北师大数学七年级下第一章 整式的乘除 达标检测卷(含答案)
- 格式:doc
- 大小:1.14 MB
- 文档页数:9
北师大版七年级数学下册 第一章 达标检测卷(考试时间:120分钟 满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.(淮安中考)计算a ·a 2的结果是 ( )A .a 3B .a 2C .3aD .2a 22.肥皂泡的泡壁厚度大约是0.000 000 71米,数字0.000 000 71用科学记数法表示为 () A .7.1×107 B .0.71×10-6 C .7.1×10-7 D .71×10-83.下列各式中计算正确的是( )A .a 8÷a 4=a 2B .⎝ ⎛⎭⎪⎫x +12 2=x 2-x +14C .2x ·3y =5xyD .(-2a 2b)3=-8a 6b 34.下列算式中能用平方差公式计算的是 ( )A .(-a -b)(a +b)B .(-a -b)(a -b)C .(-a -b +c)(-a -b +c)D .(-a +b)(a -b)5.多项式除以单项式⎝ ⎛⎭⎪⎫3x 2y -xy 2+12xy ÷⎝ ⎛⎭⎪⎫-12xy ,计算结果中正确的是( )A .-6x +2yB .-6x +2y -1C .6x +2y -1D .6x -2y +16.已知一个长方体的长、宽、高如图所示,则它的体积为( )A .3m 3-4m 2B .m 2C .6m 3-8m 2D .6m 3-8m7.若32×9m ×27m =332,则m 的值是( )A .3B .4C .5D .68.已知a +b =m ,ab =-4,计算(a -2)(b -2)的结果是( )A .6B .2m -8C .2mD .-2m9.如果x +m 与x +3的乘积中不含x 的一次项,那么m 的值为( )A .-3B .3C .0D .110.若a =2 0200,b =2 019×2 021-2 0202,c =⎝ ⎛⎭⎪⎫-23 2 019×⎝ ⎛⎭⎪⎫-32 2 020,则下列a ,b ,c 的大小关系正确的是( )A .a <b <cB .a <c <bC .b <a <cD .c <b <a第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.计算(-x 2)3的结果为 .12.空气的密度是1.293×10-3g/cm 3,用小数表示为 g/cm 3.13.计算:82 021×(-0.125)2 020= .14.已知x a =3,x b =5,则x a +b = .15.若数m ,n 满足|m -2|+(n -2 021)2=0,则m -1+n 0= .16.若x 2+4x -4=0,则3(x -2)2-6(x +1)·(x -1)的值为 . 17.计算 x 5m +3n +1÷(x n )2·(-x m )2 的结果是 .18.(咸阳校级期中)将4个数排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b c d ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若⎪⎪⎪⎪⎪⎪x +1 x -1x -1 x +1 =6,则x = .三、解答题(共66分)19.(6分)计算: (1)331⎪⎭⎫⎝⎛-+22×23÷(2 021-π)0; (2)-6x(x -3y +1);(3)2x 5(-x)2-(-x 2)3(-7x); (4)(2x +y)(2x -y)+(x +y)2.20.(8分)利用乘法公式计算下列各题:(1)1 002×998; (2)982; (3)142-13×15. 21.(8分)先化简,再求值:(1)[(xy+2)(xy-2)-2x2y2+4]÷xy,其中x=10,y=-125;(2)(x+2y)2-(x+y)(3x-y)-5y2,其中x=-2,y=12 .22.(8分)求出下列各式中的x的值.(1)32·92x+1÷27x+1=81; (2)33x+1·53x+1=152x+4.23.(10分)(江干区期末)如图所示,有一块边长为(m+3n)米和(2m+n)米的长方形土地,现准备在这块土地上修建一个长为(m+2n)米,宽为(m+n)米的游泳池,剩余部分修建成休息区域.(1)请用含m和n的代数式表示休息区域的面积;(结果要化简)(2)若m=10,n=20,求休息区域的面积.24.(12分)观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④;…(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.25.(14分)(邯山区一模)数学活动课上,张老师用图①中的1张边长为a的正方形A,1张边长为b的正方形B和2张宽和长分别为a与b的长方形C纸片,拼成了如图②中的大正方形.观察图形并解答下列问题.(1)由图①和图②可以得到的等式为 (用含a,b的代数式表示);并验证你得到的等式;(2)嘉琪用这三种纸片拼出一个面积为(2a+b)·(a+2b)的大长方形,求需要A,B,C三种纸。
一、选择题1.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m ﹣nC .2mD .2n 2.若x 2+5x +m =(x +n )2,则m ,n 的值分别为( ). A .m =254,n =52 B .m =254,n =5 C .m =25,n =5 D .m =5,n =52 3.若x 2+kx +16能写成一个多项式的平方形式,则k 的值为( ) A .±8 B .8 C .±4 D .44.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .105.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 6.若2,32,,m n a b m n ==为正整数,则3102m n +的值等于( )A .32a bB .23a bC .32a b +D .32a b + 7.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( )A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米 8.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+9.计算下列各式,结果为5x 的是( )A .()32xB .102x x ÷C .23x x ⋅D .6x x - 10.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 11.计算()3222()m m m -÷⋅的结果是( ) A .2m -B .22mC .28m -D .8m - 12.计算()233a a ⋅的结果是( ) A .9a B .8a C .11a D .18a二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.已知a b m -=,4ab =-,化简()()22a b -+的结果是__________.15.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.16.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 17.计算:248(21)(21)(21)(21)1+++++=___________.18.计算:()221842a b abab -÷=(-)________.19.观察下列各式:(a ﹣b )(a +b )=a 2﹣b 2(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4………这些等式反映出多项式乘法的某种运算规律.当n 为正整数,且n ≥2时,请你猜想: (a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=______________.20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.计算题(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭22.计算:2(2)()()2(2)3x y x y x y x x y x ⎡⎤-+-+--÷⎣⎦.23.先化简,再求值: ()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.25.(1)2020151(23)(1)2-⎛⎫--+- ⎪⎝⎭;(2)()()223234a b b c ab ⋅-÷ 26.已知a +b =7,ab =11,求代数式211()22a ab b --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.【详解】解:设去掉的小正方形的边长为x ,则有()22n x mn x +=+, 解得:2m n x -=. 故选:A .【点睛】本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决. 2.A解析:A【分析】根据完全平方公式和整式的性质计算,得到m 和n 的关系式,通过计算即可得到答案.【详解】∵x 2+5x+m =(x+n )2=x 2+2nx+n 2∴2n =5,m =n 2∴m =254,n =52故选:A .【点睛】 本题考查了整式、乘法公式、一元一次方程、乘方的知识;解题的关键是熟练掌握整式、完全平方公式的性质,从而完成求解.3.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】解:∵x2+kx+16=x2+kx+42,x2+kx+16能写成一个多项式的平方形式,∴kx=±2•x•4,解得k=±8.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4.A解析:A【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差,再由S2-S1=3b,AD=10,列出方程求得AB便可.【详解】解:S1=(AB-a)•a+(CD-b)(AD-a)=(AB-a)•a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)•a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)=b•AD-ab-b•AB+ab=b(AD-AB),∵S2-S1=3b,AD=10,∴b(10-AB)=3b,∴AB=7.故选:A.【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.5.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x与3y不是同类项,∴无法计算,∴选项A错误;∵()3263=,x y x y∴选项B错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 6.A解析:A【分析】根据同底数幂的乘法法则和幂的乘方法则的逆运用,即可求解.