((新人教版))全等三角形章节测试
- 格式:doc
- 大小:573.00 KB
- 文档页数:4
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列可以判定两个直角三角形全等的条件是( )A .斜边相等B .面积相等C .两对锐角对应相等D .两对直角边对应相等2.到三角形三边的距离相等的点是( )A .三角形三内角平分线的交点;B .三角形三边中线的交点;C .三角形三边高的交点;D .三角形三边中垂线的交点。
3.如图,ABC ≌△DEC ,B 、C 、D 在同一直线上,且CE=5,AC=7,则BD 长( )A .12B .7C .2D .144.如图,在ABC 中,AD 平分BAC ∠,DE AB ⊥于点E ,再添加一个条件仍然不能证明△ADC ≌△ADE 的是( )A .90ACB ∠=︒ B .∠ADC =∠ADE C .AC AE =D .DC DE =5.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF ,则四边形AEDF 的面积为( )A .6B .7C .D .96.如图,在ABC 中90A ∠=︒,AB =2,BC =5,BD 是ABC ∠的平分线,设ABD 和BDC 的面积分别是1S 和2S ,则S 1:S 2的值为( )A .5:2B .2:5C .12:D .1:5 7.如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O ,若∠1=38°,则∠BDE 的度数为( )A .71°B .76°C .78°D .80°8.如图所示,点 ,A B 分别是 ,NOF MOF ∠∠ 平分线上的点, AB OF ⊥ 于点 E , BC ⊥MN 于点 C , AD ⊥MN 于点 D ,下列结论错误的是( )A .90AOB ∠= B .AD +BC =ABC .点 O 是 CD 的中点 D .图中与 ∠CBO 互余的角有两个二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,在△ABC 和△DEF 中,已知CB =DF ,∠C =∠D ,要使△ABC ≌△EFD ,还需添加一个条件,那么这个条件可以是 .10.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE= cm.11.如图,AC 平分∠DCB ,CB =CD ,DA 的延长线交BC 于点E ,若∠BAE =80°,则∠EAC 的度数为 .12.如图,有一个直角三角形ABC ∠C =90° , AC=10 , BC=5 ,一条线段PQ=AB ,P 、Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AX 上运动,动点P 从C 点以2个单位秒的速度出发,问P 点运动 秒时(不包括点C ),才能使△ABC ≌△QPA .13.如图,已知ABC ∆的周长是 21 ,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且OD =4,ABC ∆ 面积是 .三、解答题:(本题共5题,共45分)14.如图,△ABO ≌△CDO ,点B 在CD 上,AO ∥CD ,∠BOD=30°,求∠A 的度数.15.如图,在ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD CE ⊥于D ,AD =2.5cm ,DE =1.7cm ,求BE 的长.16.如图,DE AC ⊥于点E ,BFAC ⊥于点F .AB =CD ,AE =CF ,BD 交AC 于点M ,求证:MB =MD .17.如图所示,已知 AD//BC , 点 E 为 CD 上一点,AE 、BE 分别平分∠DAB 、∠CBA ,BE 交 AD 的延长线于点 F.求证:(1)△ABE ≌△AEF ;(2) AD+BC=AB18.如图,在△ABC 中,∠B =60°,AD 平分∠BAC ,CE 平分∠BCA ,AD 、CE 交于点F ,CD =CG ,连结FG.(1)求证:FD =FG ;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若∠B ≠60°,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由参考答案:1.D 2.A 3.A 4.D 5.D 6.B 7.A 8.D9.AC =ED 或∠A =∠FED 或∠ABC =∠F .10.311.50°12.2.513.4214.解:∵△ABO ≌△CDO∴OB=OD ,∠ABO=∠D∴∠OBD=∠D=12(180°﹣∠BOD )=12×(180°﹣30)=75° ∴∠ABC=180°﹣75°×2=30°∴∠A=∠ABC=30°.15.解:∵90ACB ∠=︒∴90BCE ACD ∠+∠=︒∵AD CE BE CE ⊥⊥,∴9090ADC CEB CAD ACD ∠=∠=︒∠+∠=︒, ∴CAD BCE ∠∠=在ACD 与CBE 中{∠ADC =∠CEB∠BCE =∠CAD AC =BC∴()AAS ACD CBE ≌∴BE CD CE AD ==,∴ 2.5 1.70.8cm BE CD CE DE AD DE ==-=-=-=. 答:BE 的长为0.8cm .16.证明:∵AE =CF∴AE +EF =CF +EF ,即AF =CE∵DE ⊥AC 于点E ,BF AC ⊥于点F∴ABF 和CDE 是直角三角形在Rt ABF 和Rt CDE 中{AB =CD AF =CE∴Rt △ABF ≌Rt △CDE(HL),∴BF =DE ;在DEM 和△BFM 中{∠DEM =∠BFM =90°∠DME =∠BMF DE =BF∴△DEM ≌△BFM(AAS),∴MB =MD .17.(1)证明:如图,∵AE 、BE 分别平分∠DAB 、∠CBA∴∠1=∠2,∠3=∠4∵AD∥BC∴∠2=∠F,∠1=∠F在△ABE和△AFE中∴△ABE≌△AFE(AAS)(2)证明:∵△ABE≌△AFE∴BE=EF在△BCE和△FDE中∴△BCE≌△FDE(ASA)∴BC=DF∴AD+BC=AD+DF=AF=AB即AD+BC=AB.18.(1)证明:∵EC平分∠ACB ∴∠FCD=∠FCG∵CG=CD,CF=CF∴△CFD≌△CFG(SAS)∴FD=FG.(2)解:结论:FG=FE.理由:∵∠B=60°∴∠BAC+∠BCA=120°∵AD平分∠BAC,CE平分∠BCA∴∠ACF+∠FAC=12(∠BCA+∠BAC)=60°∴∠AFC=120°,∠CFD=∠AFE=60°∵△CFD≌△CFG∴∠CFD=∠CFG=60°∴∠AFG=∠AFE=60°∵AF=AF,∠FAG=∠FAE∴△AFG≌△AFE(ASA)∴FG=FE.(3)解:结论:(1)中结论成立.(2)中结论不成立. 理由:①同法可证△CFD≌△CFG(SAS)∴FD=FG.②∵∠B≠60°∴无法证明∠AFG=∠AFE∴不能判断△AFG≌△AFE∴(2)中结论不成立。
八年级数学上册《第十二章全等三角形》单元检测卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形2.到△ABC的三条边距离相等的点是△ABC的( )A.三条中线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条角平分线的交点3.如图,在△ABC中∠A=30∘,∠ABC=50∘若△EDC≌△ABC,且A,C,D在同一条直线上,则∠BCE=( )A.20∘B.30∘C.40∘D.50∘4.如图,在△ABC中∠ACB=45∘,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,若∠ACE=20∘则∠B的度数为( )A.60∘B.65∘C.70∘D.75∘5.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,则点D到BC的距离是()A.3 B.4 C.5 D.66.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠BOM等于()A.40°B.100°C.140°D.144°7.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=5,AD=9,则BE的长是()A.6 B.5 C.4.5 D.48.如图,在△ABC中AB=AC,D、E分别为边AB、AC上的点,BE与CD相交于点F ∠ADC=∠AEB则下列结论:①△ABE≌△ACD;②BF=CF;③连接AF,则AF所在的直线为△ABC的对称轴:④若AD=BD,则四边形ADFE的面积与△BCF的面积相等.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题9.用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,用到的三角形全等的判定方法是.10.如图,在△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=5cm,AB=12cm,则△ABD的面积是cm2.11.