高三物理二轮复习专题4第3讲带电粒子在复合场中的运动检测试题
- 格式:doc
- 大小:386.50 KB
- 文档页数:9
专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。
如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。
匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。
下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。
一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。
不计粒子的重力。
(1)求粒子第一次离开电场时的速度。
(2)为使粒子能再次进入电场,求磁感应强度B的最小值。
4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。
一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。
(1)求M点到O点的距离。
2022届高考物理二轮复习专题测试:带电粒子在复合场中的运动一、单项选择题(每题4分,共16分)1.(2021·安徽江南十校摸底)带电质点在匀强磁场中运动,某时刻速度方向如图1所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )图1A .可能做直线运动B .可能做匀减速运动C .确定做曲线运动D .可能做匀速圆周运动2. (2021·浙江重点中学协作体摸底)如图2所示,有一金属块放在垂直于表面C 的匀强磁场中,磁感应强度为B ,金属块的厚度为d ,高为h ,当有稳恒电流I 平行平面C 的方向通过时,由于磁场力的作用,金属块中单位体积内参与导电的自由电子数目为(上下两面M 、N 上的电压分别为U M 、U N )( )图2A.edIB|U M -U N | B.2BIed ⎪⎪⎪⎪1U M -U N C.BIed ⎪⎪⎪⎪1U M -U ND.ed2IB|U M -U N | 3. (2021·平顶山模拟)如图3所示为一种获得高能粒子的装置,环形区域内存在垂直纸面对外、磁感应强度大小可调的均匀磁场(环形区域的宽度格外小)。
质量为m 、电荷量为+q 的粒子可在环中做半径为R 的圆周运动。
A 、B 为两块中心开有小孔的距离很近的极板,原来电势均为零,每当带电粒子经过A 板预备进入AB 之间时,A 板电势上升为+U ,B 板电势仍保持为零,粒子在两板间的电场中得到加速。
每当粒子离开B 板时,A 板电势又降为零。
粒子在电场中一次次加速下动能不断增大,而在环形磁场中绕行半径R 不变。
(设极板间距远小于R )下列说法正确的是( )图3A .粒子从A 板小孔处由静止开头在电场力作用下加速,绕行n 圈后回到A 板时获得的总动能为2nqUB .粒子在绕行的整个过程中,每一圈的运动时间不变C .为使粒子始终保持在半径为R 的圆轨道上运动,磁场的磁感应强度大小必需周期性递减D .粒子绕行第n 圈时的磁感应强度为1R2nmUq4. (2021·宝鸡二模)如图4所示,真空中有一匀强电场和水平面成确定角度斜向上,一个电荷量为Q =-5×10-6C 的带电质点固定于电场中的O 点,在a 点有一个质量为m =9×10-3 kg 、电荷量为q =2×10-8C 的点电荷恰能处于静止,a 与O 在同一水平面上,且相距为r =0.1 m 。
一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12 mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mEEv vB B=++考点:带电粒子在符合场中的运动;动能定理.2.如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀强电场,场强大小为E.在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A是y轴上的一点,它到坐标原点O的距离为h;C是x轴上的一点,到O的距离为L.一质量为m,电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入磁场区域.并再次通过A点,此时速度方向与y轴正方向成锐角.不计重力作用.试求:(1)粒子经过C点速度的大小和方向;(2)磁感应强度的大小B.【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分【答案】(1)α=arctan2hl(2)B =2212mhEh lq+ 【解析】 【分析】 【详解】试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:212h at =② 0l v t =③由②③式得02a v lh=④ 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤ 由①④⑤式得:22101v v v +==()2242qE h l mh+⑥设粒子经过C 点时的速度方向与x 轴的夹角为α,则有1v tan v α=⑦ 由④⑤⑦式得2h arctanlα=⑧(2)粒子从C 点进入磁场后在磁场中作速率为v 的圆周运动.