【详解】∵2,32m n a b ==,∴3102m n +=31022m n ⨯=()()31022n m ⨯=()()23232n m ⎡⎤⨯⎣⎦=32a b , 故选A .【点睛】本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.7.C解析:C【分析】把微米转化为纳米,再写成科学记数法即可.【详解】解:85微米=38510-÷纳米=85×103纳米=8.5×104纳米.故选:C .【点睛】本题考查了单位转换和科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意;C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.9.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A 、()326x x =,选项错误;B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确;D 、6x x -不能得到5x ,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.10.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得.【详解】原式63a a =⋅,9a =,故选:A .【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.【分析】根据多项式乘以多项式展开在把已知式子代入求解即可;【详解】由题可知∵∴原式;故答案是:【点睛】本题主要考查了整式的化简和代数式求值准确化简计算是解题的关键解析:28m -【分析】根据多项式乘以多项式展开,在把已知式子代入求解即可;【详解】由题可知()()()2222424-+=+--=+--a b ab a b ab a b ,∵a b m -=,4ab =-,∴原式42428m m =-+-=-;故答案是:28m -.【点睛】本题主要考查了整式的化简和代数式求值,准确化简计算是解题的关键.15.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.16.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b -【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案.【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2)=8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.17.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.18.【分析】直接根据多项式除单项式运算法则计算即可【详解】解:==故答案为:【点睛】本题主要考查了多项式除以单项式灵活运用多项式除以单项式的运算法则成为解答本题的关键解析:-168a b +【分析】直接根据多项式除单项式运算法则计算即可.【详解】解:()221842a b abab -÷(-) =22118422a b ab ab ab ÷-÷(-)(-) =-168a b +.故答案为:-168a b +.【点睛】本题主要考查了多项式除以单项式,灵活运用多项式除以单项式的运算法则成为解答本题的关键.19.an ﹣bn 【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b )另一项每一项的次数均为n-1而且按照字母a 的降幂排列故可得答案【详解】解:由题意当n=1时有(a ﹣b )(a+b )=a2﹣b2;解析:a n ﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a ﹣b )(a +b )=a 2﹣b 2;当n=2时,有(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;当n=3时,有(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;所以得到(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=a n ﹣b n .故答案为:a n ﹣b n .【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)16;(2)235b c b -+. 【分析】(1)根据乘方,绝对值,零指数幂的知识换件,然后在计算即可;(2)运用整式的除法,直接计算即可.【详解】解:(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ ()1211()23=-+-⨯- 1223=-+ 16= (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 22222223532a b c a bc a c ⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 22222222352332a b c a bc a c a c ⎛⎫⎛⎫=⨯--⨯- ⎪ ⎪⎝⎭⎝⎭235b c b =-+ 【点睛】本题考查了有理数运算和整式的混合运算,熟悉相关运算法则是解题的关键.22.x【分析】根据完全平方公式、平方差公式、单项式乘多项式的法则计算后合并同类项,然后再利用单项式除以单项式的法则进行计算.【详解】解:原式=()2222244243x xy y x y x xy x -++--+÷=233x x ÷=x【点睛】本题考查整式的混合运算,熟练运用运算法则是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.25.(1)4-;(2)32ac -; 【分析】(1)由零指数幂、负整数指数幂、以及乘方的运算法则进行计算,即可得到答案; (2)由单项式乘以单项式,单项式除以单项式进行计算,即可得到答案.【详解】解:(1)2020151(1)2-⎛⎫--+- ⎪⎝⎭=141--=4-;(2)()()223234a b b c ab⋅-÷=2336(4)a b c ab -÷ =32ac -; 【点睛】 本题考查了单项式乘以单项式,单项式除以单项式,零指数幂、负整数指数幂、以及乘方的运算法则,解题的关键是掌握运算法则进行解题.26.8【分析】由完全平方公式的变形,先把代数式进行化简,然后把a +b =7,ab =11,代入计算,即可得到答案.【详解】 解:211()22a a b b -- =22111222a ab b -+ =221)1(22ab b a -+ =223(2221)ab b a ab ++-=23)1(22ab b a -+, ∵a +b =7,ab =11, ∴原式=214933711822223⨯-⨯=-=. 【点睛】 本题考查了整式的加减,完全平方公式的变形求值,解题的关键是熟练掌握运算法则,正确的进行化简.。
北师大版七年级数学下册第一章整式的乘除一、单选题1.计算(a3)2的结果是( )A.a5B.a6C.a8D.a9 2.下列计算正确的是( )A.a3-a2=a B.a2·a3=a6C.(3a)3=9a3D.(a2)2=a4 3.已知x+y﹣4=0,则2y•2x的值是()A.16 B.﹣16 C.18D.84.下列运算正确的是( )A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b25.下列计算正确的是( )A.a3•a=a3B.(2a+b)2=4a2+b2C.a8b÷a2=a4b D.(﹣3ab3)2=9a2b66.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④7.如果x2+10x+_____=(x+5)2,横线处填( )A.5 B.10 C.25 D.±108.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73 B.49 C.43 D.239.已知a=96,b=314,c=275,则a、b、c的大小关系是( )A.a>b>c B.a>c>b C.c>b>a D.b>c>a10.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b )10的展开式第三项的系数是( )A .36B .45C .55D .66二、填空题11.如果x n y 4与2xy m 相乘的结果是2x 5y 7,那么mn=_____.12.若162482m m ⋅⋅=,则m = ______ .13.若3x =12,3y =4,则3x ﹣y =_____.14.3108与2144的大小关系是__________15.已知长方形的面积为4a 2-4b 2,如果它的一边长为a+b ,则它的周长为______.16.若4x 2+2(k-3)x+9是完全平方式,则k=______.17.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______18.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a-4b +13=0,则c 为______三、解答题19.化简:(x 4)3+(x 3)4﹣2x 4•x 820.化简:4(a+2)(a+1)-7(a+3)(a -3)21.化简:(x 3)2÷x 2÷x+x 3•(﹣x)2•(﹣x 2)22.化简:[a(a 2b 2-ab)-b(-a 3b-a 2)]÷a 2b23.化简:(x+2)(x-2)+(3x-1)(3x+1).24.化简:(a ﹣2b ﹣3c)(a ﹣2b+3c)25.化简:(2a+1)2﹣(2a+1)(﹣1+2a)26.化简:(x-1)2(x+1)2-1.27.(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.28.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:= ______;(2)代数式为完全平方式,则k= ______;(3)解方程:=6x2+7.参考答案1.B【解析】试题分析:(a3)2=a6,故选B.考点:幂的乘方与积的乘方.2.D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选D.3.A【解析】∵x+y-4=0,∴x+y=4,∴2y·2x=2x+y=24=16. 故选A.点睛:a m·a n=a m+n.4.A【解析】【分析】根据合并同类项法则、单项式乘单项式法则、完全平方公式逐一判断即可.【详解】A、-2x2-3x2=-5x2,此选项正确;B、6x2y3与2xy2不是同类项,不能合并,此选项错误;C、2x3•3x2=6x5,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误;故选A.【点睛】本题主要考查合并同类项、单项式乘单项式、完全平方公式,熟练掌握法则和公式是解题的关键.5.D【解析】【分析】根据同底数幂的除法、完全平方公式、单项式除以单项式进行计算即可.【详解】A. a3•a=a4,故A错误;B. (2a+b)2=4a2+b2+4ab,故B错误;C. a8b÷a2=a6b,故C错误;D. (﹣3ab3)2=9a2b6,故D正确;故选D.