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件12.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°∠DAC=16°,则∠DGB= .13.如图,∠1=∠2.(1)当BC=BD时,△ABC≌△ABD的依据是;(2)当∠3=∠4时,△ABC≌△ABD的依据是.三、解答题14.如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.15.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.16.如图,已知,△ABC中,∠A=60º,BD,CE是△ABC的两条角平分线,BD,CE相交于点O,求证:BC=CD+BE.17.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.如图,AD=CB,AE⊥BD,CF⊥BD,E、F是垂足,AE=CF.求证:(1)AB=CD(2)AB//CD.19.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:AC=BD.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)参考答案1. B2. D3. A4. B5.A6.C7.D8.B9.SSS10.3011.AB=AC12.66°13.(1)SAS(2)ASA14.解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.作出的图形如图所示:∵AB⊥BF ED⊥BF∴∠ABC=∠EDC=90°又∵CD=BC ∠ACB=∠ECD∴△ACB≌△ECD,∴AB=DE.15.证明:∵点C是AE的中点∴AC=CE在△ABC和△CDE中{AC=CE∠A=∠ECDAB=CD∴△ABC≌△CDE∴∠B=∠D.16.解:在BC上找到F使得BF=BE∵∠A=60°,BD、CE是△ABC的角平分线∴∠BOC=180°- 12(∠ABC+∠ACB)=180°- 12(180°-∠A)=120°∴∠BOE=∠COD=60°在△BOE和△BOF中∴△BOE≌△BOF,(SAS)∴∠BOF=∠BOE=60°∴∠COF=∠BOC-∠BOF=60°在△OCF和△OCD中∴△OCF≌△OCD(ASA)∴CF=CD∵BC=BF+CF∴BC=BE+CD.17.证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE 在△ABC和△ADE中{AB=AD∠BAC=∠DAEAC=AE∴△ABC≌△ADE∴BC=DE.18.(1)∵AE⊥BD∴∠AEB=∠CFD=∠AED=∠CFB=90°∵AE=CF∴RtΔADE≅ΔCBF(HL)∴DE=BF∴BD−DE=BD−BF∴BE=DF∵∠AEB=∠CFD∴ΔABE≅ΔCDF(SAS)∴AB=CD(2)∵ΔABE≅ΔCDF∴∠ABE=∠CDF∴AB//CD19.(1)证明:∵∠AOB=∠COD=60°∴∠AOB+∠BOC=∠COD+∠BOC∴∠AOC=∠BOD.在△AOC和△BOD中∴△AOC≌△BOD(SAS)∴AC=BD;(2)AC=BD;α。
精心整理八 年 级 数 学单元质量检测 第Ⅰ卷(选择题 共30 分)一、选择题(每小题3分,共30分)4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC≌△A /B /C /,则补充的这个条件是( )第5题图DA .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C /5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )还需要条件( )A.AB=EDB.AB=FDC.AC=FDD.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于第9题图点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④D是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD=,根据可得△AOD≌△COB,从而可以得到AD=.15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明≌得到AB=DC,再利用“”证明△AO某同学把一块三角形的玻璃打碎成三片,∴△ABD≌△ACD()19.(8分)如图,已知△≌△第19题图是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度. 20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以BC12章·全等三角形(详细答案)一、选择题CBDCD BDCDC二、填空题11、△ABD SSS 12、∠ABC 13、3cm∠ACB=∠ECD∴△ABC≌△CDE(ASA)∴AB=DE。
第1页第十一章 全等三角形测试题班级 姓名一、选择题1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD =DE3.如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) A :1个 B :2个 C :3个 D :4个4.P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和.( )A .小于B .大于C .等于D .不能确定(4题) (5题)5.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CA =∠B ′CB ,④AB =A ′B ′中, 任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( ) A .1个 B .2个 C .3个 D .4个6、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论:①DE=DF ,②AE=AF ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) A :1个 B :2个 C :3个 D :4个7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC⊥CD,则不正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC≌△CED D .∠1=∠28、在⊿ABC 和⊿A ′B ′C ′中,AB=A ′B ′,∠A=∠A ′,若证⊿ABC ≌⊿A ′B ′C ′还要从下列条件中补选一个,错误的选法是( )A. ∠B=∠B ′B. ∠C=∠C ′C. BC=B ′C ′D. AC=A ′C ′9、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A :1个 B :2个 C :3个 D :4个10、如图:△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB=6㎝,则△DEB 的周长是( ) A :6㎝ B :4㎝ C :10㎝ D :以上都不对 二、填空题(每小题4分,共40分)11、如图:AB=AC ,BD=CD ,若∠B=28°则∠C= ;12、如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______;13、如图:在△ABC 中,AB=3㎝,AC=4㎝,则BC 边上的中线AD 的取值范围是 ;14、如图:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC,∠CED=35°,则∠EAB = ; 15.如图,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 . 16.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .BCDA第15A D CB16题第2题图第7题图cb a(第9题)(第10题)EDCBA(第3题)D CBAFE(第6题)D C B A(第11题)D CBA(第14题)DCBA E(第17题)DCBA(第16题)D CBA17.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.18.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明≌得到AB=DC,再利用“”证明△AOB≌得到OB=OC.三.解答题19. 如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点700米,如果你是红方的指挥员,请你在图1所示的作战图上标出蓝方指挥部的位置,并简要说明理由。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!