =1,p =kp =1,k <6是,循环k =k运行第2次,p =kp =2,k =2<6是,循环k =1k +=3, 运行第3次,p =kp =6,k =3<6是,循环k =1k +=4, 运行第4次,p =kp =24,k =4<6是,循环k =1k +=5, 运行第5次,p =kp =120,k =5<6是,循环k =1k +=6, 运行第6次,p =kp =720,k =6<6否,输出p =720,故选B . 3. 【2012⋅新课标全国】如果执行右边的程序图,输入正整数N (N ≥2)和实数a 1.a 2,…a n ,输入A,B,则 (A)A+B 为a 1a 2,…,a n 的和 (B )2A B+为a 1a 2.…,a n 的算式平均数 (C )A 和B 分别是a 1a 2,…a n 中最大的数和最小的数 (D )A 和B 分别是a 1a 2,…a n 中最小的数和最大的数 【答案】C【解析】本题考查程序框图,意在考查考生对条件结构和循环结构框图的理解应用能力.由框图判断x >A 得A 应为12,...N a a a 中最大的数,由x <B 得B 应为12,...N a a a 中最小的数。
【命题意图猜想】1.算法初步是新课标新增内容.主要学习算法概念和程序框图,理解算法的基本结构、基本算法语句,理解古代算法案例,体会蕴含的算法思想,增强有条理的思考与表达能力,提高逻辑思维能力.命题主要集中在算法的三种基本逻辑结构的框图表示,程序框图与其它知识结合是新的热点.2010年的试题以流程图为载体考查了数列求和问题,2011的试题主要考查循环输出结果,相对2010年的试题较为简单,题目的位置也靠前,位于第三道, 2012年以课本习题为基础,考查数值比较问题,看似复杂,实际较为简单.预测2013年高考难度在中低档,与其他章节知识自然巧妙的联系等是命题演变的趋势.2.从近几年的高考试题来看,当型与直到型循环结构、条件结构是考查的热点,题型以选择题、填空题为主,分值5分左右,属容易题,主要考查算法基本结构以及读图、识图、利用框图解决简单算法问题的能力.预测2013年高考,循环结构与条件结构仍是考查的重点,但应同时注意算法的应用. 【最新考纲解读】1.算法的含义、程序框图①通过对解决具体问题过程与步骤的分析,体会算法的思想,了解算法的含义.②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序、条件分支、循环. 2.基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想. 4.流程图和结构图(文)(1)了解工序流程图(即统筹图).(2)能绘制简单实际问题的流程图;体会流程图在解决实际问题中的作用.(3)通过实例,了解结构图,运用结构图梳理已学过的知识,整理收集到的资料信息. 【回归课本整合】1.算法的顺序结构:顺序结构是由若干个依次执行的处理步骤组成的,这是任何一个算法都离不开的基本结构.顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.2.算法的条件结构: (1)利用条件分支结构解决算法问题时,要引入判断框,要根据题目的要求引入一个或多个判断框,而判断框内的条件不同,对应的下一图框中的内容和操作要相应地进行变化,故要逐个分析判断框内的条件. (2)解决分段函数的求值问题,一般采用条件结构.3.利用循环结构表示算法:(1)先确定是利用当型循环结构,还是直到型循环结构; (2)选择准确的表示累计的变量; (3)注意在哪一步开始循环. 4.两种循环结构的特征:【方法技巧提炼】1.解决循环结构框图问题,首先要找出控制循环的变量其初值、步长、终值(或控制循环的条件),然后看循环体,循环次数比较少时,可依次列出即可获解,循环次数较多时可先循环几次,找出规律,要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误2.在循环结构中,填判断框中的条件是常见命题方式,此条件应依据输出结果来确定,解答时,一般先循环2至3次,发现规律,找出什么时候结束循环,也就找到了循环条件,要特别注意条件“不等式”中是否包括等号.【考场经验分享】本热点出现的位置一般在试卷的选择题的前5道中的一道,或者填空题的前2道中的一道,试题难度中低档,应该是同学们得全分的题目.但是解题时稍微不慎就容易出现错误,下面总结常见的错误:1.条件结构中的条件要准确,不能含混不清,要清楚在什么情况下需要作怎样的判断,用什么条件来区分.2.循环结构中要注意循环控制条件的把握,不要出现多一次循环和少一次循环的错误.3.要准确掌握各语句的形式、特点.特别是条件语句、循环语句中条件的把握.【新题预测演练】1.【东北三省三校2013届高三3月第一次联合模拟考试】按如图所示的程序框图运行后,若输出的结果是63,则判断框的整数M的值是( ) A .5 B .6 C .7 D .8 解析:按框图推演可得:M 的值为:6,故选B2.【2013河北省名校名师俱乐部高三3月模拟考试】 执行如图所示的程序框图,若输入A 的值为2,则输出S 的值是( )A .3B .2312 C .136 D .2512【答案】D【解析】程序运行过程为1331111,1,2,1,3,,22236p s p s p s ====+===+= 111254,2,6412p s A ==+=>=所以2512s = 3.