【点睛】本题考查的是整式的计算,熟练掌握计算法则是解题的关键.6.A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.7.C【解析】试题解析:设需要填空的数为A,则原式为:x2+10x+A=(x+5)2.∴x2+10x+A=x2+10x+25,∴A=25.故选C.8.A【解析】∵a+b=5,∴a2+2ab+b2=25,∵ab=﹣24,∴a2+b2=25+2×24=73,故选A.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式是解题的关键.9.C【解析】【分析】27=315,易得答案.根据幂的乘方可得:a=69=312,c=5【详解】27=315,因为a=69=312,b=143,c=5所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.10.B【解析】【分析】归纳总结得到展开式中第三项系数即可.【详解】解:解:(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6;(a+b )7=a 7+7a 6b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b )10的展开式第三项的系数为45.故选B .【点睛】本题考查了完全平方公式的规律,根据给的式子得出规律是解题的关键.11.12【解析】41457222n m n m x y xy x y x y ++⋅== ,∴n +1=5,m +4=7,解得:m =3,n =4,∴mn =12.故答案为12.12.3【解析】【分析】先将4m 、8m 化成底数为2的幂,然后利用同底数幂的乘法求解即可.【详解】∵248m m ⋅⋅=23511622222m m m +⨯⨯==,∴m=3.故答案为:3.【点睛】此题主要考查了同底数幂相乘的运算方法以及幂的逆运算,熟练掌握运算法则是解题的关键.13.3【解析】【分析】首先应用含3x,3y的代数式表示3x-y,然后将3x,3y的值代入即可求解.【详解】解:∵3x=12,3y=4,∴3x-y=3x÷3y,=12÷4,=3.故答案为:3.【点睛】本题主要考查同底数幂的除法性质的逆用,熟练掌握运算性质并灵活运用是解题的关键.14.3108>2144【解析】【分析】把3108和2144化为指数相同的形式,然后比较底数的大小.【详解】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.【点睛】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.【解析】【分析】直接利用多项式除法运算法计算得出其边长,进而得出答案.【详解】由题意得,长方形的另一边长为:(4a2-4b2)÷(a+b)=4a-4b,∴该长方形的周长为:(4a-4b+a+b)×2=10a-6b,故:应填10a-6b【点睛】本题主要考查多项式的除法运算,解题关键是正确掌握运算法则.16.9或﹣3【解析】原式可化为(2x)2+2(k-3)x+32,又∵4x2+2(k-3)x+9是完全平方式,∴4x2+2(k-3)x+9=(2x±3)2,∴4x2+2(k-3)x+9=4x2±12x+9,∴2(k-3)=±12,解得:k=9或-3,故答案为9或-3.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,熟记完全平方公式对解题非常重要.17.64【解析】∵x2+y2+10=2x+6y,∴x2+y2+10-2x-6y=0,∴(x-1)2+(y-3)2=0,∵(x-1)2≥0,(y-3)2≥0,∴x-1=0,y-3=0,解得:x=1,y=3;∴x21+21y=121+21×3=63+1=64,故答案为:64.18.2或3或4【解析】【分析】由a2+b2-6a-4b+13=0,,得(a-3)2+(b-2)2=0,求得a、b的值,再根据三角形的三边关系定理求得c的取值范围,根据c为整数即可求得c值.【详解】∵a2+b2-6a-4b+13=0,∴(a-3)2+(b-2)2=0,∴a-3=0,b-2=0,解得a=3,b=2,∵1<c<5,且c为整数,∴c=2、3、4,故答案为:2或3或4.【点睛】本题主要考查了非负数的性质、完全平方公式、三角形三边关系,根据非负数的性质求得a、b的值,再利用三角形的三边关系确定c的值是解决此类题目的基本思路.19.0【解析】【分析】直接利用整式运算法-乘方的运算则计算得出答案.【详解】解:原式=x12+x12-2x12=0【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 20.-3a2+12a+71【解析】【分析】根据整式四则混合运算的顺序和法则计算即可.【详解】解:4(a+2)(a+1)-7(a+3)(a-3)=4(a2+3a+2)-7(a2-9)=4a2+12a+8-7a2+63=-3a2+12a+71.故答案为:-3a2+12a+71.【点睛】本题考查了整式的混合运算.21.x3﹣x7【解析】【分析】直接利用整式运算法则-乘方的运算计算得出答案.【详解】(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)=x6÷x2÷x-x3•x2•x2=x6-2-1-x3+2+2= x3﹣x7【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 22.2ab【解析】【分析】先算乘法,再合并同类项,最后算除法.【详解】解:[a(a2b2-ab)-b(-a3b-a2)]÷a2b=(a3b2-a2b+a3b2+a2b)÷a2b=2a3b2÷a2b=2ab.故答案为:2ab.【点睛】本题考查了整式的混合运算,能正确根据整式的运算法则进行化简是解此题的关键.23.10 x2-5.【解析】【分析】根据平方差公式以及整式的运算法则即可求出答案.【详解】原式= x 2-4 +9 x 2-1=10 x 2-5.【点睛】本题考查了平方差公式,解答本题的关键是掌握平方差公式的形式,这是需要我们熟练记忆的内容,属于基础题型.24.a 2+4b 2﹣4ab ﹣9c 2【解析】【分析】原式利用平方差公式化简,再利用完全平方公式展开即可得到结果.【详解】原式=[][]a 2b 3c a 2b 3c ---+=22a 2b 3c ()-- =222449a b ab c +--.故答案为222449a b ab c +--.【点睛】本题考查平方差公式,完全平方公式.25.4a+2【解析】【分析】运用完全平方和公式、多项式乘多项式法则去括号后,再合并同类项即可.【详解】(2a+1)2﹣(2a+1)(﹣1+2a)=4a 2+4a+1-4a 2+1=4a+2【点睛】考查了整式的混合运算,解本题的关键运用完全平方和公式((a+b)2=a2+2ab+b2)和多项式乘多项式法则((a+b)(c+d)=ac+ad+bc+bd).26.x4-2x2.【解析】【分析】先利用平方差公式进行计算,然后利用完全平方公式进行计算.【详解】解:(x-1)2(x+1)2-1=[(x-1)(x+1)]2-1=(x2-1)2-1=x4-2x2+1-1=x4-2x2.故答案为:x4-2x2.【点睛】本题考查了利用平方差公式和完全平方公式对整式进行化简.27.(1)4ab;(2)10.【解析】【分析】(1)根据长方形面积公式列①式,根据面积差列②式,得出结论;(2)由(1)的结论得出(2x+y)2-(2x-y)2=8xy,把已知条件代入即可.【详解】(1)S阴影=4S长方形=4ab①,S阴影=S大正方形-S空白小正方形=(a+b)2-(b-a)2②,由①②得:(a+b)2-(a-b)2=4ab,故答案为:(a+b)2-(a-b)2=4ab;(2)∵(4x+y)2-(4x-y)2=16xy,∴16xy=169-9,∴xy=10.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.28.(1)32-;(2)±3;(3)x=-4.【解析】【详解】解:(1) =[2×(-3)×1]÷[(-1)4+31] =-6÷4 =-32.故答案为32 -;(2)=[x2+(3y)2]+xk•2y =x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为±3;(3)=6x2+7,(3x-2)(3x+2)]-[(x+2)(3x-2)+32]=6x2+7,解得x=-4.。
北师大版七年级数学下册第一章整式的乘除单元测试题含答案北师大版七年级数学下册第一章整式的乘除单元测试题一.选择题(共10小题,每小题3分,共30分)1.计算:x^3·x^2等于()A。
2B。
x^5C。
2x^5D。
2x^62.下列运算正确的是()A。
x^2·x^3=a^6B。
(x^3)^2=x^6C。
(-3x)^3=27x^3D。
x^4+x^5=x^93.下列计算结果为a^6的是()A。
a^8-a^2B。
a^12÷a^2C。
a^3·a^2D。
(a^2)^34.若(x+2m)(x-8)中不含有x的一次项,则m的值为()A。
4B。
-4C。
0D。
4或-45.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”。
如4=2^2-2^2,12=4^2-2^2,20=6^2-4^2,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A。
56B。
66C。
76D。
866.下列各式,能用平方差公式计算的是()A。
(2a+b)(2b-a)B。
(a+b)^2C。
(2a-3b)(-2a+3b)D。
(-a-2b)(-a+2b)7.若x^2+(m-3)x+16是完全平方式,则m的值是()A。
-5B。
11C。
-5或11D。
-11或58.已知a+b=2,ab=-2,则a^2+b^2=()A。
4B。
8C。
-4D。
99.下列运算中,正确的是()A。
a^2+a^2=2a^4B。
(a-b)^2=a^2-b^2C。
(-x^6)·(-x)^2=x^8D。
(-2a^2b)^3÷4a^5=-2ab^310.在长方形ABCD内,将两张边长分别为a和b(a≥b)的正方形纸片图1、图2两种放置(图1,图2中两张正方形纸片均有部分重叠),长方形未被这两张正形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为S1,图2中阴影部分的面积和为S2,则关S1,S2的大小关系表述正确的是()A。
北师大版七年级数学下册《第一章整式的乘除》单元测试题(含答案)814.简化:(2a-3b)(-a+b)=________.2a^2+7ab-3b^215.若x=3,y=5,则x^2+y^2=________.3416.已知函数f(x)=2x-3,则f(5)=________.7三、解答题(共52分)17.(6分)已知a,b是正整数,且a+b=10,求a和b的值。
解:根据题意,得到方程a+b=10,移项得到a=10-b。
由于a和b都是正整数,所以b最小为1,最大为9.代入方程可得到a的取值分别为9、8、7、6、5、4、3、2、1.因此,a和b的值可能为(9,1),(8,2),(7,3),(6,4),(5,5),(4,6),(3,7),(2,8),(1,9)。