《第12章全等三角形》单元测试卷班级姓名一、选择题1.下列说法中,正确的是()A.斜边对应相等的两个直角三角形全等B.底边对应相等的两个等腰三角形全等C.面积相等的两个等边三角形全等D.面积相等的两个长方形全等2.下列各组中是全等形的是()A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个面积相等的直角三角形D.两个周长相等的圆3.面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对4.在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()A.若添加条件AC=A′C′,则△ABC≌△A′B′C′B.若添加条件BC=B′C′,则△ABC≌△A′B′C′C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′5.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去6.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM 长为()A.4cm B.5cm C.8cm D.20cm7.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°8.如图,AB⊥AC于A,BD⊥CD于D,若AC=DB,则下列结论中不正确的是()A.∠A=∠D B.∠ABC=∠DCB C.OB=OD D.OA=OD9.如图,已知△ABC的面积为16,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.12B.8C.6D.410.如图为6个边长相等的正方形的组合图形,则∠1+∠3﹣∠2=()A.30°B.45°C.60°D.135°二、填空题11.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与对应;B与对应;C与对应;D与对应.12.如图,△ADB≌△ECB,若∠CBD=40°,BD⊥EC,则∠D的度数为.13.在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为.14.如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是.(填上一个条件即可)15.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果…,那么…、”的形式:如果,那么.16.如图所示,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O 自由转动,就做成了一个测量工具,则A'B'的长等于内槽宽AB,那么判定△OAB≌OA'B'的理由是.17.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=度.18.如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE=cm.19.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第块去.(填序号)20.如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计).三、解答题21.已知:如图,AC=BD,AC∥BD,AB和CD相交于点O.求证:△ACO≌△BDO.22.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.23.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图2,OA=2,P为y轴负半轴上一个动点,当P点沿y轴负半轴向下运动时,以P为直角顶点,PA为腰向右作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE 的值.24.如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.25.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.26.如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等.参考答案一、选择题1.C2.D3.C4.B5.C6.C7.A8.C9.B10.B 二、填空题11.M,N,Q,P12.50°13.(﹣2,﹣3)、(4,3)、(4,﹣3)14.AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD15.如果一个点在角平分线上,那么它到角两边的距离相等16.SAS17.9018.219.③20.21三.解答题21.证明:∵AC∥BD,∴∠A=∠B,∠C=∠D,在△ACO和△BDO中,∴△ACO≌△BDO(ASA).22.解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.23.解:(1)如图1,过C作CM⊥x轴于M点,∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,则∠MAC=∠OBA,在△MAC和△OBA中∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=OA+AM=2+4=6,∴点C的坐标为(﹣6,﹣2).(2)如图2,过D作DQ⊥OP于Q点,则DE=OQ∴OP﹣DE=OP﹣OQ=PQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PQD中,,∴△AOP≌△PQD(AAS).∴PQ=OA=2.即OP﹣DE=2.24.解:∵△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,∴对应边:AN与AM,BN与CM;对应角:∠BAN=∠CAM,∠ANB=∠AMC.25.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.26.解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,当点P位于AC的中点处或当点P与点C重合时,△ABC才能和△APQ全等.。
AB CDEαβγ GHCE全等三角形章节测试卷(100分钟,100分,2010-9-23)班级_______ 姓名________________ 成绩______________一、选择题(每小题2分,共20分) 1、如图,△ABC ≌△BAD ,点A 点B ,点C 和点D 是对应点。
如果AB=6厘米,BD=5厘米,AD=4厘米,那么BC 的长是( )。
(A)4 厘米 (B)5厘米 (C) 6 厘米 (D)无法确定 2、如图,△ABN ≌△ACM ,AB=AC ,BN=CM ,∠B=50°,∠ANC=120°,则∠MAC 的度数等于( )A .120° B.70° C.60° D.50°. 3.使两个直角三角形全等的条件是( )A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条边对应相等 4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面判断中错误的是( ) A. 若添加条件AC=A ˊC ˊ,则△ABC ≌△A ′B ′C ′ B. 若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′ C. 若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′ D. 若添加条件 ∠C=∠C ′,则△ABC ≌△A ′B ′C ′5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C .带③去D .①②③都带去6.将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°7. 下列说法中不正确的是( )A.全等三角形一定能重合B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等 8.(2004·山东潍坊市)如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙 B.乙和丙 C.只有乙 D.只有丙★ 9.如图3,D ,E 分别是△ABC 的边BC ,AC 上的点,若∠B =∠C ,∠ADE =∠AED ,则( ) A . 当∠B 为定值时,∠CDE 为定值 B . 当∠α为定值时,∠CDE 为定值 C . 当∠β为定值时,∠CDE 为定值D . 当∠γ为定值时,∠CDE 为定值 ★ 10.如右图所示,已知△ABC 和△BDE都是等边三角形。
