风道计算法
- 格式:xls
- 大小:520.00 KB
- 文档页数:50
建筑物通风道面积计算方法及一般估算值通风道面积计算公式:S=L/3600*V(m2)式中:S——通风道面积(m2)L——通风量(m3/h)V——风道内风速(m/s)厨房通风:厨房的通风换气次数为40次/h,按厨房面积为6m2,层高2900mm计算,则通风量为696 m3/h,取风道内风速为8~10 m/s,则每个厨房的风道面积为0.02~0.024 m2。
卫生间通风:卫生间的通风换气次数为15次/h,按卫生间面积为6m2,层高2900mm计算,则通风量为261 m3/h,取风道内风速为8~10 m/s,则每个卫生间的风道面积为0.008~0.009 m2。
内走廊排烟:按规范要求,内走廊的排烟量按60 m3/h m2计算,但是不能小于7200 m3/h。
例如按10000 m3/h计算,取风道内风速为13 m/s,则内走廊排烟风道的面积为0.214 m2。
中庭排烟:按规范要求,中庭体积大于17000 m3时的最小排烟量为102000 m3/h,取风道内风速为13 m/s,则中庭的排烟风道的面积为2. 18 m2。
中庭体积小于17000 m3时的排烟量按6次/h换气计算。
由于建筑形式的特点,一般中庭都采用风机直接排烟的方式,而不采用排烟道。
正压送风:根据规范的要求,正压送风共有四种方式,下面分别列举:(风道内风速均取13 m/s)1.防烟楼梯间(前室不送风)的加压送风量:<20层:送风量25000~30000 m3/h,风道面积为0.54~0.64 m2。
20~32层:送风量35000~40000 m3/h,风道面积为0.75~0.86 m2。
2.防烟楼梯间及其合用前室的分别加压送风量:<20层:楼梯间:送风量16000~20000 m3/h,风道面积为0.342~0.43 m2。
合用前室:送风量12000~16000 m3/h,风道面积为0.26~0.342 m2。
20~32层:楼梯间:送风量20000~25000 m3/h,风道面积为0.43~0.54 m2。
风量风压风速的计算方法一、测定点位置的选择:通风管道内风速及风量的测定,是通过测量压力再换算取得的。
要得到管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面,减少气流扰动对测量结果的影响,也很重要。
测量断面应选择在气流平稳的直管段上。
由于速度分布的不均匀性,压力分布也是不均匀的,因此必须在同一断面上多点测量,然后求出平均值。
圆形风道在同一断面设两个互相垂直的测孔,并将管道断面分成一定数量的等面积同心环。
矩形风道可将风道断面分成若干等面积的小矩形,测点布置在每个小矩形的中心。
二、风道内压力的测定。
测试中需测定气体的静压、动压和全压。
测全压的孔应迎着气流的方向,测静压的孔应垂直于气流的方向,全压和静压之差即为动压。
气体压力的测量通常是用插入风道中的测压管将压力信号取出,常用的仪器是皮托管和压力计。
标准皮托管是一个弯成90°的双层同心圆管。
压力计有U形压力计和倾斜式微型压力计。
皮托管和压力计相配合测出压力。
三、风速的测定。
常用的测定管道内风速的方法有间接式和直读式。
间接式先测得管内某点动压,再算出该点风速。
此法虽然繁琐,由于精度高,在通风测试系统中得到广泛应用。
直读式测速仪是热球式热电风速仪,测头会受到周围空气流速的影响,根据温升的大小即可测出气流的速度。
四、局部吸排风口风速的测定:1,匀速移动法:使用叶轮式风速仪,沿风口断面匀速移动,测得风口平均风速。
2,定点测定法:使用热球式热电风速仪,按风口断面大小,分成若干面积相等的小方块,在小方块的中心测定风速,取其平均值。
五、局部吸排风口风量的测定:1,用动压法测定断面动压,计算出风速,算出风量。
2,用动压法不易找到稳定的测压断面时,使用静压法求得风量。
风管,是用于空气输送和分布的管道系统。
有复合风管和无机风管两种。
风管可按截面形状和材质分类。
中央空调风口是中央空调系统中用于送风和回风的末端设备,是一种空气分配设备。
送风口将制冷或者加热后的空气送到室内,而回风口则将室内污浊的空气吸回去,两者形成一整个空气循环,在保证室内制冷采暖效果的同时,也保证了室内空气的制冷及舒适度。
风口的大小取决于室内机容量的大小,如果出风口过大,风管过长,则气流速度就会下降,从而影响空调使用效果;如果出风口选择过小,则气流速度会变大,从而导致风直吹人体上引起的不适感,还有可能导致噪音过大。
1、风管内的风速:一般空调房间对空调系统的限定的噪音允许值控制在40 ~50dB(A)之间,即相应NR(或NC)数为35 ~ 45dB(A)。
根据设计规范,满足这一范围内噪音允许值的主管风速为4 ~ 7m/s,支管风速为2 ~ 3m/s。