18.(6分)已知函数f(x)=2x+1,求f(3)和f(a+1)。
解:代入x=3,可得到f(3)=2×3+1=7.代入x=a+1,可得到f(a+1)=2(a+1)+1=2a+3.19.(8分)已知直角三角形的斜边长为5,一条直角边长为3,求另一条直角边长。
解:设另一条直角边长为x,则根据勾股定理可得到x^2+3^2=5^2,即x^2=16,因此x=4.20.(8分)已知等差数列的前两项为3和7,公差为4,求第10项的值。
解:设等差数列的第10项为a10,则根据等差数列的通项公式可得到a10=3+4×(10-1)=39.21.(12分)已知函数f(x)=x^2-2x+1,求f(x+1)和f(x-1)。
解:代入x+1,可得到f(x+1)=(x+1)^2-2(x+1)+1=x^2+2x+1=f(x)+4x。
代入x-1,可得到f(x-1)=(x-1)^2-2(x-1)+1=x^2-4x+1=f(x)-4x。
因此,f(x+1)=f(x)+4x,f(x-1)=f(x)-4x。
14.计算:(3a-2b)·(2b+3a) = 12a^2 - 4b^215.若a+b=5,ab=2,则(a+b)^2 = 2516.如图4,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙。
北师版七年级数学下册《整式的乘除》测试卷一、单选题(共10题;共20分)1.计算(y ﹣5)2的结果是( )A. y 2﹣25B. y 2﹣5y+25C. y 2+10y+25D. y 2﹣10y+252.(2015•河池)下列计算,正确的是( )A. x 3•x 4=x 12B. (x 3)3=x 6C. (3x )2=9x 2D. 2x 2÷x=x3.人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A. B. C. D.4.若x 2﹣xy+2=0,y 2﹣xy ﹣4=0,则x ﹣y 的值是( )A. ﹣2B. 2C. ±2D. ±5.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A. 0.25×10-5B. 0.25×10-6C. 2.5×10-5D. 2.5×10-66.下列各式:①(﹣31)﹣2=9;②(﹣2)0=1;③(a+b )2=a 2+b 2;④(﹣3ab 3)2=9a2b 6;⑤3x 2﹣4x=﹣x ,其中计算正确的有( )个.A.1B.2C.3D.47.下列算式正确的是( ) A.B. C. D.8.下列各式计算正确的是( )A. +=B. (ab 2)3=ab 6C. 2a 3×3a 5=6a 8D. 3xy ﹣2x=xy 9.计算a 3 · a 2的结果是 ( )A. a 6B. a 5C. aD. a 910.a 2014可以写成( )A. a 2010+a 4B. a 2010•a 4C. a 2014•aD. a 2007•a 2007二、填空题(共10题;共12分)11.分解因式: =________.12.当x________时,(x -4)0=1.13.计算:(21)﹣2=________.14.若a m =2,a n =8,则a m +n =_____15.化简:6a 6÷3a 3=________. 16.计算(﹣2)0+ =________; (﹣2x 2y )3=________.17.若(x+a )(x+2)=x 2﹣5x+b ,则a=________,b=________.18.已知,则 = ________ .(用含 的代数式表示) 19.计算: ﹣(π﹣3)0=________.20.(﹣ )2015×122014=________.三、计算题(共4题;共24分)21.计算:①②a 2·a 4+(a 2)322.化简21a-3(2a- 32 b 2)+( -32 a+b 2)23.计算:(1)计算:(-2016)0+(21)﹣2+(﹣3)3;(2)简算:982﹣97×99.24.若a 2b +ab 2=30,ab =6,求下列代数式的值:(1)a 2+b 2;(2)a -b .四、解答题(共2题;共9分)25.(2015•随州)先化简,再求值:(2+a )(2﹣a )+a (a ﹣5b )+3a 5b 3÷(﹣a 2b )2 ,其中ab=﹣21.26.解方程2(x-1)+(x-2)(x+2)=3x(x-5)五、综合题(共4题;共35分)27.把下列各式化成不含分母的式子: (1) =________.(2) =________.(3) =________.(4) =________.28.运用平方差公式计算:(1);(2); (3);(4).29.探究应用:计算下列各式(1)计算(a﹣1)(a2+a+1)=a3+a2+a﹣a2﹣a﹣1=a3﹣1;(2x﹣y)(4x2+2xy+y2)=________(2)上面的整式乘法计算结果很简洁,你又发现一个新的乘法公式:(a﹣b)(________)=(2)(请用含a、b)的字母表示).(3)下列各式能用你发现的乘法公式计算的是()A. (a﹣3)(a2﹣3a+9)B. (2m﹣n)(2m2+2mn+n2)C. (4﹣x)(16+4x+x2)D. (m﹣n)(m2+2mn+n2)(4)直接用公式计算:(3x﹣2y)(9x2+6xy+4y2)=________.30.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:________(2)要拼出一个长为a+3b,宽为2a+b的长方形,需要如图所示的________块,________块,________块.(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下关系式:(1)(2)x+y=m(3)x2﹣y2=m•n(4)其中正确的有A. 1个B. 2个C. 3个D. 4个.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】B4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】B 10.【答案】B二、填空题11.【答案】12.【答案】x ≠4 13.【答案】4 14.【答案】16 15.【答案】2a316.【答案】10;﹣8x6y317.【答案】-7;-14 18.【答案】a3t 19.【答案】2 20.【答案】﹣三、计算题21.【答案】解:(1)原式=-4+1+2=-1;(2)原式=a6+a6=2a6.22.【答案】解:原式= a-6a+2b2- a+b2=7a+3b2.23.【答案】(1)解:原式=1+4﹣27=﹣22(2)解:原式=1982﹣(98﹣1)(98+1)=982﹣(982﹣1)=124.【答案】(1)解:由a2b+ab2=30,ab=6 得(a2b+ab2)÷ab=30÷6=5即a+b=5∴(a+b)2=25,即a2+2ab+b2=25∴a2+b2=25-2ab=25-2×6=13(2)解:(a-b)2=a2-2ab+b2=13-2×6=1∴a-b=±1四、解答题25.【答案】解:原式=4﹣a2+a2﹣5ab+3ab=4﹣2ab,当ab=﹣时,原式=4+1=5.26.【答案】解答:2(x-1) +(x-2)(x+2)=3x(x-5)2x +2-4x+x -4=3x -15x3x -3x -4x+15x=2x=五、综合题27.【答案】(1)﹣2xy﹣2z﹣1 (2)2x﹣1+3y﹣2(3)2b(a﹣b)﹣1 (4)(2x﹣y)x﹣5y﹣129.【答案】(1)解:(1)(2x﹣y)(4x2+2xy+y2)=8x3+4x2y+2xy2﹣4x2y﹣2xy2﹣y3=8x3﹣y3,故答案为:8x3+4x2y+2xy2﹣4x2y﹣2xy2﹣y3,8x3﹣y3.(2)解:(a﹣b)(a2+ab+b2)=a3+b3;故答案为:a2+ab+b2,a3+b3.(3)C(4)解:(3x﹣2y)(9x2+6xy+4y2)=27x3﹣8y3故答案为:27x3﹣8y3.30.【答案】(1)(a+2b)(2a+b)=2a2+5ab+2b2(2)2;7;3(3)B。
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
北师大版七年级下册数学第一章整式的乘除测试题(附答案)北师大版七年级下册数学第一章整式的乘除测试题(附答案)一、单选题1.某种细胞的直径是0. 00000024m,将0. 00000024用科学记数法表示为()A. 2.4×10-7B.C.D.2.下列运算正确的是()A. a3+a3=a6B. a6a4=a24C. a4-a4=a0D. a0a-1=a3.计算的结果是()A. B. C. D.4.下列运算正确的是()A. B. a3·a2=a5 C. (a4)2=a6 D. a3+a4=a75.从图1到图2的变化过程可以发现的代数结论是()A. (a+b)(a﹣b)=a2﹣b2B. a2﹣b2=(a+b)(a﹣b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)26.(3a+2)(4a2﹣a﹣1)的结果中二次项系数是()A. ﹣3B. 8C. 5D. ﹣57.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学记数法将7.5忽米记为米,则正确的记法为()A. 7.5× 米B. 0.75× 米C. 0.75× 米D. 7.5× 米8.下列运算正确的是()A. a+2a2=3a3B. a2?a3=a6C. (a3)2=a5D. a6÷a2=a49.小数0.000000059用科学记数法应表示为()A. 5.9×107B. 5.9×108C. 5.9×10﹣7D. 5.9×10﹣810.已知x+ =5,那么x2+ =()A. 10B. 23C. 25D. 2711.如图使用4个全等三角形与1个小正方形镶嵌而成的正方形图案已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49;②x?y=2;③2xy+4=49;④x+y=9. 其中正确的是()A. ①②B. ①②③C. ①②④D. ①②③④12.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S= ,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A. B. C. D. a2015﹣1二、填空题13.计算:________.14.已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为________.15.计算:(12a3﹣6a2)÷(﹣2a)=________16.当m=________时,成立.17.计算2﹣2+()0=________ .18.已知,,则的值是________.19.如图,有4个圆A,B,C,D,且圆A与圆B的半径之和等于圆C的半径,圆B与圆C的半径之和等于圆D的半径.现将圆A,B,C摆放如图甲,圆B,C,D摆放如图乙.若图甲和图乙的阴影部分面积分别为4π和12π.则圆D面积为________ 。
七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。