人教版八年级数学第十二章《全等三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,△ABD和△ACD中,AB=AC,BD=CD,若∠B=20°,则∠C等于()A.10°B.20°C.30°D.40°2.(3分)如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②3.(3分)如图,已知△ABD≌△ACE,AD=3,AB=7,BD=9,则AC的长为()A.3B.7C.9D.无法确定4.(3分)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO ≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL5.(3分)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D 6.(3分)如图,点E、F、C、B在同一直线上,AB=DE,∠A=∠D,添加下列一个条件,不能判定△ABC≌△DEF的条件是()A.∠ACB=∠DFE B.AC=DF C.∠B=∠E D.BC=EF7.(3分)如图,∠AOB=150°,OP平分∠AOB,PD⊥OB于点D,PE⊥OA于点E,PC ∥OB交OA于点C,若PD=3,则OC的长为()A.6B.5C.4D.38.(3分)如图,AB,CD相交于O,△OCA≌△OBD,AO=6,BO=4,则CD的长为()A.9B.10C.11D.129.(3分)下列结论正确的是()A.两个等边三角形全等B.有一个锐角相等的两个直角三角形全等C.有两边及一个角对应相等的两个三角形全等D.斜边和一个锐角对应相等的两个直角三角形全等10.(3分)根据语句“直线a与直线b相交,点P在直线a上,直线b不经过点P.”画出的图形是()A.B.C.D.二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,垂足分别为D,E,若PD=3,则PE的长是.12.(3分)已知△ABC的三边长为x,3,6,△DEF的三边长为5,6,y.若△ABC与△DEF全等,则x+y的值为.13.(3分)如图,AD是△ABC的角平分线,DF⊥AB于点F,点E,G分别是边AB,AC 上的点,且DE=DG,则∠AED+∠AGD=度.14.(3分)如图,OP平分∠MON,P A⊥ON于点A,若P A=3,则点P到射线OM的距离是.15.(3分)如图,BO平分∠ABC,OD⊥BC于点D,点E为射线BA上一动点,若OD=5,则OE的最小值为.三、解答题(共8小题,满分75分)16.(9分)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.17.(9分)如图,已知△ABC和△ADC有公共边AC,且AB=AD,请你添加一个条件(不再添加其他线段,不再标注或使用其他字母),使∠B=∠D,并说明理由.18.(9分)如图,AB=AD,∠C=∠E,∠BAE=∠DAC.求证:AC=AE.19.(9分)如图,已知AB=AD,AE=AC,∠DAB=∠EAC.求证:△ACD≌△AEB.20.(9分)已知:如图,点E、F在BC上,AF与DE交于点G,AB=DC,GE=GF,∠B =∠C.求证:AG=DG.21.(10分)已知:如图,AC=BD,AD=BC,AD,BC相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.22.(10分)如图,已知AD∥BC,AD=CB,AE=FC.(1)求证:∠D=∠B;(2)若∠A=20°,∠D=110°,求∠BEC的度数.23.(10分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB 且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.B;4.B;5.B;6.D;7.A;8.B;9.D;10.D;二、填空题(共5小题,满分15分,每小题3分)11.312.813.18014.315.5三、解答题(共8小题,满分75分)16.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).17.解:添加条件:CB=CD,理由:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.(答案不唯一)18.证明:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(AAS),∴AC=AE.19.证明:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS).20.证明:∵GE=GF,∴△GEF为等腰三角形,∴∠GEF=∠GFE,∵在△ABF和△DCE中,∠B=∠C,∴∠A=∠D,在△ABF和△DCE中,,∴△ABF≌△DCE(ASA),∴AF=DE,又∵GF=GE,∴AF﹣GF=DE﹣GE,即AG=DG.21.证明(1)在ABC和△BAD中,,∴△ABC≌△BAD(SSS);(2)∵△ABC≌△BAD,∴∠CBA=∠DAB,∴OA=OB,∵OE⊥AB,∴AE=BE.22.(1)证明:∵AD∥BC,∴∠A=∠C,∵AE=FC,∴AF=CE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠D=∠B;(2)解:∵∠A=20°,∠D=110°,∴∠AFD=50°,∵△ADF≌△CBE,∴∠BEC=∠AFD=50°.23.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°。
第十二章《全等三角形》章节测试卷一.选择题(共12小题,每小题4分,共48分)1.下列各图形中,不是全等形的是( )A .B .C .D .2.下列说法正确的是( )A .所有的等边三角形都是全等三角形B .全等三角形是指面积相等的三角形C .周长相等的三角形是全等三角形D .全等三角形是指形状相同大小相等的三角形3.如图,AB 与CD 交于点O ,已知△AOD ≌△COB ,∠A =40°,∠COB =115°,则∠B 的度数为( )A .25°B .30°C .35°D .40°4.已知△ABC 的六个元素如图所示,则甲、乙、丙三个三角形中与△ABC 全等的是( )A .甲、乙B .乙、丙C .只有乙D .只有丙5.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去.A .第1块B .第2块C .第3块D .第4块7.如图是一个平分角的仪器,其中AB =AD ,BC =DC ,将点A 放在角的顶点,AB 和AD沿着角第3图的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS8.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为( )A.5.5B.4C.4.5D.39.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A.30°B.35°C.45°D.60°10.如图,AB=AD,AE平分∠BAD,点C在AE上,则图中全等三角形有( )A.2对B.3对C.4对D.5对11.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处12.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为( )A.25B.5.5C.7.5D.12.5二.填空题(共4小题,每小题4分,共16分)13.已知△ABC≌△DEF,∠A=60°,∠F=50°,点B的对应顶点是点E,则∠B的度数是 .14.如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD,若∠AFD=145°,则∠EDF = .15.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .16.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为 .三.解答题(共8小题,共86分)17.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,求∠CAE的度数.18.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.19.如图,AB=AD,AC=AE,∠CAE=∠BAD.求证:∠B=∠D.20.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB =DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.21.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.22.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.23.如图①,点A,E,F,C在同一条直线上,且AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,垂足分别为E,F,AB=CD.