通风机与消声装置之间的风管,其风速可采用8 ~10m/s。
2、出风口尺寸的计算:为防止风口噪音,送风口的出风风速宜采用2 ~ 5m/s。
风口的尺寸计算与风管道尺寸的计算基本相同,一般当层高在3 ~ 4米的房间大约取风速在2 ~ 2.5m/s。
3、回风口的吸风速度:回风口位于房间上部时,吸风速度取4 ~ 5m/s,回风口位于房间下部时,若不靠近人员经常停留的地点,取3 ~ 4m/s,若靠近人员经常停留的地点,取1.5 ~2m/s,若用于走廊回风时,取1 ~1.5m/s。
4、风管安装注意事项及风管计算:在风管设计尽量小的情况下保证主管风速5m/s,支管风速3m/s。
(1)风管计算公式:所选设备风量÷3600÷风速=风管截面积;同时注意保证风管:长边÷短边≤4,一般不要>4,特殊情况特殊对待;(2)风口的选择:所选房间风量÷3600÷风速=散流器喉部截面积;注意:双百叶风口截面积为以上公式所得面积÷0.7。
风管表面积计算公式
风管表面积是指风管外部表面的面积,它是计算风道壁面损失的关键因素。
在风道系统设计和计算中,掌握风管表面积的计算方法非常重要。
下面将介绍一下风管表面积的计算公式。
风管表面积的计算公式根据不同的风管形状而有所不同。
一般来说,风管可以分为圆形和矩形两种,下面将分别介绍它们的计算公式。
1. 圆形风管表面积计算公式
对于圆形风管,它的表面积可用以下公式进行计算:
S = πDL
其中,S为表面积,π为圆周率,D为风管直径,L为风管长度。
对于圆柱形风管,它的两端为圆形,中间为矩形,可以将其表面积分为两部分,分别计算出矩形部分和圆形部分的面积,然后相加即可。
2. 矩形风管表面积计算公式
对于矩形风管,它的表面积可用以下公式进行计算:
S = 2ab + 2bc + 2ac
其中,S为表面积,a为风管宽度,b为风管高度,c为风管长度。
需要注意的是,在实际应用中,矩形风管的表面积可能会出现许多不规则的形状,需要计算的表面积也需要分为多个部分进行计算。
此时,可以将其分解为多个基本形状(如矩形、三角形、梯形等)的组合,并计算出其各自的表面积,最后将各部分表面积相加即为总表面积。
总之,风管表面积的计算公式主要是根据其形状的不同而不同。
但无论是什么形状,都需要按照一定的计算方法进行计算,以确保风道系统的设计和计算的准确性。
在实际应用中,可以利用计算软件,或手算公式进行计算,并对结果进行比对和验证,以保障风道系统的正常运行。
风量简易计算公式是什么风量是指单位时间内通过风道或管道的空气量,通常以每小时立方米或每小时立方英尺计算。
在工程领域中,对于通风系统的设计和运行管理来说,准确计算风量是非常重要的。
风量的计算可以帮助工程师确定通风系统的风机功率、管道尺寸和风速等参数,从而保证系统的正常运行和效率。
风量的计算通常可以使用简易计算公式来进行估算,这些公式可以帮助工程师在设计和规划通风系统时快速计算出所需的风量,为后续的详细设计提供参考。
下面将介绍一些常用的风量简易计算公式,并讨论它们的应用和限制。
1. 静压法计算风量。
静压法是一种常用的风量计算方法,它基于风道或管道的静压损失来估算风量。
静压损失是指风道或管道中空气流动时由于摩擦和阻力产生的压力损失,它与风速、管道尺寸和管道长度等因素有关。
根据静压法,可以使用以下公式来计算风量:Q = (P1 P2) / (ρ g)。
其中,Q表示风量,单位为立方米/小时;P1和P2分别表示风道或管道两端的静压,单位为帕斯卡;ρ表示空气密度,单位为千克/立方米;g表示重力加速度,单位为米/秒^2。
静压法计算风量的优点是简单易用,只需测量静压即可得到风量。
但是,它的精度较低,只适用于对风量要求不高的场合。
2. 风速法计算风量。
风速法是另一种常用的风量计算方法,它基于风道或管道中的空气流速来估算风量。
风速与风量之间存在着直接的关系,可以使用以下公式来计算风量:Q = A V。
其中,Q表示风量,单位为立方米/小时;A表示风道或管道的横截面积,单位为平方米;V表示空气流速,单位为米/秒。
风速法计算风量的优点是精度较高,适用于对风量要求较高的场合。
但是,它需要测量风道或管道中的空气流速,因此需要相应的测量设备和技术支持。
3. 综合法计算风量。
综合法是一种结合了静压法和风速法的风量计算方法,它可以在一定程度上弥补两种方法的不足。
综合法的基本思想是通过测量风道或管道两端的静压和空气流速,综合考虑静压损失和风速对风量的影响,从而得到更准确的风量计算结果。
风道设计计算方法与步骤(带例题)一.风道水力计算方法风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。
对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。