北师大版七年级数学下册《第一章整式的乘除》单元测试卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列运算正确的是()A.B.C.D.2.已知,那么从小到大的顺序是()A.<<<B.<<<C.<<<D.<<<3.已知,则的值为()A.B.C.1 D.54.已知和,m,n为正整数,则为().A.B.C.D.5.已知和,则的值为()A.16 B.8 C.4 D.146.若,则m,n的值分别是()A.4,B.,4 C.,18 D.4,77.如图,小明把一张边长为10厘米的正方形硬纸板的四周各剪去一个同样大小的小正方形(该小正方形的边长为m厘米),再按虚线折叠,制成一个无盖的长方体盒子,则该长方体盒子的体积可表示为()立方厘米.A. B. C. D.8.设有边长分别为a和b()的A类和B类正方形纸片、长为a宽为b的C类矩形纸片若干张.如图所示要拼一个边长为的正方形,需要1张A类纸片、1张B类纸片和2张C类纸片.若要拼一个长为、宽为的矩形,则需要C类纸片的张数为()A.6 B.7 C.8 D.9二、填空题9.计算.10.如果是一个完全平方式,则.11.若代数式可以表示为的形式,则a= .12.已知多项式与的乘积中不含项,则常数a的值是.13.某学校改造一个边长为5x米的正方形花坛,经规划后,南北向要缩短3米,东西向要加长3米,则改造后花坛的面积是平方米,改造后花坛的面积减少了平方米.三、解答题14.计算:(1)(2)15.计算:(1).(2).(3).(4).16.已知,用含a,b的式子表示下列代数式:(1).(2).17.某学校分为初中部和小学部,初中部的学生人数比小学部多.做广播操时,初中部排成的是一个规范的长方形方阵,每排人,共站有排;小学部站的是正方形方阵,排数和每排人数都是.(1)该学校初中部比小学部多多少名学生?(2)当,时,试求该学校一共有多少名学生.18.如图,小长方形的长为a,宽为b,将七个这样的小长方形放在大长方形ABCD中,大长方形中未被覆盖的两个部分的面积分别记为和.(1)若,求的值(用含有a,b的字母表示);(2)若的值为ab,求a与b的数量关系.参考答案:1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】D7.【答案】B8.【答案】C9.【答案】-a10.【答案】11.【答案】812.【答案】13.【答案】(25x2-9);914.【答案】(1)解:(2)解:15.【答案】(1)解:;(2)解:;(3)解:;(4)解:.16.【答案】(1)解:;(2)解:17.【答案】(1)解:该学校初中部学生人数为:名小学部学生人数为:名该学校初中部比小学部多的学生数名答:该学校初中部比小学部多名学生;(2)解:该学校初中部和小学部一共的学生数名当,时,原式(名).答:该学校一共有名学生.18.【答案】(1)解:设S1的长为x,宽为a,S2的长为y,宽为2b,则和在大长方形ABCD中,AB=CD=10,∴∴∴.即:(2)解:由(1)知:,又∵的值为,∴∴。
北师大版七年级数学下册第一章整式的乘除基础达标测试题(附答案详解)1.下列算式能用平方差公式计算的是 ( )A .(2a +b )(2b -a)B .C .(3x -y )(-3x +y)D .(-m + n )(- m - n)2.计算(2a 3)2的结果是( )A .2a 5B .4a 5C .2a 6D .4a 63.下列计算正确的是( )A .B .C .D . 4.下列运算中,正确的是( )A .236x x x ⋅=B .232x x x ÷=C .()3328x x -=-D .()2224x y x y +=+5.计算的32a a ÷结果是( )A .5aB .1a -C .aD .2a6.三个连续偶数,中间一个数是k ,它们的积为( )A .8k 2-8kB .k 3-4kC .8k 3-2kD .4k 3-4k7.如果a+2b+3c=12,且a 2+b 2+c 2=ab+bc+ca ,则a+b 2+c 3=( )A .12B .14C .16D .188.下列运算正确的是( )A .3﹣1=﹣3B .x 3﹣4x 2y+4xy 2=x (x+2y )2C .a 6÷a 2=a 4D .(a 2b )3=a 5b 3 9.下列各式运算中结果是的是( )A .B .C .D .10.下列计算正确的是( )A .a•a 2=a 2B .(x 3)2=x 5C .(2a)2=4a 2D .(x+1)2=x 2+1 11.计算:()322422a a a -+⋅=__________.12.如果281x mx -+是一个完全平方式,那么m 的值为___________.13.计算(1)()2354a a a ⋅+=______;(2)()()32322⎡⎤-⋅-=⎣⎦______. 14.(﹣4a 3+12a 2b ﹣7a 3b 3)(﹣4a 2)=___________.15.(-a)3(-a )2(-a)=_______16.图中阴影部分的面积为____________________.(结果要求化简)17.(5+2)2=__.18.一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片(12a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣9,则小正方形卡片的面积是_____.19.设x ,y 为实数,则代数式2x 2+4xy +5y 2-4x +2y +5的最小值为________.20.若a m =3,a n =4,则a m+n =_____.21.先化简,再求值:2(2)-(2)(2)x x x +-+,其中1x =-.22.何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.例:若,求m 和n 的值. 解:因为所以所以所以所以为什么要对进行了拆项呢?聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程.解决问题:(1)若,求的值; (2)已知满足,求的值.23.小红家有一块L 形菜地,要把L 形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a 米,下底都是b 米,高都是(b -a )米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a =10,b =30时,面积是多少平方米?24.(Ⅰ)分解因式:2()4()a a b a b ---.(Ⅱ)先化简,再求值: (3x -1) (3x + 1) - ( x + 3 ) (9 x - 6 ) .其中 x = - 1721. 25.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:222()2a b a ab b +=++.对于方案一,小明是这样验证的:Q 大正方形面积可表示为:2()a b +,也可以表示为:22222a ab ab b a ab b +++=++, 222()2a b a ab b ∴+=++.请你仿照上述方法根据方案二、方案三,写出公式的验证过程.(1)方案二:(2)方案三:26.先化简再求值:()()()22a b a b b a b b +-++-,其中a=3,b=-1.27.先化简,再求值:()()()222222433xy x xy y x y y x y ⎡⎤--+----⎣⎦,其中2, 3.3x y ==- 28.(1)32(3)()(3)a a a ----g ;(2)433265()(2)()a a a +--g ; (3)8022016201711(1)(25)()()(4)24--+---+⨯-; (4)20172018(2)2-+.参考答案1.D【解析】试题分析:中不存在相同的相项故A不能用平方差公式;,B不能用平方差公式;,C不能用平方差公式;,D能用平方差公式.考点:平方差公式.2.D【解析】试题分析:根据幂的乘方和积的乘方的运算法则求解.试题解析:(2a3)2=4a6.故选D.考点:幂的乘方与积的乘方.3.D【解析】【分析】根据幂的乘方、同底数幂的乘除法及合并同类项法则分别计算,即可得答案.【详解】A.a+2a=3a,故该选项计算错误,B.(-a)3=-a3,故该选项计算错误,C.a3÷a=a2,故该选项计算错误,D.,计算正确,故选D.【点睛】本题考查幂的乘方、同底数幂的乘除法及合并同类项法则,熟练掌握运算法则是解题关键. 4.C【解析】分析:根据同底数幂的乘法,同底数幂的除法,积的乘方,以及完全平方公式的意义,对各选项计算后即可解答.详解:选项A ,235x x x ⋅= ;选项B ,232x x ÷= 32x ;选项C , ()3328x x -=- ;选项D , ()22x y += 2242x xy y ++.由此可得。
北师大版七年级数学下册第1章达标检测卷一、选择题(每题3分,共36分)1. 下列关系式中,正确的是( )A.(a+b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a+b)2=a2+b2D.(a+b)(a-b)=a2-b22. 若(3x+2y)2=(3x-2y)2+A,则代数式A=( )A.-12xyB.12xyC.24xyD.-24xy3.人体中成熟的红细胞的平均直径为0.000 007 7 m,用科学记数法表示为( )A.7.7×10-5 mB.77×10-6 mC.77×10-5 mD.7.7×10-6 m4.若(a+2b)2=(a-2b)2+A,则A等于( )A.8ab B.-8ab C.8b2D.4ab5.已知24a m b5÷8a3b n=3ab2,那么m,n的取值为( )A.m=4,n=3B.m=3,n=4C.m=3,n=2D.m=2,n=36. 已知a=20192,b=2018×2020,则( )A.a=bB.a>bC.a<bD.a≤b7.已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成了B÷A,结果得x2+12 x,则B+A=( )A.2x3+x2+2x B.2x3-x2+2x C.2x3+x2-2x D.2x3-x2-2x8.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M、N的大小关系是( ) A.M>N B.M<N C.M=N D.无法确定9.下列四个算式:①5x 2y 4÷15xy =xy 3; ②16a 6b 4c ÷8a 3b 2=2a 3b 2c ;③9x 8y 2÷3x 2y =3x 4y ;④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2. 其中正确的有( )A .0个B .1个C .2个D .3个10. 如果(2x +m)(x -5)展开后的结果中不含x 的一次项,那么m 等于( )A.5B.-10C.-5D.1011. 如果3a =5,3b =10,那么9a -b 的值为( )A.12 B.14 C.18D.不能确定 12. 若A =(2+1)(22+1)(24+1)(28+1),则A 的末位数字是( )A.4B.5C.6D.8二、填空题(每题3分,共24分)13.已知a +b =32,ab =1,计算(a -2)(b -2)的结果是________. 14.调皮的弟弟把玲玲的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮她推测出被除式等于______________.15.已知x =y +4,则代数式x 2-2xy +y 2-25的值为 .16.如果9x 2+kx +25是一个完全平方式,那么k 的值是________.17. 