(1)若EF与BD相交于点G,则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置,其余条件不变,则(1)中的结论是否仍成立?不必说明理由.24.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是 A.SSS B.SAS C.AASD.HL(2)求得AD的取值范围是 A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.答案一.选择题1.【解答】解:观察发现,B、C、D选项的两个图形都可以完全重合,∴是全等图形,A选项中两组图画不可能完全重合,∴不是全等形.故选:A.2.【解答】解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.3.【解答】解:∵△AOD≌△COB,∴∠C=∠A=40°,由三角形内角和定理可知,∠B=180°﹣∠BOC﹣∠C=25°,故选:A.4.【解答】解:已知△ABC中,∠B=50°,∠C=58°,∠A=72°,BC=a,AB=c,AC=b,∠C=58°,图甲:只有一条边和AB相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC 不全等;图乙:只有两个角对应相等,还有一条边对应相等,符合三角形全等的判定定理(AAS),即和△ABC全等;图丙:符合SAS定理,能推出两三角形全等;故选:B.5.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.6.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.7.【解答】解:在△ADC和△ABC中,{AD=ABDC=BC,AC=AC∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.8.【解答】解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,{∠A=∠EAB=EF,∠B=∠F∴△ABC≌△EFD(ASA),∴AC=ED=7,∴AD=AE﹣ED=10﹣7=3,∴CD=AC﹣AD=7﹣3=4.故选:B.9.【解答】解:作MN⊥AD于N,∵∠B =∠C =90°,∴AB ∥CD ,∴∠DAB =180°﹣∠ADC =70°,∵DM 平分∠ADC ,MN ⊥AD ,MC ⊥CD ,∴MN =MC ,∵M 是BC 的中点,∴MC =MB ,∴MN =MB ,又MN ⊥AD ,MB ⊥AB ,∴∠MAB =12∠DAB =35°,故选:B .10.【解答】解:∵AE 平分∠BAD ,∴∠BAE =∠CAE ,在△ABC 和△ADC 中{AB =AD∠BAC =∠DAC AC =AC ,∴△DAC ≌△BAC (SAS ),∴BC =CD ;在△ABE 和△ADE 中{AB =AD∠BAE =∠DAE AE =AE ,∴△DAE ≌△BAE (SAS ),∴BE =ED ;在△BEC 和△DEC 中{BC =DCEC =EC EB =ED ,∴△BEC ≌△DEC (SSS ),故选:B .11.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△ADF和Rt△ADH中,{AD=ADDF=DH,∴Rt△ADF≌Rt△ADH(HL),∴S Rt△ADF=S Rt△ADH,在Rt△DEF和Rt△DGH中,{DE=DGDF=DH∴Rt△DEF≌Rt△DGH(HL),∴S Rt△DEF=S Rt△DGH,∵△ADG和△AED的面积分别为60和35,∴35+S Rt△DEF=60﹣S Rt△DGH,.∴S Rt△DEF=252故选:D.二.填空题13.【解答】解:∵△ABC≌△DEF,∠A=60°,∠F=50°,∴∠D=∠A=60°,∠C=∠F=50°,∴∠B=∠E=70°.故答案为:70°.14.【解答】解:∵FD⊥BC于点D,DE⊥AB于点E,∴∠BED=∠FDC=90°,∵BE=CD,BD=CF,∴Rt△BED≌Rt△CDF(HL),∴∠BDE=∠CFD,∵∠AFD=145°,∴∠DFC=35°,∴∠BDE=35°,∴∠EDF=90°﹣35°=55°,故答案为55°.15.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.16.【解答】解:∵AD=AD,且∠DAB=90°,∴将△ACD绕点A逆时针旋转90°,AD与AB重合,得到△ABE.∴∠ABE=∠D,AC=AE.根据四边形内角和360°,可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题17.解:∵△ABE≌△ACD,∴∠C=∠B=70°,∴∠CAE=∠AEB﹣∠C=5°.18.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=BC.19.证明:∵∠CAE=∠BAD,∴∠CAE+∠EAB=∠BAD+∠EAB,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠B=∠D.20.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.21.(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.22.证明:(1)∵AD为△ABC的边BC上的高,∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中,,∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC,∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角,∴∠BDF=∠AEF=90°,∴BE⊥AC.23.解:(1)EG=FG,理由如下:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG;(2)(1)中的结论仍成立,理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.24.(1)解:∵在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故答案为:C.(3)证明:如图,延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中,,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中,,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
2023-2024学年八年级数学上册12章《全等三角形》单元检测卷(满分120分)一、选择题(本大题共10小题,共30分)1.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=()A.60°B.100°C.120°D.135°2.根据下列已知条件,能作出唯一的△ABC的是()A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=60∘C.∠A=60∘,∠B=45∘,AB=4D.∠C=90∘,∠B=30∘,∠A=60∘3.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形4.如图,∠C=∠D,∠ABC=∠BAD,可证明△ABC≌△BAD,可使用全等三角形的判定定理()A.SSSB.SASC.AASD.HL5.如图,AC=DC,BC=EC,添加一个条件,不能保证△ABC≌△DEC的是()A.AB=DEB.∠ACB=∠DCEC.∠ACD=∠BCED.∠B=∠E6.如图,一个三角形玻璃被摔成三小块,现要到玻璃店再配一块同样大小的玻璃,最省事的方法是()A.带①去B.带②去C.带③去D.带①②去7.到三角形三边的距离相等的是()A.三条中线交点B.三条角平分线的交点C.三条高的交点D.三条中垂线的交点8.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是()A.SSSB.SASC.ASAD.AAS9.如图,用直尺和圆规作一个角等于已知角,能得出△COD≌△C′O′D′的依据是()A.SASB.AASC.ASAD.SSS10.如图,BN为∠MBC的平分线,P为BN上一点,且PD⊥BC于点D,∠APC+∠ABC=180°,给出下列结论:①∠MAP=∠BCP;②PA=PC;③AB+BC=2BD;④四边形BAPC的面积是△PBD 面积的2倍,其中结论正确的个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共5小题,共15分)11.如图,△ABC≌△ADE,∠B=30∘,∠C=95∘,则∠EAD的度数为.12.如图,在△ABC中,∠C=90°,AB=10cm,AD平分∠BAC,若CD=3cm,则△ABD的面积为cm2.13.