若圆周的半径为R ,则有qvB =m 2v R⑨设圆心为P ,则PC 必与过C 点的速度垂直,且有PC =PA R =.用β表示PA 与y 轴的夹角,由几何关系得:Rcos Rcos h βα=+⑩Rsin l Rsin βα=-解得222242h l R h l hl++=由⑥⑨式得:B =2212mhEh l q+3.如图所不,在x 轴的上方存在垂直纸面向里,磁感应强度大小为B 0的匀强磁场.位于x 轴下方的离子源C 发射质量为m 、电荷量为g 的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O (坐标原点)垂直x 轴并垂直磁场射入磁场区域,最后打到x 轴上.在x 轴上2a 〜3a 区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N 0,打到x 轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O 射入磁场后打到x 轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B 1;(3)保持磁感应强度B 1不变,求每秒打在探测板上的离子数N ;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题 【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU =mv 在磁场中洛仑兹力提供向心力:,所以半径:r 1==a恰好打在x =2a 的位置;对于初速度为v 0的离子,qU =mv -m(v 0)2r 2==2a ,恰好打在x =4a 的位置故离子束从小孔O 射入磁场打在x 轴上的区间为[2a ,4a] (2)由动能定理 qU =mv -m(v 0)2r 3=r 3=a 解得B 1=B 0 (3)对速度为0的离子 qU =mv r 4==a2r 4=1.5a离子打在x 轴上的区间为[1.5a,3a] N =N 0=N 0对打在x =2a 处的离子 qv 3B 1=对打在x =3a 处的离子 qv 4B 1=打到x 轴上的离子均匀分布,所以=由动量定理 -Ft =-0.8Nm +0.2N(-0.6m-m)解得F =N 0mv 0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x 轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x 轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a ,由半径公式也就能求出磁感应强度;取时间t=1s ,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.4.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
高考物理《带电粒子在叠加场中的运动》真题练习含答案1.(多选)如图所示,空间存在着垂直向里的匀强磁场B 和竖直向上的匀强电场E ,两个质量不同电量均为q 的带电小球a 和b 从同一位置先后以相同的速度v 从场区左边水平进入磁场,其中a 小球刚好做匀速圆周运动,b 小球刚好沿直线向右运动.不计两小球之间库仑力的影响,重力加速度为g ,则( )A .a 小球一定带正电,b 小球可能带负电B .a 小球的质量等于qEgC .b 小球的质量等于qE -q v BgD .a 小球圆周运动的半径为EVBg答案:BD解析:a 小球刚好做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,所以Eq =m a g ,电场力方向竖直向上,则a 小球一定带正电,b 小球刚好沿直线向右运动,如果b 小球带负电,电场力洛伦兹力均向下,重力也向下,不能平衡,无法做直线运动,所以b 小球带正电,q v B +Eq =m b g ,A 错误;根据A 选项分析可知,a 小球的质量等于m a =qEg ,B 正确;根据A 选项分析可知,b 小球的质量等于m b =qE +q v Bg,C 错误;a 小球圆周运动的半径为Bq v =m a v 2r ,解得r =m a v Bq =E vBq,D 正确.2.(多选)如图所示,在竖直平面内的虚线下方分布着互相垂直的匀强电场和匀强磁场,电场的电场强度大小为10 N/C ,方向水平向左;磁场的磁感应强度大小为2 T ,方向垂直纸面向里.现将一质量为0.2 kg 、电荷量为+0.5 C 的小球,从该区域上方的某点A 以某一初速度水平抛出,小球进入虚线下方后恰好做直线运动.已知重力加速度为g =10 m/s 2.下列说法正确的是( )A.小球平抛的初速度大小为5 m/sB.小球平抛的初速度大小为2 m/sC.A点距该区域上边界的高度为1.25 mD.A点距该区域上边界的高度为2.5 m答案:BC解析:小球受竖直向下的重力与水平向左的电场力作用,小球进入电磁场区域做直线运动,小球受力如图所示小球做直线运动,则由平衡条件得q v B cos θ=mg,小球的速度v cos θ=v0,代入数据解得v0=2 m/s,A错误,B正确;小球从A点抛出到进入复合场过程,由动能定理得mgh=12m v2-12m v2,根据在复合场中的受力情况可知(mg)2+(qE)2=(q v B)2,解得h=E22gB2,代入数据解得h=1.25 m,C正确,D错误.3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨迹半径为R.