若a +3b -2=0,则3a ·27b =________.18.如果()3a +2b +1()2a +2b -1=63,那么a +b 的值为________.19.如图,一个长方形花园ABCD ,AB =a ,AD =b ,该花园中建有一条长方形小路LMPQ 和一条平行四边形小路RSTK ,若LM =RS =c ,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.20. 用如图所示的正方形和长方形卡片若干张,拼成一个长为(3a +b ),宽为(a +b )的长方形(要求:所拼图形中,卡片之间不能重叠,不能有空隙),则需要A 类卡片、B 类卡片、C 类卡片的张数分别为________.三、解答题(共60分)21.计算:(1)5x (2x 2-3x +4); (2)20192-2020×2018;(3)⎝ ⎛⎭⎪⎪⎫-15a 3x 4+910a 2x 3÷⎝ ⎛⎭⎪⎪⎫-35ax 2; (4)(a +b )(a -b )+(a +b )2-2a 2.22、先化简,再求值:(x +2)2+(2x +1)(2x -1)-4x(x +1),其中x =-2.23、已知M =x 2+3x -a ,N =-x ,P =x 3+3x 2+5,且M ·N +P 的值与x 的取值无关,求a 的值.24.有这样一道题:计算⎣⎢⎢⎡⎦⎥⎥⎤3x (2xy +1)-(26x 2y 2÷2y )+⎝ ⎛⎭⎪⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 020,y =-2 021,甲同学把x =2 020,y =-2 021错抄成x =2 002,y =-2 012,但他的计算结果也是正确的.请你解释一下,这是为什么.25.如图,一块半圆形钢板,从中挖去直径分别为x ,y 的两个半圆.(1)求剩下钢板的面积;(2)当x =2,y =4时,剩下钢板的面积是多少?(π取3.14)26.如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.12 3 45 6 7 8 9101112131415161718192021222324252627282930313233343536…(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n行共有个数;(3)求第n行各数之和.27.图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)图2中的空白部分的正方形的边长是多少?(用含a,b的式子表示)(2)请用两种不同的方法表示图2中空白部分的面积;(3)观察图2,请你写出(a+b)2,(a-b)2,ab之间的等量关系;(4)根据(3)中的等量关系,解决如下问题:已知a+b=20,ab=70,求(a-b)2的值.参考答案一、选择题(每题3分,共36分)1. 下列关系式中,正确的是( D )A.(a+b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a+b)2=a2+b2D.(a+b)(a-b)=a2-b22. 若(3x+2y)2=(3x-2y)2+A,则代数式A=( C )A.-12xyB.12xyC.24xyD.-24xy4.人体中成熟的红细胞的平均直径为0.000 007 7 m,用科学记数法表示为( D )A.7.7×10-5 mB.77×10-6 mC.77×10-5 mD.7.7×10-6 m4.若(a+2b)2=(a-2b)2+A,则A等于( A )A.8ab B.-8ab C.8b2D.4ab5.已知24a m b5÷8a3b n=3ab2,那么m,n的取值为( A )A.m=4,n=3B.m=3,n=4C.m=3,n=2D.m=2,n=36. 已知a =20192,b =2018×2020,则( B )A.a =bB.a >bC.a <bD.a ≤b7.已知A =2x ,B 是多项式,在计算B +A 时,小马虎同学把B +A 看成了B ÷A ,结果得x 2+12x ,则B +A =( A )A .2x 3+x 2+2xB .2x 3-x 2+2xC .2x 3+x 2-2xD .2x 3-x 2-2x8.若M =(a +3)(a -4),N =(a +2)(2a -5),其中a 为有理数,则M 、N 的大小关系是( B )A .M >NB .M <NC .M =ND .无法确定9.下列四个算式:①5x 2y 4÷15xy =xy 3; ②16a 6b 4c ÷8a 3b 2=2a 3b 2c ;③9x 8y 2÷3x 2y =3x 4y ;④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2. 其中正确的有( C )A .0个B .1个C .2个D .3个12. 如果(2x +m)(x -5)展开后的结果中不含x 的一次项,那么m 等于( D )A.5B.-10C.-5D.1013. 如果3a =5,3b =10,那么9a -b 的值为( B )A.12B.14C.18D.不能确定 12. 若A =(2+1)(22+1)(24+1)(28+1),则A 的末位数字是( B )A.4B.5C.6D.8二、填空题(每题3分,共24分)13.已知a +b =32,ab =1,计算(a -2)(b -2)的结果是__2______. 14.调皮的弟弟把玲玲的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮她推测出被除式等于___5x 3-15x 2+30x .15.已知x =y +4,则代数式x 2-2xy +y 2-25的值为 -9 .16.如果9x 2+kx +25是一个完全平方式,那么k 的值是___±30 _____.17. 若a +3b -2=0,则3a ·27b =__9______.18.如果()3a +2b +1()2a +2b -1=63,那么a +b 的值为________.18.±4 点拨:因为(2a +2b +1)(2a +2b -1)=(2a +2b )2-1=63,所以2a +2b =±8.所以a +b =±4.19.如图,一个长方形花园ABCD ,AB =a ,AD =b ,该花园中建有一条长方形小路LMPQ 和一条平行四边形小路RSTK ,若LM =RS =c ,则该花园中可绿化部分(即除去小路后剩余部分)的面积为_______ab -ac -bc +c 2.20.用如图所示的正方形和长方形卡片若干张,拼成一个长为(3a +b ),宽为(a +b )的长方形(要求:所拼图形中,卡片之间不能重叠,不能有空隙),则需要A 类卡片、B 类卡片、C 类卡片的张数分别为________.20.3张,4张,1张 点拨:由(3a +b )(a +b )=3a 2+4ab +b 2可知,需A 类卡片3张、B 类卡片4张、C 类卡片1张.四、解答题(共60分)21.计算:(1)5x (2x 2-3x +4);(2)20192-2020×2018;(3)⎝ ⎛⎭⎪⎪⎫-15a 3x 4+910a 2x 3÷⎝ ⎛⎭⎪⎪⎫-35ax 2;(4)(a +b )(a -b )+(a +b )2-2a 2.21、(1)原式=10x 3-15x 2+20x .(3分)(2)原式=20192-(2019+1)(2019-1)=1.(3)原式=13a 2x 2-32ax .(9分) (4)原式=a 2-b 2+a 2+2ab +b 2-2a 2=2ab .22、先化简,再求值:(x +2)2+(2x +1)(2x -1)-4x(x +1),其中x =-2.22、解:原式=x 2+4x +4+4x 2-1-4x 2-4x=x 2+3.23.已知M =x 2+3x -a ,N =-x ,P =x 3+3x 2+5,且M ·N +P 的值与x 的取值无关,求a 的值.23.解:M ·N +P =(x 2+3x -a )(-x )+x 3+3x 2+5=-x 3-3x 2+ax +x 3+3x 2+5=ax +5.因为M ·N +P 的值与x 的取值无关,所以a =0.24.有这样一道题:计算⎣⎢⎢⎡⎦⎥⎥⎤3x (2xy +1)-(26x 2y 2÷2y )+⎝ ⎛⎭⎪⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 020,y =-2 021,甲同学把x =2 020,y =-2 021错抄成x =2 002,y =-2 012,但他的计算结果也是正确的.请你解释一下,这是为什么.24.解:因为[3x (2xy +1)-(26x 2y 2÷2y )+⎝ ⎛⎭⎪⎪⎫72xy 2·47y -1]÷3x =(6x 2y +3x -13x 2y +494x 2y 2·47y -1)÷3x =(6x 2y +3x -13x 2y +7x 2y )÷3x =1,所以上式的值与x ,y 的取值无关.所以错抄成x =2 002,y =-2 012,结果也是正确的.25.如图,一块半圆形钢板,从中挖去直径分别为x ,y 的两个半圆.(1)求剩下钢板的面积;(2)当x =2,y =4时,剩下钢板的面积是多少?(π取3.14)25.解:(1)S 剩=12·π⎣⎢⎢⎡⎭⎪⎪⎫(x +y 22-⎝ ⎛⎭⎪⎪⎫x 22-⎝ ⎛⎭⎪⎪⎫y 22]=14πxy . 答:剩下钢板的面积为π4xy . (2)当x =2,y =4时,S 剩≈14×3.14×2×4=6.28.答:剩下钢板的面积约是6.28.26.如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.(1)表中第8行的最后一个数是64,它是自然数8的平方,第8行共有15个数;(2)用含n的代数式表示:第n行的第一个数是(n-1)2+1,最后一个数是n2,第n行共有(2n -1)个数;(3)求第n行各数之和.解:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n行各数之和等于(2n-1)(n2-n+1)=2n3-3n2+3n-1.27.图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)图2中的空白部分的正方形的边长是多少?(用含a,b的式子表示)(2)请用两种不同的方法表示图2中空白部分的面积;(3)观察图2,请你写出(a+b)2,(a-b)2,ab之间的等量关系;(4)根据(3)中的等量关系,解决如下问题:已知a+b=20,ab=70,求(a-b)2的值.27、解:(1)空白部分的正方形的边长为a-b.(2)图2中空白部分的面积=(a-b)2;图2中空白部分的面积=(a+b)2-4ab.(3)根据图2可得,(a+b)2-4ab=(a-b)2.(4)因为(a+b)2-4ab=(a-b)2,a+b=20,ab=70,所以(a-b)2=202-4×70=120.。