如图所示的方格中,∠1+∠2+∠3=度.14.如图,D、C、F、B四点在同一条直线上,BC=DF,AC⊥BD于点C,EF⊥BD于点F,如果要添加一个条件,使△ABC≌△EDF,你添加的条件是(注:只需写出一个条件即可).15.如图,MB//NC,∠MBC和∠NCB的平分线相交于点P,过点P作MB的垂线,交MB于点A,交NC于点D.若AD=10,则点P到BC的距离为,∠BPC=°.三、解答题(本大题共8小题,共75分)16.(8分)如图,点C,E,B,F在同一条直线上,AB=DE,AC=DF,BF=CE.说明AC//DF.17.(8分)如图,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,BD=CD.求证:EB=FC.18.(9分)如图,在△ABC中,AB=AC,∠BAC=90∘,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F.(1)如图 ①,过点A的直线与斜边BC不相交时,求证: ①△ABE≌△CAF; ②EF=BE+CF.(2)如图 ②,其他条件不变,过点A的直线与斜边BC相交时,若BE=10,CF=3,试求EF的长.19.(9分)下面是小明设计的“作角的平分线”的尺规作图的过程.已知:如图1,∠AOB.求作:射线OP,使它平分∠AOB.作法:如图2,①以点O 为圆心,任意长为半径作弧,交OA 于点M ,交OB 于点N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在∠AOB 内交于点P ;③作射线OP .射线OP 就是∠AOB 的平分线.根据小明设计的尺规作图的过程,(1)使用直尺和圆规,在图2中补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接MP ,NP .在△OMP 和△ONP 中,因为OP =OP OM =ON (ㅤㅤ)=(ㅤㅤ)所以△OMP≌△ONP ______(填推理的依据).所以______(全等三角形的______相等).即射线OP 平分∠AOB(角平分线定义).20.(10分)如图,在Rt △ABC 中,∠BAC =90∘,AC =2AB ,D 是AC 的中点.将一块锐角为45∘的直角三角板如图放置,使三角板斜边的两个端点分别与A ,D 重合,连接BE ,EC.试猜想线段BE 和EC 的数量及位置关系,并说明理由.21.(10分)如图,BD=CE,BE⊥AC于点E,CD⊥AB于点D,BE、CD交于点F.求证:点F在∠BAC的平分线上.22.(10分)如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,试说明:PM=PN.23.(11分)(1)特例探究:如图①,正方形ABCD中,E、F分别为BC、CD上两点,∠EAF=45°,探究BE、EF、DF之间的数量关系.小明是这么思考的:延长FD,截取DG=BE.连接AG,易证△ADG≌△ABE,从而得到AG=AE,再由SAS证明△AGF≌△AEF,从而得出结论:________________________;(2)一般探究:如图②,四边形ABCD中,AD=AB,∠B与∠D互补,E、F分别是BC、CD上两点,且满足∠EAF=12∠BAD,探究BE、EF、DF之间的数量关系;(3)实际应用:如图③,四边形ABCD中,AB=AD,AC=6,∠DAB=∠DCB=90°,直接写出四边形ABCD的面积为________.答案1.【答案】C解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∵∠A=36°,∴∠B=180°−∠A−∠C=180°−36°−24°=120°.故选:C.2.【答案】C3.【答案】B4.【答案】C解:在△ABC和△BAD中,∠C=∠D∠ABC=∠BADAB=BA,∴△ABC≌△BAD(AAS).故选:C.5.【答案】D解:A.AB=DE,AC=DC,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;B.AC=DC,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠ACD=∠BCE,∴∠ACD+∠DCB=∠BCE+∠DCB,即∠ACB=∠DCE,AC=DC,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;D.AC=DC,BC=EC,∠B=∠E,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;故选:D.6.【答案】C7.【答案】B解:在三角形内部,到三角形三边距离相等的点是三角形三条角平分线的交点,故选:B .8.【答案】A9.【答案】D10.【答案】A解:过点P 作PK ⊥AB ,垂足为点K .∵PK⊥AB ,PD ⊥BC ,∠ABP =∠CBP ,∴PK =PD ,在Rt △BPK 和Rt △BPD 中,BP =BP PK=PD ,∴Rt △BPK≌Rt △BPD(HL),∴BK =BD ,∵∠APC +∠ABC =180°,且∠ABC +∠KPD =180°,∴∠KPD=∠APC ,∴∠APK =∠CPD ,又∵三角形内角和为180°,∴∠MAP =∠BCP ,故①正确,在△PAK 和△PCD 中,∠AKP=∠CDP PK =PD ∠APK =∠CPD ,∴△PAK≌△PCD(ASA),∴AK =CD ,PA =PC ,故②正确,∴BK −AB =BC −BD ,∴BD −AB =BC −BD ,∴AB +BC =2BD ,故③正确,∵Rt△BPK≌Rt△BPD,△PAK≌△PCD,∴S△BPK=S△BPD,S△APK=S△PDC,∴S四边形ABCP=S四边形KBDP=2S△PBD.故④正确.故选A.11.【答案】55∘12.【答案】15解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∴△ABD的面积=12AB⋅DE=12×10×3=15.故答案为:15.13.【答案】135解:如图,在△ABC和△EDA中,AB=DE,BC=AD,AC=AE,∴△ABC≌△EDA(SSS),∴∠1=∠DAE,则∠1+∠3=∠DAE+∠3=90°,∵△ADF是等腰直角三角形,∴∠2=45°,则∠1+∠2+∠3=90°+45°=135°,故答案为135.14.【答案】AB=ED或∠B=∠D或DE//AB或∠A=∠E(答案不唯一)解:∵AC⊥BD于点C,EF⊥BD于点F,∴∠ACB=∠EFD=90°,∵BC=DF,∴根据HL,可以添加AB=ED,使得△ABC≌△EDF,根据ASA,可以添加∠B=∠D或DE//AB,使得△ABC≌△EDF,根据AAS,可以添加∠A=∠E,使得△ABC≌△EDF,故答案为:AB=ED或∠B=∠D或DE//AB或∠A=∠E.(答案不唯一) 15.【答案】59016.【答案】证明:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴AC//DF.17.【答案】证明:∵AD是∠BAC的角平分线,∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF,又∵DE⊥AB,DF⊥AC,BD=CD,在Rt△BDE与Rt△CDF中,BD=CDDE=DF,∴Rt△BDE≌Rt△CDF(HL),∴EB=FC.18.【答案】(1)证明: ①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90∘.∴∠EAB+∠EBA=90∘.∵∠BAC=90∘,∴∠EAB+∠FAC=90∘.∴∠EBA=∠FAC.在△ABE和△CAF中,∠AEB=∠CFA,∠EBA=∠FAC,AB=CA,∴△ABE≌△CAF(AAS). ②由 ①知△ABE≌△CAF,∴AE=CF,BE=AF.∴EF =AF +AE =BE +CF .(2)解:∵BE ⊥AF ,CF ⊥AF ,∴∠AEB =∠CFA =90∘.∴∠EAB +∠EBA =90∘.∵∠BAC =90∘,∴∠EAB +∠FAC =90∘.∴∠EBA =∠FAC .在△ABE 和△CAF 中,{∠AEB =∠CFA,∠EBA =∠FAC,AB =AC,∴△ABE ≌△CAF(AAS).∴AE =CF ,BE =AF .∴EF =AF −AE =BE −CF =10−3=7.19.【答案】SSS ∠POM =∠PON 对应角解:(1)补全的图形如图所示;(2)证明:连接MP ,NP .在△OMP 和△ONP 中,OP =OP OM =OM MP=NP ,∴△OMP≌△ONP(SSS),故答案为:SSS ,∠POM =∠PON ,对应角.20.【答案】数量关系是BE =EC ,位置关系是BE ⊥EC .理由:由题意可知∠AED =90∘,∠EAD =∠EDA =45∘,AE =DE ,所以∠EAB =∠EAD +∠BAC =45∘+90∘=135∘,∠EDC =180∘−∠EDA =180∘−45∘=135∘,所以∠EAB =∠EDC .因为D 是AC 的中点,所以AD =CD =12AC ,又因为AC =2AB ,所以AB =AD =DC .