已知电场的电场强度大小为E,方向竖直向下;磁场的磁感应强度大小为B,方向垂直于纸面向里.不计空气阻力,重力加速度为g,则下列说法中正确的是() A.液滴带正电B.液滴的比荷qm=g EC.液滴的速度大小v=gRBED.液滴沿逆时针方向运动答案:B解析:带电液滴刚好做匀速圆周运动,应满足mg=qE,电场力向上,与场强方向相反,液滴带负电,可得比荷为qm=gE,A错误,B正确;由左手定则可判断,只有液滴沿顺时针方向运动,受到的洛伦兹力才指向圆心,D错误;由向心力公式可得q v B=m v2R,联立可得液滴的速度大小为v=gBRE,C错误.4.(多选)空间内存在电场强度大小E=100 V/m、方向水平向左的匀强电场和磁感应强度大小B1=100 T、方向垂直纸面向里的匀强磁场(图中均未画出).一质量m=0.1 kg、带电荷量q=+0.01 C的小球从O点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A点离OB最远且与OB的距离为l,重力加速度g取10 m/s2.下列说法正确的是()A.在运动过程中,小球的机械能守恒B.小球经过A点时的速度最大C.小球经过B点时的速度为0D.l=25m答案:BCD解析:由于电场力做功,故小球的机械能不守恒,A项错误;重力和电场力的合力大小为(qE)2+(mg)2=2N,方向与竖直方向的夹角为45°斜向左下方,小球由O点到A点,重力和电场力的合力做的功最多,在A点时的动能最大,速度最大,B项正确;小球做周期性运动,在B点时的速度为0,C项正确;对小球由O点到A点的过程,由动能定理得2mgl=12m v2,沿OB方向建立x轴,垂直OB方向建立y轴,在x方向上由动量定理得q v y B1Δt=mΔv,累积求和,则有qB1l=m v,解得l=25m,D项正确.5.(多选)如图所示,平面直角坐标系的第二象限内(称为区域Ⅰ)存在水平向左的匀强电场和垂直纸面向里的匀强磁场B1,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x轴负方向成37°角.在y轴与MN之间的区域Ⅱ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅲ内存在宽度为d的竖直向上匀强电场和垂直纸面向里的匀强磁场B2,小球在区域Ⅲ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,则下列结论正确的是()A .区域Ⅲ内匀强电场的场强大小E 3=mgqB .区域Ⅲ内匀强磁场的磁感应强度大小B 2=m v 0qdC.小球从A 到O 的过程中做匀速直线运动,从O 到C 的过程中做匀加速直线运动 D .区域Ⅱ内匀强电场的最小场强大小为E 2=4mg5q ,方向与x 轴正方向成53°角向上答案:ACD解析:小球在区域Ⅲ内做匀速圆周运动,有mg =qE 3,解得E 3=mgq ,A 项正确;因为小球恰好不从右边界穿出,小球运动轨迹如图所示,由几何关系得d =r +r sin 37°=85 r ,由洛伦兹力提供向心力得B 2q ×2v 0=m (2v 0)2r,解得B 2=16m v 05qd ,B 项错误;带电小球在第二象限内受重力、电场力和洛伦兹力做直线运动,三力满足如图所示关系所以小球从A 到O 的过程只能做匀速直线运动.区域Ⅱ中从O 到C 的过程,小球做直线运动电场强度最小,受力如图所示(电场力方向与速度方向垂直)所以小球做匀加速直线运动,由图知cos 37°=qE 2mg ,解得E 2=4mg5q ,方向与x 轴正方向成53°角向上,C 、D 两项正确.6.如图所示,一质量为m 、电荷量为q 的带正电小球(视为质点)套在长度为L 、倾角为θ的固定绝缘光滑直杆OP 上,P 端下方存在正交的匀强电场和匀强磁场,电场方向沿PO 方向,磁场方向垂直纸面水平向里.现将小球从O 端由静止释放,小球滑离直杆后沿直线运动,到达Q 点时立即撤去磁场,最终小球垂直打到水平地面上,重力加速度大小为g ,不计空气阻力.求:(1)电场的电场强度大小E 以及磁场的磁感应强度大小B ; (2)Q 点距离地面的高度h .答案:(1)mg sin θq ,mg cos θq 2gL sin θ(2)(sin θ+1sin θ)L 解析:(1)小球滑离直杆后进入叠加场,在叠加场内的受力情况如图所示,小球做匀速直线运动,根据几何关系有sin θ=Eqmg ,cos θ=q v B mg小球在直杆上时有L =v 22g sin θ解得E =mg sin θq ,B =mg cos θq 2gL sin θ(2)根据题意可知,当磁场撤去后,小球受重力和电场力作用,且合力的方向与速度方向垂直,小球做类平抛运动,水平方向有Eq cos θ=ma xv x =v cos θ-a x t竖直方向有mg -Eq sin θ=ma y h =v sin θ·t +12a y t 2当小球落到地面时,v x =0, 即v x =v cos θ-a x t =0 解得t =m vEqh =(sin θ+1sin θ)L7.