在离子束溅射技术的应用中,多离子源(达到4 个)可应用到像高温超导薄膜这样的多成分薄膜 的制备,同时也能用来制备比较复杂薄膜。
离子束溅射镀膜应用
利用离子束溅射可以制作高容量的硅负极薄膜,表现出了良好的电化学循环性能,经过了10 0 次循环以后, 薄 膜电极的稳定可逆容量保持在其第二次循环容量94 % 左右。硅薄膜电极经过长期的电化学循环后, 仍然不可避免地 出现了活性颗粒的粉化现象, 并且电极表面出现微裂纹, 然而与普通的硅粉末电极不同的是, 硅薄膜并未出现与铜集 流体的脱离, 仍然保持了良好的电接触性能, 这是硅薄膜电极较粉末电极具有更高的循环稳定性的主要原因之一。
• 特殊的场合, 与固体原子直接进行交换电荷。这时离子和反射电 子等的速度相似。
离子束溅射
目前比较成熟的光学薄膜制备技术可以归纳为三类[l一8]:物理气相沉(Physicalvorneposition,PvD) 方法,化学气相沉积(ehemicalVaPorDePosition,CVD)方法和溶液成膜法。对于光学薄膜的制备而 言,物理气相沉积方法应用最为广泛。
离子束加工被认为是最有前途的超精密加工和微细加工技术。是一种原子级的加工方法, 具有极高的分辨率,广泛应用于航空航天制造等领域。
离子束加工的研究背景
随着空间光学,短波光学和光刻技术的不断发展,光学 系统对光学元件的最终面形提出了很高的要求。由于离子束 加工技术具有去除率高、非接触式加工模式、工件无承重、 无边缘效应、对材料无深度损伤等优点,使得这项技术被引 入到光学表面加工领域中来,有效的弥补了传统加工工艺的 不足,并与传统加工工艺相互配合,取得了理想的加工结果, 得到了很高的光学表面面形质量。离子束加工已经成为国际 上光学面形加工技术的一个必不可少的重要技术