在△EAB 和△EDC 中,{AE=DE,∠EAB =∠EDC,AB =DC,所以△EAB ≌△EDC(SAS).所以BE =EC ,∠AEB =∠DEC .因为∠AED =∠AEB +∠BED =90∘,所以∠DEC +∠BED =90∘.所以BE ⊥EC .21.【答案】证明:∵CD ⊥AB 于点D ,BE ⊥AC 于点E ,∴∠FDB =∠FEC =90°,在△BDF 和△CEF 中,∠FDB =∠FEC =90°,∠BFD =∠CFE ,BD =CE ,∴△BDF≌△CEF(AAS),∴FD =FE .∴AF 平分∠BAC .点F 在∠BAC 的平分线上.22.【答案】因为BD 为∠ABC 的平分线,所以∠ABD =∠CBD .在△ABD 和△CBD 中,AB =BC,∠ABD =∠CBD,BD =BD,所以△ABD ≌△CBD(SAS).所以∠ADB =∠CDB .又因为点P 在BD 上,PM ⊥AD ,PN ⊥CD ,所以PM =PN .23.【答案】解:(1)EF =BE +DF .(2)如图②,延长CB 至G ,使BG =DF ,连接AG .∵∠ABC+∠D =180°,∠ABC +∠ABG =180°,∴∠ABG =∠D .又∵BG =DF ,AD =AB ,∴△ADF≌△ABG(SAS).∴∠DAF =∠BAG ,AF =AG .∴∠FAG =∠DAB .又∵∠EAF=12∠DAB,∴∠EAF=12∠FAG.∴∠EAF=∠EAG.又∵AG=AF,AE=AE,∴△GAE≌△FAE(SAS).∴GE=EF,即BE+DF=EF.(3)18.ACD≌△AEB,得到S四边形ABCD=S△ACE=18.【解答】解:(1)结论:EF=BE+DF⋅理由如下:延长FD到点G使DG=BE,连接AG,如图①中,在正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90∘,在△ABE和△ADG中,AB=AD∠ABE=∠ADG,BE=DG∴△ABE≌△ADG(SAS),∴∠BAE=∠GAD,AE=AG,∴∠GAD+∠DAF=∠BAE+∠DAF=90∘−45∘=45∘,在△AEF和△AGF中GA=EA∠GAF=∠EAF,AF=AF∴△AEF≌△AGF(SAS),∴EF=GF;∴EF=GD+DF=BE+EF;(2)见答案.(3)如图③,延长CB,截取BE=CD,连接AE,∵∠DAB=∠DCB=90°,∴∠ADC+∠ABC=180°,∵∠ABE+∠ABC=180°,∴∠ADC=∠ABE,在△ADC和△ABE中{AD=AB∠ADC=∠ABE,DC=BE∴△ACD≌△AEB,∴AC=AE=6,∠DAC=∠BAE,∴∠DAB=∠CAE=90°,∴S四边形ABCD=S△ACD+S△ABC=S△ABE+S△ABC=S△ACE=18.。
人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,在ABC 中90C ∠=︒.用直尺和圆规在边BC 上确定一点P ,使点P 到AC ,AB 的距离相等,则符合要求的作图痕迹是( )A .B .C .D .2.如图所示,已知ABC 的周长是20,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC ⊥于D ,若2OD =,则ABC 的面积是( )A .20B .12C .10D .83.如图//EF AD ,AD//BC ,CE 平分BCF ∠ 120DAC ∠= 20ACF ∠=则FEC ∠的度数为( )A .10B .20C .30D .604.如图,把两根钢条的中点连在一起,可以测量工件内槽的宽度,在图中,要测量工件内槽宽AB ,则需要测量的量是( )A .OA 的长度B .OB 的长度C .AB 的长度D .A B ''的长度5.课间,小明和小聪在操场上忽然争论起来,他们都说自己比对方长得高.这时,数学老师走过来,笑着对他们说:“你们不要争啦,其实你们一样高,瞧瞧地上你俩的影子一样长.”原来数学老师运用全等知识从他们的影长相等得到了他们的身高相同.你知道数学老师运用全等三角形的判定方法是哪一个吗?( )A .SSSB .SASC .HLD .ASA6.如图,在Rt ABC △中90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若8CD =,AB=15,则ABD △的面积是( )A .120B .60C .45D .307.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①ABD △和ACD 面积相等;①BAD CAD ∠=∠;①BDF CDE ≌;①BF CE ∥;①CE AE =.其中正确的有( )A .①①①B .①①①C .①①①D .①①①①8.如图,在四边形ABCD 中,对角线 AC 平分,BAD AB AD ∠>,下列结论中正确的是()A .AB AD CB CD ->-B .AB AD CB CD -=-C .AB AD CB CD -<-D .AB AD - 与 CB CD -的大小关系不确定9.如图,AE=AC ,若要判断△ABC ①△ADE ,则不能添加..的条件为( )A .DC=BEB .AD=ABC .DE=BCD .①C=①E10.在ABC 和DEF 中,90A D ∠=∠=︒,则下列条件中不能判定ABC DEF ≌△△的是()A .AB DE = AC DF = B .AC EF = BC DF =C .AB DE = BC EF =D .C F ∠=∠ BC EF =二、填空题11.如图,在四边形ABCD 中,AB =BC ,①ABC =①CDA =90°,BE①AD 于点E ,且四边形ABCD 的面积为12,则BE 的长为 .12.如图所示,在坐标平面中()0,4A ,C 为x 轴负半轴上一点,CO=3,AC=5,若点P 为y 轴上一动点,以PC 为腰作等腰三角形PCQ △,已知22CPQ ACO α∠=∠=(α为定值),连接OQ ,则OQ 的最小值为 .13.如图,ABC 中2BAC C ∠=∠,BD 为ABC ∠的平分线7.6BC =, 4.4AB =则AD = .14.如图,已知AB=BD ,①A=①D 若直接应用“SAS”判定△ABC①①DBE ,则需要添加的一个条件 是 .15.如图,①ABC 是一个等腰直角三角形,①BAC =90°,BC 分别与AF 、AG 相交于点D 、E .不添加辅助线,使①ACE 与①ABD 全等,你所添加的条件是 .(填一个即可)16.如图,12AB =米,CA AB ⊥于A ,DB AB ⊥于B ,且4AC =米,P 点从点B 向点A 运动,每分钟走1米,Q 点从B 向D 运动,每分钟走2米,若P 、Q 两点同时开始出发,运动 分钟后CAP PBQ ≌△△.17.如图1,在ABC 中,D 是AB 边上的一点,小新用尺规作图,做法如下:如图2,①以B 为圆心,任意长为半径作弧,交BA 于F 、交BC 于G ;①以D 为圆心,BF 为半径作弧,交DA 于M ;①以M 为圆心,FG 为半径作弧,两弧相交于N ;①过点D 作射线DN 交AC 于点E .若①ADE =62︒,①C =68︒,则①A 的度数是 度.18.如图,CA=CB ,CD=CE 40ACB DCE ∠=∠=︒,AD 、BE 交于点H ,连接CH .①AD BE =;①40DHE ∠=︒①CH 平分ACE ∠.①CH 平分AHE ∠.其中正确的有 (把正确的序号填入横线处).19.如图,已知AC与BF相交于点E,AB//CF,点E为BF中点,若CF=6,AD=4,则BD .20.如图,在①ABC中,①ABC=2①C,AP和BQ分别为①BAC和①ABC的角平分线,若①ABQ的周长为18,BP=4,则AB的长为三、解答题21.已知,如图,Rt△ABC中,①ACB=90°,AC=BC.点D为AB边上一点,且不与A、B两点重合,AE①AB,AE=BD.连接DE、DC,求证:CE=CD.22.如图1,在平面直角坐标系中,ABC 的顶点()3,0A -、()0,3B 和()1,0C ,E 是线段OB 上一点,且AE BC =.(1)求点E 的坐标;(2)延长AE 交BC 于 D .①如图2,判断AE 和BC 的位置关系并说明理由;①连接OD ,如图3 , 求证:DO 平分ADC ∠.23.如图,AB=AC ,DE=DF ,DE①AB ,垂足为点E ,DF ①AC ,垂足为点F .求证:DB=DC .24.如图,在①ABC中,①C=90°,AD平分①CAB,交CB于点D,过点D作DE①AB于点E,若①B=30°,CD=1,求AB的长.≌,A,F,C,D四点在同一条直线上.25.如图,已知ABF DEC;(1)求证:AC DF(2)判断BF与EC的位置关系,并证明.参考答案1.B2.A3.B4.D5.D6.B7.B8.A9.C10.B11.2312.12513.3.214.AC=DE15.CD =BE (答案不唯一) 16.417.5018.①①①19.220.721.略.22.(1)(0,1)E (2)①AE BC ;①略 23.略24.325.(1)略;(2)BF EC ∥。
八(上)第十三章全等三角形章节测试
一、看准了再选(每题3分共30分)
1.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是( )
A .(S .S .S .)