[2024·湖北省鄂东南教育教学改革联盟联考]如图所示,在竖直平面内的直角坐标系xOy 中,y 轴竖直,第一象限内有竖直向上的匀强电场E 1、垂直于xOy 平面向里的匀强磁场B 1=4 T ;第二象限内有平行于xOy 平面且方向可以调节的匀强电场E 2;第三、四象限内有垂直于纸面向外的匀强磁场B 2=1063 T .x 、y 轴上有A 、B 两点,OA =(2+3 ) m ,OB=1 m .现有一质量m =4×10-3 kg ,电荷量q =10-3 C 的带正电小球,从A 点以速度v 0垂直x 轴进入第一象限,做匀速圆周运动且从B 点离开第一象限.小球进入第二象限后沿直线运动到C 点,然后由C 点进入第三象限.已知重力加速度为g =10 m/s 2,不计空气阻力.求:(1)第一象限内电场的电场强度E 1与小球初速度v 0的大小;(2)第二象限内电场强度E 2的最小值和E 2取最小值时小球运动到C 点的速度v C ; (3)在第(2)问的情况下,小球在离开第三象限前的最大速度v m . 答案:(1)40 N/C 2 m/s (2)20 N/C 26 m/s (3)46 m/s ,方向水平向左解析:(1)小球由A 点进入第一象限后,所受电场力与重力平衡 E 1q =mg 解得E 1=40 N/C 由几何关系得r +r 2-OB 2 =OA解得r =2 m小球做匀速圆周运动,洛伦兹力提供向心力,则有q v 0B 1=m v 20r解得v 0=2 m/s(2)由几何关系得:BC 与竖直方向夹角为θ=30°小球由B 到C 做直线运动,则电场力与重力的合力与v B 均沿BC 方向,当电场力与BC 垂直时,电场力有最小值qE 2min =mg sin θ解得E 2min =20 N/C 对小球有mg cos θ=ma 根据几何关系x BC =OB cos θ =233 m 根据速度位移关系式v 2C -v 20 =2ax BC代入数据得a =53 m/s 2 v C =26 m/s(3)小球进入第三象限后,在重力、洛伦兹力作用下做变加速曲线运动,把初速度v C 分解为v 1和v 2,其中v 1满足Bq v 1=mg解得v 1=mgB 2q =26 m/s方向水平向左 则v 2=26 m/s方向与x 轴正方向夹角为60°小球的实际运动可以分解为运动一:速度为v1=26m/s,水平向左,合力为B2q v1-mg=0的匀速直线运动.运动二:速度为v2=26m/s,顺时针旋转,合力为F洛=B2q v2的匀速圆周运动.当v1和v2的方向相同时合运动的速度最大,最大速度v m=v1+v2=46m/s 方向水平向左.。
带电粒子在复合场中的运动(限时:60分钟)1.如图1所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应强度为B ,方向垂直xOy 平面向里,电场线平行于y 轴,一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,M 、N 之间的距离为L ,小球过M 点时的速度方向与x 轴的方向夹角为θ,不计空气阻力,重力加速度为g ,求:图1(1)电场强度E 的大小和方向;(2)小球从A 点抛出时初速度v 0的大小;(3)小球从A 点运动到N 点的时间t.答案(1)mgq ,方向竖直向上(2)qBL 2mtan θ(3)qBL 2mg +2m θqB解析(1)小球在电场、磁场中恰能做匀速圆周运动,有:qE =mg ,则E =mgq ,电场强度方向竖直向上.(2)小球做匀速圆周运动,设半径为r ,由几何关系知:sin θ=L2r设小球做圆周运动的速率为v ,有:qvB =m v2r由速度的合成与分解得:cos θ=v 0v得:v 0=qBL2mtan θ.(3)设小球到M 点的竖直分速度为v y ,v y =v 0tan θ=gt 1t 1=qBL2mg在磁场中运动时间为:t 2=2θ2π·2πm qB =2m θqB运动总时间为:t =t 1+t 2=qBL 2mg +2m θqB .2.如图2,水平地面上方有一底部带有小孔的绝缘弹性竖直挡板,板高h =9 m ,与板上端等高处水平线上有一P点,P 点离挡板的距离x =3 m .板的左侧以及板上端与P 点的连线上方存在匀强磁场和匀强电场.磁场方向垂直纸面向里,磁感应强度B=1 T;比荷大小qm=1.0 C/kg可视为质点的小球从挡板下端处小孔以不同的速度水平射入场中做匀速圆周运动,若与挡板相碰就以原速率弹回,且碰撞时间不计,碰撞时电量不变,小球最后都能经过位置P,g=10 m/s2,求:图2(1)电场强度的大小与方向;(2)小球不与挡板相碰运动到P的时间;(3)要使小球运动到P点时间最长应以多大的速度射入.答案(1)10 N/C,方向竖直向下(2)π+arcsin 35 (s)(3)3.75 m/s解析(1)由题意可知,小球带负电,因小球做匀速圆周运动,有:Eq=mg得:E=mgq=10 N/C,方向竖直向下(2)小球不与挡板相碰直接到达P点轨迹如图:有:(h-R)2+x2=R2得:R=5 m设PO与挡板的夹角为θ,则sin θ=xR=35小球做圆周运动的周期T=2πm qB设小球做圆周运动所经过圆弧的圆心角为α,则t=αm qB运动时间t=π+arcsin35qB=π+arcsin35(s).(3)因速度方向与半径垂直,圆心必在挡板上,设小球与挡板碰撞n次,有R≤h 2n又R≥x,n只能取0,1.n=0时,(2)问不符合题意n=1时,有(3R-h)2+x2=R2解得:R1=3 m,R2=3.75 m轨迹如图,半径为R2时运动时间最长洛伦兹力提供向心力:qvB =m v 2R 2得:v =3.75 m/s. 3.