1 .假定流速法假定流速法也称为比摩阻法。
这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。
这是低速送风系统目前最常用的一种计算方法。
2 .压损平均法压损平均法也称为当量阻力法。
这种方法以单位管长压力损失相等为前提。
在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。
一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。
该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。
3 .静压复得法静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。
风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。
此方法适用于高速空调系统的水力计算。
二.风道水力计算步骤以假定流速法为例:1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。
2.在计算草图上进行管段编号,并标注管段的长度和风量。
管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。
3.选定系统最不利环路,一般指最远或局部阻力最多的环路。
4.选择合理的空气流速。
风管内的空气流速可按下表确定。
表8-3 空调系统中的空气流速(m/s)5.根据给定风量和选定流速,逐段计算管道断面尺寸,然后根据选定了的风管断面尺寸和风量,计算出风道内实际流速。
风道设计计算的方法与步骤评论(3)浏览(1777)[转帖]2010-7-23 15:03:56§8.3 风道设计计算的方法与步骤一.风道水力计算方法风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。
对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。
1.假定流速法假定流速法也称为比摩阻法。
这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。
这是低速送风系统目前最常用的一种计算方法。
2.压损平均法压损平均法也称为当量阻力法。
这种方法以单位管长压力损失相等为前提。
在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。
一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。
该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。
3.静压复得法静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。
风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。
此方法适用于高速空调系统的水力计算。
<<返回二.风道水力计算步骤以假定流速法为例:1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。
2.在计算草图上进行管段编号,并标注管段的长度和风量。
管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。
3.选定系统最不利环路,一般指最远或局部阻力最多的环路。
风量的计算方法风量是指单位时间内通过风道或通风设备的空气流量。
在工程设计、建筑通风、空调系统等领域,风量的计算是非常重要的。
本文将介绍几种常见的计算风量的方法。
一、静压法计算风量静压法计算风量是一种简单有效的方法。
静压法通过测量风道两端的静压差来计算风量。
首先,需要用静压传感器测量风道两端的静压值,然后根据风道的截面积和气体状态方程,可以计算出风道中的风量。
这种方法适用于直线风道和简单的风道系统。
二、速度法计算风量速度法计算风量是一种常用的方法。
速度法通过测量风道中的空气流速来计算风量。
首先,需要用风速仪等设备测量风道中的平均风速。
然后,根据风道的截面积,可以计算出单位时间内通过风道的空气体积,即风量。
这种方法适用于比较复杂的风道系统和通风设备。
三、风压法计算风量风压法计算风量是一种较为准确的方法。
风压法通过测量风道中的总风压来计算风量。
首先,需要用风压传感器测量风道中的总风压,即静压和动压之和。
然后,根据风道的截面积和气体状态方程,可以计算出单位时间内通过风道的空气体积,即风量。