B .(S .A .S .)
C .(A .S .A .)
D .(A .A .S .
2.如图,R t ABC △沿直角边B C 所在的直线向右平移得到D E F △,下列结论中错误的是( ) A.A B C D E F △≌△
B.90DEF ∠= C.AC D F = D.E C C F =
3.如图,D 在AB 上,E 在AC 上,且AB=AC ,则在下列条件中,无法判定△ABE ≌△
ACD 的是( )
A .AD=AE
B . ∠B=∠
C C .BE=C
D D .∠1=∠2
4. 下列各条件中,不能作出惟一三角形的是( )
A .已知两边和夹角
B .已知两角和夹边
C .已知两边和其中一边的对角
D .已知三边
5.如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位
置,若B A AC ''⊥,则BAC ∠的度数是( ) A .50° B .60° C .70° D .80°
6.如图,已知12=∠∠,AC AD =,增加下列条件:①A B A E =;②B C E D =;③
C D =∠∠;④B E =∠∠.其中能使A B C A E D △≌△的条件有( ) A.4个 B.3个 C.2个 D.1个
8.如图,△ABC 的三边AB 、7.BC 、7.CA 长分别是20、30、40,其
7.三条角平分线将△ABC 分为三个三角形,
则S △ABO ︰ S △BCO ︰S △CAO 等于( )
B ′
C ′
D ′
O ′A ′
O
D
C
B
A (第1题)
A
B
C
D
E
1 2
A
B
E C
F
D
第2题
(第6题图)
A .1︰1︰1
B .1︰2︰3
C .2
8..在⊿ABC 中,AB>AC,分别延长中线连接AH AE ,。
则( )
A 、AH AF =
B 、AH>AF
C 、9.如图,△ABC 中,P 、Q 分别是BC 、AC 若AQ=PQ,PR=PS,下面三个结论:① A.①和③ B.②和③ C.①和②10. 如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,A.∠1=∠二、想好了再填(每题4分共32分)
11.如图,点B 在AE 上,∠CAB =∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: .
12.如图,∠A=∠D=90°,AB=DE ,再加一个能使△ABC ≌△DEF 的相等条件这个条件是:
_____________或__________________使得全等的根据是HL
13.如图,在A B C △和ABD △中,现给出如下三个论断:①A D B C =;②C D ∠=∠;
③12∠=∠.请选择其中两个论断为条件,另一个论断为结论,构造一个命题.
写出所有的真命题(写成“⎫
⇒⎬⎭
”形式,用序号表示)
:
___________________________________________________. F E D C B
A A
B
C
D E F
H
A
B
C D
E
(第11题)
2
1 AC D
B
第13题
B A
C E 第17
A
B
C
D
'A '
B
'
D
'
C
L 2
L 1
比例尺1:20000
北
A
14.已知:如图,△ABC 中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF= 度.
15.如图,△ABC 中,∠C = 90°,角平分线AE 分对边CE :EA = 1:3,AC=12
cm ,E 到AB 的距离是 ________cm 。
16.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是____;中线AD 的取值范围是____. 17. 如图,A D A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的
高,且A B A B A D A ''''==,.
若使A B C A B C '''△≌△,请你补充条件___________.(填写一个你认为适当的条件即可)
18.如图,某市区一工厂在公路西侧河南岸,到公路L 1的距离与河岸L 2的距离相等,并且与公路桥较近的桥头A 的距离为300米,请在图中标出工厂B 的位置(画图时保留尺规作图的痕迹)
三、想好了再规范的写(共36分)
19. 已知∠BAC=∠DAE ,∠ABD=∠ACE ,AB=AC . 证明:BD=CE.
20.已知:如图,∠A =∠D =90°,BD 与AC 相交于点O ,
且BD =AC 。
求证:OB =OC
A
B
C
D
E
A
B
C
D
O
21.如图,AB=CD,AD=BC,EF经过AC的中点O,分别交AB、CD于E、F。
求证:OE=OF.
22..如图,AB=AC,∠BAC=900,BD⊥AE于D,CE⊥AE于E,且BD>CE,求证:BD=EC+ED.
23.⑴已知:如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,
求证:AN=BM,这时可以证明 __________________,得到AN=BM
⑵如果去掉“点C为线段AB上一点”的条件,而是让△CBN绕点C旋转成图2的情形,
还有“AN=BM”的结论吗?如果有,请给予证明.
⑶如图3,仍保留原题的所有条件,并设AN、BM交于点F,连接CF,请用刻度尺度量BF、
CF、NF的大小,不难发现:BF=CF+NF,为什么?请给予证明.
N
M
C B A
N
M
B
C
A
F
N
M
B
C。