【2013年天津市滨海新区五所重点学校高三毕业班联考】阅读如图的程序框图,若运行相应的程序,则输出的S 的值是( )A .39B .21C . 81D .102 【答案】D【解析】第一次循环,3,2S n ==;第二次循环,232321,3S n =+⨯==;第三次循环,32133102,4S n =+⨯==;第四次循环,不满足条件,输出32133102S =+⨯=,选D.4.【邯郸市2013届高三教学质量检测】如图,若程序框图输出的S 是126,则判断框中①应为A .?5≤nB .?6≤nC .?7≤nD .?8≤n (输出应加上S)【答案】B【解析】∵1234560222222126S =++++++=5.【上海市松江2013届高三一模】右图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有( )A.1个B.2个C.3个D.4个 【答案】C【解析】由框图可得分段函数⎪⎩⎪⎨⎧>≤<-≤=5,52,422,12x x x x x y x,在同一坐标系中画出此函数与函数y =x 的图像如右: 由图可知两函数图像有三个交点,故选C.6.【安徽省2013届高三开年第一考文】.执行右面的框图,若输出结果为12,则输入的实数x 的值是( ) A .32 B . 312-或 C .1- D2【答案】B【解析】因为1x <时,122n=1x ⇒=-,1x ≥时,112x -=,32x ⇒= 选B7.【广东省肇庆市中小学教学质量评估2012—2013学年第一学期统一检测题】阅读下面的程序框图,运行相应的程序,若输出S 的值为0,则判断框内为( )A. 3i >B. 4i >C. 5i >D. 6i >8.【四川省德阳市高中2013届高三“一诊”考试】一个如图所示的流程图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是( ) A .4 B .3 C .2 D .1 【答案】B【解析】当2x ≤时,2x x =,解得:01x =或当5x ≤时,23x x -=,解得:3x =当5x ≥时,1x x=,无解, 所以,综上可得:013x =或或9.【云南师大附中2013届高考适应性月考卷(四)】如图1给出的是计算111124620++++的值的一个程序框图,其中判断框内应填入的条件是( ) A .12?i > B .11?i > C .10?i > D .9?i >【答案】C【解析】所求表达式是求10个数的和,所以选C11.【北京市石景山区2013届高三上学期期末理】执行右面的框图,若输出结果为3,则可输入的实数x值的个数为()A.1 B.2 C.3 D.413.【北京市通州区2013届高三上学期期末理】 执行如图所示的程序框图,输出的S 值为(A )5122-(B )5022-(C )5121-(D )5021- 【答案】B【解析】由程序框图可知,当150k +=时,满足条件,即49k =,所以该程序是求249222S =+++的程序,所以49249502(12)2222212S -=+++==--,选B.14.【2012-2013学年云南省昆明市高三(上)摸底调研测试】某班有24名男生和26名女生,数据a 1,a 2,…,a 50是该班50名学生在一次数学学业水平模拟考试的成绩,下面的程序用来同时统计全班成绩的平均数:A,男生平均分:M,女生平均分:W;为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其成绩的相反数,那么在图里空白的判断框和处理框中,应分别填入下列四个选项中的()?,?,?,A=15.【2013年山东省日照市高三模拟考试】已知实数[]1,9x ∈,执行如右图所示的流程图,则输出的x 不小于55的概率为 A.58B.38C.23D.13【答案】B【解析】由551]1)12(2[2=+++x ,得6=x ,由几何概型知,输出的x 不小于55的概率为831969=--.选B. 16.【安徽省2013届高三12月“四校”联考数学】 执行如图所示的程序框图,则输出的复数z 是( )A .i 2321+- B .i 2321-- C .1 D .1- 【答案】A【解析】由程序框图可知,201436711111()()()2222⨯-=--=-+17.【2013年长春市高中毕业班第一次调研测试】如图的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的 A. c x >? B. x c > ? C. c b > ? D. b c >?19.【安徽省皖南八校2013届高三第二次联考】执行如图所示的程序框图 若输出的结果是9,则判断框内m 的取值 范围是A. (42,56]B. (56,72] C (72,90] D. (42,90) 【答案】B【解析】∵当246810121456S =++++++=时,k=8, 当72S =时,k=9,∴5672m <≤20.【河南省三门峡市2013届高三第一次大练习】右图的程序运行的结果是A.122 B.112 C.102 D.92【答案】C【解析】运行第1次,s=1,k=0≤9是,s=2s=2,k=k+1=1, 运行第2次,k=1≤9,是,s=2s=4,k=k+1=2, 运行第3次,k=2≤9,是,s=2s=8,k=k+1=3, ……运行第10次,k=9≤9,是,s=2s=102,k=k+1=10,运行第11次,k=10≤9,否,输出s=102,故选C 。