如图3甲所示,水平直线MN 上方有竖直向下的匀强电场,场强大小E =π×103N/C ,MN 下方有垂直于纸面的磁场,磁感应强度B 随时间t 按如图乙所示规律做周期性变化,规定垂直纸面向外为磁场正方向.T =0时将一重力不计、比荷q m=106 C/kg 的正点电荷从电场中的O 点由静止释放,在t 1=1×10-5 s 时恰通过MN 上的P 点进入磁场,P 点左方d =105 cm 处有一垂直于MN 且足够大的挡板.图3求:(1)电荷从P 点进入磁场时速度的大小v 0;(2)电荷在t 2=4×10-5 s 时与P 点的距离Δx ;(3)电荷从O 点出发运动到挡板所需时间t 总.答案(1)π×104 m/s (2)20 2 cm (3)1.42×10-4 s 解析(1)电荷在电场中做匀加速直线运动,则Eq =mav 0=at 1解得v 0=Eqt 1m=π×103×106×1×10-5 m/s =π×104 m/s (2)电荷在磁场中做匀速圆周运动,洛伦兹力提供向心力qvB =m v 2r ,r =mv Bq当B 1=π20 T 时,半径r 1=mv 0B 1q=0.2 m =20 cm 周期T 1=2πm B 1q =4×10-5 s当B2=π10T时,半径r2=mv0B2q=0.1 m=10 cm周期T2=2πmB2q=2×10-5 s故电荷从t=0时刻开始做周期性运动,其运动轨迹如图所示.在t=0到t2=4×10-5 s时间内,电荷先沿直线OP运动t1,再沿大圆轨迹运动T14,紧接着沿小圆轨迹运动T2,t2=4×10-5 s时电荷与P点的距离Δx=2r1=20 2 cm(3)电荷从P点开始的运动周期T=6×10-5 s,且在每一个周期内向左沿PM移动x1=2r1=40 cm,电荷到达挡板前经历了2个完整周期,沿PM运动距离x=2x1=80 cm,设电荷撞击挡板前速度方向与水平方向成θ角,最后d-x=25 cm内的轨迹如图所示.据几何关系有r1+r2sin θ=0.25 m解得sin θ=0.5,即θ=30°则电荷从O点出发运动到挡板所需总时间t总=t1+2T+T14+θ360°T2解得t总=856×10-5s≈1.42×10-4 s.4.如图4所示的直角坐标xOy平面内有间距为d,长度为233d的平行正对金属板M、N,M位于x轴上,OP为过坐标原点O和极板N右边缘的直线,与y轴的夹角θ=π3,OP与y轴之间及y轴右侧空间中分别存在磁感应强度大小相等方向相反且均垂直于坐标平面的匀强磁场.质量为m、电荷量为q的带正电粒子从M板左侧边缘以速度v0沿极板方向射入,恰好从N板的右侧边缘A点射出进入磁场.粒子第一次通过y轴时,速度与y轴负方向的夹角为π6.不计粒子重力,求:图4(1)极板M 、N 间的电压;(2)匀强磁场磁感应强度的大小;(3)粒子第二次通过y 轴时的纵坐标值;(4)粒子从进入板间到第二次通过y 轴时经历的时间.答案(1)3mv 202q (2)2mv 0qd (3)2d (4)(43+7π6)d v 0解析(1)粒子在M 、N 板间做类平抛运动,设加速度为a ,运动时间为t 1,则233d =v 0t 1d =12at 21根据牛顿运动定律得q Ud =ma联立解得U =3mv 22q .(2)设粒子经过A 点时的速度为v ,方向与x 轴的夹角为α,根据动能定理,得qU =12mv 2-12mv 2cos α=v 0v解得v =2v 0,α=π3设粒子第一次与y 轴相交于D 点,轨迹如图,由几何关系知D 点与A 点高度相等,△C1DO 为等边三角形.R =d根据牛顿定律,得qvB =m v2R整理得B =2mv 0qd .(3)粒子在y 轴右侧空间的运动轨迹如图.由几何关系知DE =2Rcos θ=d即E 点的纵坐标为y E =2d.(4)粒子从A 到D 的时间t 2=13T从D到E的时间t3=5 6 T而T=2πmqB=πdv0故t=t1+t2+t3=(43+7π6)dv0.【必考模型4】带电粒子在组合场中的运动1.模型特点:电场、磁场同时存在,但空间位置不同.2.表现形式:在电场中做匀加速直线运动,在有界磁场中做匀速圆周运动在电场中做类平抛运动,在有界磁场中做匀速圆周运动.,3.应对模式:这类问题实质是类平抛运动、直线运动和圆周运动组成的多过程问题,要善于把多过程分解,逐个击破.对于在电场中的加速和类平抛运动,要能熟练应用力和运动的方法以及功和能的方法求解.对于粒子在磁场中的圆周运动,关键是找圆心画出运动轨迹,并结合几何知识,求出半径或运动的时间.。
高考物理二轮复习热点训练解析—带电粒子在复合场中的运动1.(2021·广东潮州市第一次教学质检)如图1所示,在坐标系xOy 的第四象限存在宽度为d 的匀强磁场,磁场方向垂直于xOy 平面向外;第一象限内有沿y 轴负方向的匀强电场。
一带电荷量为q (q >0)、质量为m 的粒子以速率v 0自y 轴的A 点沿x 轴正方向射入电场,经x 轴上的F 点射入磁场。
已知OA =l ,粒子经过F 点时与x 轴正方向的夹角θ=60°,忽略粒子的重力。
问:图1(1)OF 的长度L OF ;(2)若粒子恰不能从下边界飞出磁场,求匀强磁场磁感应强度B 的大小。
答案(1)233l (2)3m v 02qd解析(1)粒子在电场中做类平抛运动,根据平抛运动的推论可知,在F 点的速度方向的反向延长线经过水平位移的中点,可知tan 60°=l 12L OF ,解得L OF =233l 。