这种方法适用于复杂的风道系统和气流较大的通风设备。
四、热量法计算风量热量法计算风量是一种间接的方法。
热量法通过测量风道中的温度差来计算风量。
首先,需要用温度传感器测量风道两端的温度差,然后根据风道的截面积、气体的密度和定压比热,可以计算出单位时间内通过风道的空气质量,即风量。
这种方法适用于需要同时考虑温度和风量的情况,如空调系统。
以上是几种常见的计算风量的方法。
不同的方法适用于不同的场景和要求。
在实际应用中,需要根据具体情况选择合适的计算方法,并结合其他因素进行综合分析。
同时,为了保证计算结果的准确性,还需要注意测量设备的选择和校准,以及计算公式的正确使用。
通过合理计算风量,可以为工程设计和设备选择提供依据,确保通风系统的正常运行和舒适性。
中央空调风道风速计算方法与风口选择中央空调风口是中央空调系统中用于送风和回风的末端设备,是一种空气分配设备。
送风口将制冷或者加热后的空气送到室内,而回风口则将室内污浊的空气吸回去,两者形成一整个空气循环,在保证室内制冷采暖效果的同时,也保证了室内空气的制冷及舒适度。
风口的大小取决于室内机容量的大小,如果出风口过大,风管过长,则气流速度就会下降,从而影响空调使用效果;如果出风口选择过小,则气流速度会变大,从而导致风直吹人体上引起的不适感,还有可能导致噪音过大。
1、风管内的风速:一般空调房间对空调系统的限定的噪音允许值控制在40 ~ 50dB(A)之间,即相应NR(或NC)数为35 ~ 45dB(A)。
根据设计规范,满足这一范围内噪音允许值的主管风速为4 ~ 7m/s,支管风速为2 ~ 3m/s。
通风机与消声装置之间的风管,其风速可采用8 ~ 10m/s。
2、出风口尺寸的计算:为防止风口噪音,送风口的出风风速宜采用2 ~ 5m/s。
风口的尺寸计算与风管道尺寸的计算基本相同,一般当层高在3 ~ 4米的房间大约取风速在2 ~2.5m/s。
3、回风口的吸风速度:回风口位于房间上部时,吸风速度取4 ~ 5m/s,回风口位于房间下部时,若不靠近人员经常停留的地点,取3 ~ 4m/s,若靠近人员经常停留的地点,取1.5 ~ 2m/s,若用于走廊回风时,取1 ~ 1.5m/s。
4、风管安装注意事项及风管计算:在风管设计尽量小的情况下保证主管风速5m/s,支管风速3m/s。
(1)风管计算公式:所选设备风量÷3600÷风速=风管截面积;同时注意保证风管:长边÷短边≤4,一般不要>4,特殊情况特殊对待;(2)风口的选择:所选房间风量÷3600÷风速=散流器喉部截面积;注意:双百叶风口截面积为以上公式所得面积÷0.7。
5、计算风管尺寸:(1)等阻尼法(等压法)是一种方便的计算法,适用于多种场合;(2)根据下表确定主风管中的基本阻尼系数:因回风管位于吸风部位,主要承受外部压力,应注意减轻其风管负担。
通风管道的计算方法一、引言通风管道是建筑物中非常重要的设备之一,它能够将新鲜空气输送到室内,排出室内的污浊空气,保持室内空气的流通和清洁。
在设计和安装通风管道时,需要进行一系列的计算,以确保管道的尺寸和布局能够满足通风系统的要求。
本文将介绍通风管道计算的方法和步骤。
二、通风管道的基本参数在进行通风管道计算之前,需要了解以下几个基本参数:1. 风量:通风系统所需输送的空气量,一般以立方米/小时或立方英尺/分钟表示。
2. 风速:空气在管道中的流速,一般以米/秒或英尺/分钟表示。
3. 压力损失:空气在管道中流动时产生的阻力,一般以帕斯卡或英寸水柱表示。
三、通风管道的计算步骤1. 确定风量:根据建筑物的使用性质和人员密度等因素,确定通风系统所需输送的空气量。
一般情况下,可以参考相关标准或规范进行计算。
2. 确定风速:根据通风系统的要求和管道的布局,确定空气在管道中的流速。
一般情况下,风速不宜过高,以免产生噪音和能耗过大。
3. 计算管道尺寸:根据风量和风速,使用通风管道计算公式,计算出管道的尺寸。
通风管道的尺寸通常以直径或截面积表示。
4. 考虑压力损失:根据通风系统中的风机性能和管道的长度、弯曲等特性,计算出压力损失。
压力损失的计算可以使用通风管道压力损失计算公式或相关的计算表格。
5. 考虑风道材料和形状:通风管道可以采用不同的材料,如镀锌钢板、不锈钢、铝合金等。
根据实际需求和经济性考虑,选择合适的材料和管道形状。
6. 确定管道布局:根据建筑物的结构和通风系统的要求,确定通风管道的布局。
管道的布局应尽量简洁,避免过多的弯曲和分支,以减小压力损失和阻力。
四、通风管道的其他考虑因素除了上述基本步骤外,通风管道的设计和计算还需要考虑以下因素:1. 热损失:通风管道在冬季输送暖空气时,可能会发生热损失。
需要根据实际情况,在计算中考虑热损失,并采取相应的保温措施。
2. 声功率:通风系统中的风机会产生噪音,需要合理设计管道布局和选择静音设备,以减少噪音的传播和影响。