第一章达标测试卷一、选择题(每题3分,共30分)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18B .18C .0D .83.斑叶兰的一粒种子重约0.000 000 5 g ,将0.000 000 5用科学记数法表示为( )A .5×107B .5×10-7C .0.5×10-6D .5×10-64.下列运算正确的是( )A .x 2·x 3=x 6B .x 2y ·2xy =2x 3yC .(-3xy )2=9x 2y 2D .x 6÷x 3=x 25.计算4m ·8-1÷2m 的结果为16,则m 的值等于( )A .7B .6C .5D .46.下列四个算式:①5x 2y 4÷15xy =xy 3; ②16a 6b 4c ÷8a 3b 2=2a 3b 2c ; ③9x 8y 2÷3x 2y =3x 4y ; ④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个7.下列运用平方差公式计算,错误..的是( ) A .(a +b )(a -b )=a 2-b 2 B .(x +1)(x -1)=x 2-1C .(2x +1)(2x -1)=2x 2-1D .(-a +b )(-a -b )=a 2-b 28.若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b10.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图①),把余下的部分剪拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b2二、填空题(每题3分,共30分)11.计算:a(a+1)=__________.12.如果x+y=-1,x-y=8,那么代数式x2-y2的值是________.13.某种计算机每秒可做4×108次运算,它工作3×103 s运算的次数为__________.14.如果9x2+kx+25是一个完全平方式,那么k的值是________.15.计算:(-13xy2)2·[xy(2x-y)+xy2]=__________.16.计算:(7x2y3z+8x3y2)÷4x2y2=______________.17.若(x+2m)(x-8)中不含..x的一次项,则m的值为________.18.若3x=a,9y=b,则3x-2y的值为________.19.如图,一个长方形花园ABCD,AB=a,AD=b,该花园中建有一条长方形小路LMPQ和一条平行四边形小路RSTK,若LM=RS=c,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.20.《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3-4x2-35x+8的值”,按照秦九韶算法,可先将多项式3x3-4x2-35x+8一步步地进行改写:3x3-4x2-35x+8=x(3x2-4x-35)+8=x[x(3x-4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x=8时,多项式的值为1 008.请参考上述方法,将多项式x3+2x2+x-1改写为_______________________;当x=8时,多项式的值为________.三、解答题(21,26题每题12分,22,23题每题8分,其余每题10分,共60分)21.计算:(1)(-12ab)(23ab2-2ab+43b);(2)(a+b)(a-b)+4ab3÷4ab;(3)(2x-y-z)(y-2x-z);(4)(2x+y)(2x-y)+(x+y)2-2(2x2-xy).22.用简便方法计算:(1)102×98;(2)112×92.23.先化简,再求值:(1)(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =1;(2)(x -1)2-x (x -3)+(x +2)(x -2),其中x 2+x -5=0.24.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 022,y =-2 023,甲同学把x =2 022,y =-2 023错抄成x =2 002,y =-2 013,但他的计算结果也是正确的.请你解释一下这是为什么.25.如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆形.(1)求剩下钢板的面积;(2)当x=2,y=4时,剩下钢板的面积是多少?(π取3.14)26.先计算,再找出规律,然后根据规律填空.(1)计算:①(a-1)(a+1)=________;②(a-1)(a2+a+1)=________;③(a-1)(a3+a2+a+1)=________.(2)根据(1)中的计算,用字母表示出你发现的规律.(3)根据(2)中的结论,直接写出结果:①(a-1)(a9+a8+a7+a6+a5+a4+a3+a2+a+1)=__________;②若(a-1)·M=a15-1,则M=______________________________________;③(a-b)(a5+a4b+a3b2+a2b3+ab4+b5)=__________;④(2x-1)(16x4+8x3+4x2+2x+1)=__________.答案一、1.D 2.B 3.B 4.C 5.A 6.C 7.C 8.A 9.B 10.C二、11.a 2+a 12.-8 13.1.2×101214.±30 15.29x 4y 5 16.74yz +2x17.4 18.a b 19.ab -ac -bc +c 220.x [x (x +2)+1]-1;647三、21.解:(1)原式=-12ab ·23ab 2+⎝ ⎛⎭⎪⎫-12ab ·(-2ab )+⎝ ⎛⎭⎪⎫-12ab ·43b =-13a 2b 3+a 2b 2-23ab 2;(2)原式=a 2-b 2+b 2=a 2;(3)原式=[-z +(2x -y )]·[-z -(2x -y )]=(-z )2-(2x -y )2=z 2-(4x 2-4xy +y 2)=z 2-4x 2+4xy -y 2;(4)原式=4x 2-y 2+x 2+y 2+2xy -4x 2+2xy =x 2+4xy .22.解:(1)102×98=(100+2)×(100-2)=1002-22=10 000-4=9 996;(2)112×92=(10+1)2×(10-1)2=[(10+1)×(10-1)]2=(100-1)2=10 000-200+1=9 801.23.解:(1)原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y =1时,原式=-x 2+3y 2=-(-1)2+3×12=2.(2)原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3.因为x 2+x -5=0,所以x 2+x =5.所以原式=x 2+x -3=5-3=2.24.解:因为[3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1]÷3x =(6x 2y +3x -13x 2y +494x 2y 2·47y -1)÷3x =(6x 2y +3x -13x 2y +7x 2y )÷3x =1, 所以上式的值与x ,y 的取值无关.所以错抄成x =2 002,y =-2 013,结果也是正确的.25.解:(1)S剩=12·π⎣⎢⎡⎭⎪⎫(x+y22-⎝⎛⎭⎪⎫x22-⎝⎛⎭⎪⎫y22]=14πxy.答:剩下钢板的面积为π4xy.(2)当x=2,y=4时,S剩≈14×3.14×2×4=6.28.答:剩下钢板的面积约是6.28.26.解:(1)①a2-1②a3-1③a4-1(2)规律:(a-1)(a n+a n-1+a n-2+…+a3+a2+a+1)=a n+1-1(n为正整数).(3)①a10-1②a14+a13+a12+a11+…+a3+a2+a+1③a6-b6④32x5-1。
本章质量评估(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列运算正确的是()A.a4+a5=a9B.a3·a3·a3=3a3C.2a4×3a5=6a9D.(- a3)4=a72.×等于()A.- 1B.1C.0D.19973.设(5a+3b)2=(5a- 3b)2+A,则A等于()A.30abB.60abC.15abD.12ab4.已知x+y=- 5,xy=3,则x2+y2等于()A.25B.- 25C.19D.- 195.已知x a=3,x b=5,则x3a- 2b等于()A. B.C. D.526.如图所示,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.其中正确的有()A.①②B.③④C.①②③D.①②③④7.若(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.- 3B.3C.0D.18.已知(a+b)2=9,ab=- 1,则a2+b2的值等于()A.84B.78C.12D.69.计算(a- b)(a+b)(a2+b2)(a4+b4)的结果是()A.a8+2a4b4+b8B.a8- 2a4b4+b8C.a8+b8D.a8- b810.已知P=m- 1,Q=m2- m(m为任意实数),则P,Q的大小关系为()A.P>QB.P=QC.P<QD.不能确定二、填空题(每小题4分,共32分)11.一些水的质量为0.00204 kg,用科学记数法表示为.12.设4x2+mx+121是一个完全平方式,则m=.13.方程(x+3)(2x- 5)- (2x+1)(x- 8)=41的解是.14.已知m+n=2,mn=- 2,则(1- m)(1- n)=15.已知2a=5,2b=10,2c=50,那么a,b,c之间满足的等量关系式是.16.若m2- n2=6,且m- n=3,则m+n=.17.若10m=5,10n=3,则102m+3n=.18.比较大小:22003150三、解答题(共58分)19.(9分)计算.(1)(- 1)2012+- (3.14- π)0;(2)(2x3y)2·(- 2xy)÷2x2;(3)(6m2n- 6m2n2- 3m2)÷(- 3m2).20.(9分)(1)先化简,再求值:(2a- b)2- (a+1- b)(a+1+b)+(a+1)2,其中a=,b=- 2;(2)已知x- 1=,求代数式(x+1)2- 4(x+1)+4的值;(3)先化简,再求值:2(a+)(a- )- a(a- 6)+6,其中a=- 1.21.(10分)如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=2a,BC=3b,且E为AB边的中点,CF=BC,现打算在阴影部分种植一片草坪,求这片草坪的面积.22.(10分)若(x2+mx- 8)(x2- 3x+n)的展开式中不含x2和x3项,求m和n的值.23.(10分)若a=2005,b=2006,c=2007,求a2+b2+c2- ab- bc- ac的值.24.(10分)如图所示,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【答案与解析】1.C(解析:根据单项式乘法法则及同底数幂的乘法法则可知C正确.)2.B(解析:逆用积的乘方法则可以得到×==1.)3.B(解析:由完全平方公式及(5a+3b)2=(5a- 3b)2+A可得A=60ab.)4.C(解析:x2+y2=(x+y)2- 2xy=25- 6=19.)5.A(解析:逆用幂的乘方法则和同底数幂的除法公式可得x3a- 2b==.)6.D(解析:将整个长方形的面积按照几种方式表示,可得不同多项式.)7.A(解析:(x+m)与(x+3)的积为x2+(3+m)x+3m,若不含x的一次项,则m=- 3.)8.C(解析:由题意知(a+b)2=9,ab=- 1,则a2+b2=(a+b)2- 2ab=12.)9.D(解析:根据平方差公式可得(a- b)(a+b)(a2+b2)(a4+b4)=a8- b8.)10.C(解析:由题意可知Q- P=m2- m- m+1=m2- m+1=+>0,所以P<Q.)11.2.04×10- 3 kg(解析:根据科学记数法的表达形式确定a,n的值即可.)12.