(2)粒子恰不能从下边界飞出磁场,则由几何关系可知d =r +r cos 60°解得r =23d 根据q v 0B =m v 20r ,解得B =3m v 02qd。
2.(2021·山西晋中市适应性调研)如图2所示,静止于A 处的离子,经电压为U的加速电场加速后,沿图中圆弧虚线通过14圆弧形静电分析器,从P 点沿半径方向进入半径为R 的圆形区域,该区域内有垂直纸面向里的匀强磁场。
静电分析器通道内有均匀辐向分布的电场,圆弧虚线所在处场强大小为E 0,方向如图所示;离子的质量为m 、电荷量为q;不计离子重力,求:图2(1)离子进入圆形区域时的速度大小v ;(2)圆弧虚线对应的半径R 0的大小;(3)若离子经过圆形区域后速度方向偏转一角度θ(θ已知),则圆形区域内磁场的磁感应强度B 的大小;(4)撤去圆形区域内的匀强磁场,在该圆形区域内加水平向右的匀强电场,为使离子穿过电场前后动量变化量大小与射入电场前的初动量大小相同,求此时圆形区域内匀强电场的电场强度E 的大小。
一、带电粒子在复合场中的运动专项训练1.如图所示,在 xOy 坐标平面的第一象限内有一沿 y 轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m 、电量为+q 的粒子(重力不计)从坐标原点 O 射入磁场,其入射方向与x 的正方向成 45°角.当粒子运动到电场中坐标为(3L ,L )的 P 点处时速度大小为 v 0,方向与 x 轴正方向相同.求: (1)粒子从 O 点射入磁场时的速度 v ;(2)匀强电场的场强 E 0 和匀强磁场的磁感应强度 B 0. (3)粒子从 O 点运动到 P 点所用的时间.【来源】海南省海口市海南中学2018-2019学年高三第十次月考物理试题 【答案】(1)02v;(2)02mv Lq;(3)0(8)4L v π+【解析】 【详解】解:(1)若粒子第一次在电场中到达最高点P ,则其运动轨迹如图所示,粒子在 O 点时的速度大小为v ,OQ 段为圆周,QP 段为抛物线,根据对称性可知,粒子在Q 点时的速度大小也为v ,方向与x 轴正方向成45︒角,可得:045v vcos =︒ 解得:02v v =(2)在粒子从Q 运动到P 的过程中,由动能定理得:2201122qEL mv mv -=-解得:202mv E qL=又在匀强电场由Q 到P 的过程中,水平方向的位移为:01x v t = 竖直方向的位移为:012v y t L == 可得:2QP x L =,OQ L =由2cos 45OQ R =︒,故粒子在OQ 段圆周运动的半径:22R L = 及mv R qB = 解得:02mvB qL=(3)在Q 点时,0045y v v tan v =︒=设粒子从由Q 到P 所用时间为1t ,在竖直方向上有:10022L L t v v ==粒子从O 点运动到Q 所用的时间为:204Lt v π=则粒子从O 点运动到P 点所用的时间为:t 总120002(8)44L L L t t v v v ππ+=+=+=2.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
2022届高考物理二轮复习专题突破:专题三十四带电粒子在复合场中的运动一、单选题1.(2分)如图所示,在匀强电场和匀强磁场共存的区域内,电场的场强为E,方向竖直向下,磁场的磁感应强度为B,方向垂直于纸面向里,一质量为m的带电粒子,在场区内的一竖直平面内做匀速圆周运动,则可判断该带电质点()A.带有电荷量为mgE的正电荷B.沿圆周逆时针运动C.运动的周期为2πEgB D.带电粒子机械能守恒2.(2分)如图所示,ACB为固定的光滑半圆形轨道,轨道半径为R,A、B为水平直径的两个端点,AC为1/4 圆弧,MPQO为竖直向下的有界匀强电场(边界上有电场),电场强度的大小E=2mgq.一个质量为m,电荷量为-q的带电小球,从A点正上方高为H处由静止释放,并从A点沿切线进入半圆轨道,小球运动过程中电量不变,不计空气阻力,已知重力加速度为g.关于带电小球的运动情况,下列说法正确的是()A.若H=R,则小球刚好沿轨道到达C点B.若H>R,则小球一定能到达B点C.若小球到达C点时对轨道压力为6mg,则D.若H=3R,则小球到达C点时对轨道压力为5mg3.(2分)如图所示,三个完全相同的半圆形光滑轨道竖直放置,分别处在真空、匀强磁场和匀强电场中,轨道两端在同一高度上,三个相同的带正电小球同时从轨道左端最高点由静止开始沿轨道运动,P、M、N分别为轨道的最低点,如图所示,则下列有关判断正确的是()A.小球第一次到达轨道最低点的速度关系v p=v M>v NB.小球第一次到达轨道最低点时对轨道的压力关系F P=F M>F NC.小球从开始运动到第一次到达轨道最低点所用的时间关系t P<t M<t ND.三个小球到达轨道右端的高度都不相同,但都能回到原来的出发点位置二、多选题4.(3分)如图所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场。
在该区域中,有一个竖直放置的光滑绝缘固定圆环,环上套有一个带正电的小球。
一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-4.如图为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D 分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM =d .现有一正离子束以小发散角(纸面内)从C 射出,这些离子在CM方向上的分速度均为v0.若该离子束中比荷为q m的离子都能汇聚到D,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);(2)离子沿与CM成θ角的直线CN进入磁场,其轨道半径和在磁场中的运动时间;(3)线段CM的长度.【来源】电粒子在磁场中的运动【答案】(1)0mvBqd=,磁场方向垂直纸面向外;(2)cosdRθ'=,()2t dvθα+=;(3)cosCM d tα=。
高三物理二轮复习专题4 第3讲带电粒子在复合场中的运动检测试题一、选择题(1~6题只有一个选项正确,7~10小题有多个选项正确)1.(2014·洛阳模拟)如图所示,在真空中,匀强电场E的方向竖直向下,水平匀强磁场B垂直纸面向里,三个油滴a、b、c带有等量同种电荷。
已知a静止,油滴b水平向右匀速运动,油滴c水平向左匀速运动。
三者质量m a、m b和m c相比较( )A.m a>m b>m c B.m b>m a>m cC.m c>m a>m b D.m a=m b=m c[答案] C[解析] 根据油滴a静止,可知油滴所受电场力竖直向上,油滴带负电,qE=m a g。
油滴b水平向右匀速运动,所受洛伦兹力竖直向下,由qE =m b g+qv b B可知油滴b质量小于油滴a。
油滴c水平向左匀速运动,所受洛伦兹力竖直向上,由qE=m c g-qv c B可知油滴c质量大于油滴a。
所以m c>m a>m b,选项C正确。
2.(2014·信息卷)电荷量为+q、质量为m的滑块和电荷量为-q、质量为m的滑块同时从完全相同的光滑斜面上由静止开始下滑,设斜面足够长,斜面倾角为θ,在斜面上加如图所示的磁感应强度大小为B、方向垂直纸面向里的匀强磁场,关于滑块下滑过程中的运动和受力情况,下面说法中不正确的是(不计两滑块间的相互作用)( )A.两个滑块先都做匀加速直线运动,经过一段时间,+q会离开斜面B.两个滑块先都做匀加速直线运动,经过一段时间,-q会离开斜面C.当其中一个滑块刚好离开斜面时,另一滑块对斜面的压力为2mg cosθD.两滑块运动过程中,机械能均守恒[答案] B[解析] 当滑块开始沿斜面向下运动时,带正电的滑块受的洛伦兹力方向垂直斜面向上,带负电的滑块受的洛伦兹力方向垂直斜面向下,开始时两滑块沿斜面方向所受的力均为mg sinθ,均做匀加速直线运动,随着速度的增加,正电荷受的洛伦兹力逐渐变大,当qvB =mg cosθ时,+q恰能离开斜面,A正确,B错误;由于两滑块加速度相同,所以在+q离开斜面前两者在斜面上运动的速度总相同,当+q离开斜面时,-q受的洛伦兹力也满足qvB=mg cos θ,方向垂直斜面向下,斜面对滑块的支持力大小为qvB +mg cos θ=2mg cos θ,故滑块对斜面的压力为2mg cos θ,C 正确;由于洛伦兹力不做功,D 正确。
3.(2014·原创题)如图所示,相距为d 的平行金属板M 、N 的上方有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 、方向垂直纸面向里。
质量为m 、电荷量为q 的带正电粒子紧靠M 板的P 处由静止释放,粒子经N 板的小孔S 沿半径SO 方向射入磁场,离开磁场时速度方向偏离入射方向60°,粒子重力不计,则平行金属板间匀强电场的电场强度大小为( )A .B 2R 2q 2mdB .3B 2R 2q 2mdC .3B 2R 2q mdD .3B 2R 2q 2md [答案] B[解析] 粒子在圆形磁场中运动的轨迹如图所示,则粒子做圆周运动的半径为r =3R ,由Bqv =m v 2r ,qU =12mv 2,E =U d ,联立得E =3B 2R 2q 2md,B 正确。
4.(2014·浙江名校模拟)质量为m ,电荷量为q 的微粒以速度v 与水平方向成θ角从O 点进入方向如图所示的正交的匀强电场和匀强磁场组成的混合场区,该微粒在电场力、洛伦兹力和重力的共同作用下,恰好沿直线运动到A ,下列说法中正确的是( )A .该微粒一定带负电荷B .微粒从O 到A 的运动可能是匀变速运动C .该磁场的磁感应强度大小为mg cos θqv D .该电场的场强为Bv cos θ[答案] A[解析] 若微粒带正电q ,它受竖直向下的重力mg 、向左的电场力qE 和右斜向下的洛伦兹力qvB ,知微粒不能做直线运动。
据此可知微粒应带负电q ,它受竖直向下的重力mg 、向右的电场力qE 和左斜向上的洛伦兹力qvB ,又知微粒恰好沿着直线运动到A ,可知微粒应该做匀速直线运动,则选项A 正确,B 错误;由平衡条件有关系:cos θ=mg qvB ,sin θ=qE Bqv ,得磁场的磁感应强度B =mgqv cos θ,电场的场强E =Bv sin θ,故选项CD 错误。
5.(2014·乌鲁木齐模拟)如图所示,某一真空室内充满竖直向下的匀强电场E ,在竖直平面内建立坐标系xOy ,在y <0的空间里有与场强E 垂直的匀强磁场B ,在y >O 的空间内,将一带电液滴(可视为质点)自由释放,此液滴则沿y 轴的负方向,以加速度a =2g (g 为重力加速度)做匀加速直线运动,当液滴运动到坐标原点时,被安置在原点的一个装置瞬间改变了带电性质(液滴所带电荷量和质量均不变),随后液滴进入y <0的空间运动。
液滴在y <0的空间内的运动过程中( )A .重力势能一定不断减小B .电势能一定先减小后增大C .动能不断增大D .动能保持不变 [答案] D[解析] 本题考查带电粒子在混合场中的运动,功能关系,电势能,意在考查考生对复合场问题的理解和综合分析能力。