±44(解析:根据完全平方公式可以得出4x2+mx+121=(2x)2+mx+112=(2x±11)2,所以m=±44.)13.x=3(解析:先利用乘法公式展开,然后解方程即可求得方程的解.)14.- 3(解析:由多项式乘多项式法则可得(1- m)·(1- n)=1- (m+n)+mn=- 3.)15.a+b=c(解析:因为2a=5,2b=10,2c=50,所以2a×2b=2c,由同底数幂的乘法法则可得a+b=c.)16.2(解析:因为m2- n2=(m+n)(m- n)=6,且m- n=3,所以m+n=2.)17.675(解析:102m+3n=102m·103n=(10m)2·(10n)3=25×27=675.)18.<(解析:2200=(24)50,3150=(33)50,因为24<33,所以2200<3150.)19.解:(1)原式=1+4- 1=4.(2)原式=4x6y2·(- 2xy)÷2x2=- 4x5y3.(3)原式=- 2n+2n2+1.20.解:(1)原式=4a2- 4ab+b2- (a+1)2+b2+(a+1)2=4a2- 4ab+2b2,当a=,b=- 2时,原式=1+4+8=13.(2)原式=x2+2x+1- 4x- 4+4=x2- 2x+1=(x- 1)2=()2=3.(3)原式=a2+6a,当a=- 1时,原式=4- 3.21.解:S=6ab- ×6ab- a×2b=2ab.22.解:原式=x4- 3x3+nx2+mx3- 3mx2+mnx- 8x2+24x- 8n=x4+(m- 3)x3+(n- 3m- 8)x2+(mn+24)x- 8n,若不含x2和x3项,则m- 3=0,且n- 3m- 8=0,解得m=3,n=17.23.解:原式=[(a- b)2+(b- c)2+(a- c)2],若a=2005,b=2006,c=2007,则原式=(1+1+4)=3.24.解:绿化面积S=(2a+b)(3a+b)- (a+b)2=5a2+3ab(平方米).当a=3,b=2时,原式=63,即绿化面积为63平方米.。
第一章整式的乘除达标检测卷一、选择题(每题3分,共30分)1.下列运算正确的是( )A.x2+x2=x4B.(a-b)2=a2-b2C.(-a2)3=-a6D.3a2·2a3=6a62.花粉的质量很小,一粒某种植物花粉的质量约为0.000037 mg,已知1 g=1 000 mg,那么0.000 037 mg用科学记数法表示为( )A.3.7×10-5 gB.3.7×10-6 gC.3.7×10-7 gD.3.7×10-8 g3. 下列计算正确的是( )A.-bx2y3÷2xy3=-3xB.(-xy2)2÷(-x2y)=-y3C.(-2x2y2)3÷(-xy)3=-2x3y3D.-(-a3b2)÷(-a2b2)=a44.已知:a+b=m,ab=-4,化简(a-2)(b-2)的结果是( )A.6B.2m-8C.2mD.-2m5.若3x=4,9y=7,则3x-2y的值为( )A. B. C.-3 D.6.如果x+m与x+3的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm28.在下列计算中,不能用平方差公式计算的是( )A.(m-n)(-m+n)B.C.(-a-b)(a-b)D.9.若9x2+kxy+16y2是完全平方式,则k的值为( )A.12B.24C.±12D.±2410.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2B.4C.6D.8二、填空题(每题3分,共24分)11.已知27m-1÷32m=27,则m=___________.12.若(3x+1)-3有意义,则x的取值范围是___________.13.计算:(-2)2 016+(-2)2 017=___________.14.计算:(0.125)2 018×(22 018)3=___________.15.2(3+1)(32+1)(34+1)-38的值是___________.16.已知x2-x-1=0,则代数式-x3+2x2+2 015的值为___________.17.如果=63,那么a+b的值为___________.18.已知a+=5,则a2+的结果是___________.三、解答题(第19题12分,第20题4分,第26题10分,其余每题8分,共66分)19.计算:(1)-23+(2 017+3)0-; (2)992-69×71;(3)(-2+x)(-2-x); (4)(m+2)2(m-2)2(m2+4)2;(5)(a+b-c)(a-b+c); (6)(3x-2y+1)2.20.先化简,再求值:-(a2-2ab)·9a2-(9ab3+12a4b2)÷3ab,其中a=-1,b=2.21.(1) 已知a+b=7,ab=12.求下列各式的值:①a2-ab+b2;②(a-b)2.(2)已知a=275,b=450,c=826,d=1615,比较a,b,c,d的大小.22.先阅读再解答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式: ;(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.24.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中各项的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式.25.计算:×××…××.26.探索:(x-1)(x+1)=x2-1, (x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1, (x-1)(x4+x3+x2+x+1)=x5-1,……(1)试写出第五个等式;(2)试求26+25+24+23+22+2+1的值;(3)判断22 017+22 016+22 015+…+22+2+1的值的个位数字是几.参考答案一、1.【答案】C解:A.x2+x2=2x2,错误;B.(a-b)2=a2-2ab+b2,错误;C.(-a2)3=-a6,正确;D.3a2·2a3=6a5,错误;故选C.2.【答案】D解:1 mg=10-3 g,将0.000037 mg用科学记数法表示为:3.7×10-5×10-3=3.7×10-8 g.故选D.3.【答案】B解:-bx2y3÷2xy3=-bx;(-2x2y2)3÷(-xy)3=8x3y3;-(-a3b2)÷(-a2b2)=-a.4.【答案】D解:因为a+b=m,ab=-4,所以(a-2)(b-2)=ab+4-2(a+b)=-4+4-2m=-2m.故选D.5.【答案】A解:3x-2y=3x÷32y=3x÷9 y=.故选A.6.【答案】A解:(x+m)(x+3)=x2+(3+m)x+3m,因为乘积中不含x的一次项,所以m+3=0,所以m=-3.故选A.7.【答案】B解:(a+4)2-(a+1)2=a2+8a+16-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15(cm2),故选B.8.【答案】A解:A中m和-m符号相反,n和-n符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.9.【答案】D10.【答案】C解:(2+1)(22+1)(24+1)(28+1)+1=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.因为216的末位数字是6,所以原式末位数字是6.二、11.【答案】6解:由题意,知(33)m-1÷32m=27.所以33(m-1)-2m=33.所以3m-3-2m=3,解得m=6.12.【答案】x≠-13.【答案】-22 016解:(-2)2 016+(-2)2 017=(-2)2 016(1-2)=-22 016.14.【答案】1解:原式=(0.125)2 018×82 018=(0.125×8)2 018=1.15.【答案】-1解:原式=(3-1)(3+1)(32+1)(34+1)-38=(32-1)(32+1)(34+1)-38=(34-1)(34+1)-38=38-1-38=-1.16.【答案】 2016解:由已知得x2-x=1,所以-x3+2x2+2 015=-x(x2-x)+x2+2 015=-x+x2+2 015=2 016.17.【答案】±4解:因为=-1=63,2a+2b=±8,所以a+b=±4. 18.【答案】23解:由题意知=25,即a2++2=25,所以a2+=23.三、19.解 :(1)原式=-8+-9=-17+=-16.(2)原式=(100-1)2-(70-1)×(70+1)=10 000-200+1-4 900+1=4 902.(3)原式=(-2)2-x2=4-x2.(4)原式===m8-32m4+256.(5)原式=a2-=a2-b2-c2+2bc.(6)原式=[(3x-2y)+1]2=(3x-2y)2+2(3x-2y)+1=9x2+4y2-12xy+6x-4y+1.20.解:原式=-9a4+18a3b-3b2-4a3b=-9a4+14a3b-3b2.将a=-1,b=2代入得,原式=-49.21.解:(1) ①a2-ab+b2=a2+b2-ab=(a+b)2-3ab=72-3×12=13.②(a-b)2=(a+b)2-4ab=72-4×12=1.解:完全平方公式常见的变形:①(a+b)2-(a-b)2=4a b;②a2+b2=(a+b)2-2ab=(a-b)2+2ab.解答本题关键是不求出a,b的值,主要利用完全平方公式的整体变换求式子的值.(2)因为a=275,b=450=(22)50=2100,c=826=(23)26=278,d=1615=(24)15=260,100>78>75>60,所以2100>278>275>260,所以b>c>a>d.22.解:(1)(2a+b)(a+2b)=2a2+5ab+2b2(2)如图.(所画图形不唯一)23.解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(p-3)x3+(q-3p+8)x2+(pq-24)x+8q.因为展开式中不含x2和x3项,所以p-3=0,q-3p+8=0,解得p=3,q=1.24.解:根据题意得(a+b)4=a4+4a3b+6a2b2+4ab3+b4.解:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)4的各项系数依次为1,4,6,4,1.25.解:原式=××××1+××…××=××××××…××=.26.解:(1)(x-1)(x5+x4+x3+x2+x+1)=x6-1.(2)26+25+24+23+22+2+1=(2-1)×(26+25+24+23+22+2+1)=27-1=127.(3)22 017+22 016+22 015+…+22+2+1=(2-1)(22 017+22 016+22 015+…+22+2+1)=22 018-1.2018÷4=504……2,所以22 018的个位数字是4,所以22 018-1的个位数字是3,即22 017+22 016+22 015+…+22+2+1的值的个位数字是3.。