带电粒子在电场与重力场作用下,由牛顿第二定律可得:qE +mg =ma =m ·2g ,故qE =mg ,当带电粒子进入磁场时,由于电场力与重力方向相反,处于平衡,而洛伦兹力提供向心力,做匀速圆周运动,所以重力势能先减小后增大,故A 错误;由于电场力先做负功后做正功,所以电势能先增大后减小,故B 错误;由于做匀速圆周运动,则速度的大小不变,则动能不变,故C 错误,D 正确。
6.如图所示,在xOy 直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y 轴负方向的匀强电场。
初速度为零、带电荷量为q 、质量为m 的粒子经过电压为U 的电场加速后,从x 轴上的A 点垂直x 轴进入磁场区域,重力不计,经磁场偏转后过y 轴上的P 点且垂直于y 轴进入电场区域,在电场中偏转并击中x 轴上的C 点。
已知OA =OC =d 。
则磁感应强度B 和电场强度E 可表示为( )A .B =2qUm qd ,E =2U d B .B =2qUm qd ,E =4U d C .B =qUm qd ,E =2U d D .B =qUm qd ,E =4U d[答案] B[解析] 设带电粒子经电压为U 的电场加速后速度为v ,则qU =12mv 2;带电粒子进入磁场后,洛伦兹力提供向心力,qBv =mv 2r ,依题意可知r =d ,联立可解得B =2qUm qd,带电粒子在电场中偏转,做类平抛运动,设经时间t 从P 点到达C 点,由d =vt ,d =12 qE mt 2,联立可解得E =4U d。
故B 对。
7.(2014·山西太原一模)如图所示,带等量异种电荷的平行金属板a 、b 处于匀强磁场中,磁场方向垂直纸面向里。
不计重力的带电粒子沿OO ′方向从左侧垂直于电磁场入射,从右侧射出a 、b 板间区域时动能比入射时小;要使粒子射出a 、b 板间区域时的动能比入射时大,可采用的措施是( )A .适当减小两金属板的正对面积B .适当增大两金属板间的距离C .适当减小匀强磁场的磁感应强度D .使带电粒子的电性相反[答案] AC[解析] 在这个复合场中,动能逐渐减小,说明电场力做负功,因洛伦兹力不做功,则电场力小于洛伦兹力。
当减小正对面积,场强E =4πkQ εr S,S ↓,Q 不变,E ↑,电场力变大,当电场力大于洛伦兹力时,粒子向电场力方向偏转,电场力做正功,射出时动能变大,A 项正确。
当增大两板间距离时,场强不变,所以B 项错误。
当减小磁感应强度时洛伦兹力减小,可能小于电场力,所以C 项正确。
当改变粒子电性时,其所受电场力、洛伦兹力大小不变,方向均反向,所以射出时动能仍然减小,故D 项错误。
8.(2014·河南六市一联考)如图所示,两个半径相同的半圆形光滑轨道置于竖直平面内,左右两端等高,分别处于沿水平方向的匀强磁场和匀强电场中。
两个相同的带正电小球a 、b 同时从两轨道左端最高点由静止释放,M 、N 为轨道最低点,则下列说法中正确的是( )A .两个小球到达轨道最低点的速度v M <v NB .两个小球第一次经过轨道最低点时对轨道的压力F M >F NC .磁场中a 小球能到达轨道另一端最高处,电场中b 小球不能到达轨道另一端最高处D .a 小球第一次到达M 点的时间大于b 小球第一次到达N 点的时间 [答案] BC[解析] 根据动能定理,对a 球,mgR =12mv 2M -0,对b 球,mgR -EqR =12mv 2N -0,可得v M >v N ,所以a 球第一次到达M 点的时间小于b 球第一次到达N 点的时间,所以A 、D 两项均错。
由F -mg =m v 2R,可知F M >F N ,所以B 项正确;根据能量守恒,洛伦兹力不做功,a 球的机械能守恒,故能到达另一端最高处,电场力做负功,b 小球机械能减少,故不能到达轨道另一端最高处,所以C 项正确。
9.(2014·哈尔滨三中模拟)如图所示,MN 是纸面内的一条直线,其所在空间只充满与纸面平行的匀强电场或只充满与纸面垂直的匀强磁场的单一场区(场区都足够大),现有一重力不计的带电粒子从MN 上的O 点以水平初速度v 0沿纸面射入场区,下列判断正确的是( )A .如果粒子回到MN 上时速率不变,则该空间存在的一定是磁场B .如果粒子回到MN 上时速率增大,则该空间存在的一定是电场C .若只增大水平初速度v 0,发现粒子再回到MN 上时速度方向与增大前相同,则该空间存在的一定是磁场D .若只增大水平初速度v 0,发现粒子再回到MN 所用的时间发生变化,则该空间存在的一定是电场[答案] BD[解析] 若空间存在的是电场,等势面沿MN ,则粒子回到MN 上时,由动能定理得速率不变,A 错;设空间中存在磁场,洛伦兹力永不做功,速度不可能增大,B 对;若只增大水平初速度v 0,粒子再回到MN 上,若空间存在的是磁场,粒子做圆周运动的圆心角不变,而周期与粒子速度大小无关,由公式t =α2π·T 得时间不变,所以该空间存在的一定是电场。
10.(2014·豫东、豫北名校模拟)如图所示,在x 轴的上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴的下方等腰三角形CDM 区域内有垂直于xOy 平面由内向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a ,θ=45°。