空气动力学chapter9(4)
- 格式:ppt
- 大小:546.00 KB
- 文档页数:42
空气动力学崔尔杰*(中国航天科技集团第701研究所)本文简要回顾空气动力学发展的历史及其在航空航天飞行器研制中的作用,对现代空气动力学新的发展趋势和新一代航天飞行器研制中可能遇到的关键气动力问题进行探讨和分析,并对今后发展提出看法。
一、空气动力学与航空航天飞行器发展空气动力学是研究空气和其他气体的运动规律以及运动物体与空气相互作用的科学,它是航空航天最重要的科学技术基础之一。
1.空气动力学推动20世纪航空航天事业的发展1903年莱特兄弟研制成功世界上第一架带动力飞机,实现了人类向往已久的飞行梦想。
为了研制这架飞机,他们进行过多次滑翔试验,还为此建造了一座试验段为0.01m2的小型风洞。
正是这些努力,加上综合运用早期的空气动力学知识,最终获得了成功。
20世纪初,建立在理想流体基础上的环量和升力理论以及普朗特提出的边界层理论奠定了低速飞机设计基础,使重于空气的飞行器成为现实。
40年代中期至50年代,可压缩气体动力学理论的迅速发展,以及对超声速流中激波性质的理论研究,特别是跨音速面积积律的发现和后掠翼新概念的提出,帮助人们突破“音障”,实现了跨音速和超音速飞行。
50年代中期,美、苏等国研制成功性能优越的第一代喷气战斗机,如美国的F-86、F-100,苏联的米格-15、米格-19等。
50年代以后,进入超音速空气动力学发展的新时期,第二代性能更为先进的战斗机陆续投入使用,如美国的的F-4、F-104,苏联的米格-21、米格-23,法国的幻影-3等。
1957年苏联发射第一颗地球人造卫星和1961年第一艘载人飞船“东方号”升空,被认为是空间时代的开始。
美、苏两国在战略导弹和航天器发展方面的激烈角逐,促使超音速和高超音速空气动力学得到迅速发展。
两个超级大国都投入巨大力量,致力于发展地面模拟设备,开邻近高超出音速空气动力学和空气热力学的研究。
航天方面的研究重点放在如何克服由于高超音速飞行和再入大气层,严重气动加热所引起的“热障”问题上在钱学森先生倡导下诞生了一门新的学科,即物理力学,为航天器重返大气层奠定了科学基础。
空气动力学简介空气动力学是研究物体在空气中运动时所受到的力学规律的科学,它是航空航天工程的重要基础。
空气动力学通常研究流体力学中的问题,其中特别关注空气流体力学问题。
本文将深入介绍空气动力学的基本概念和应用领域。
1. 空气动力学基础1.1 流体力学基础知识要理解空气动力学,首先需要掌握一些流体力学的基础知识。
流体力学是研究流体运动和力学性质的科学,包括流体的连续性方程、动量方程和能量方程等。
本节将介绍流体力学的基本概念和方程,以及其在空气动力学中的应用。
1.2 空气动力学基本概念空气动力学研究物体在空气中的运动,其中涉及到一些基本概念,如气动力、气动特性、升力、阻力等。
本节将详细解释这些概念,并讨论它们在航空航天工程中的重要性。
2. 空气动力学应用2.1 飞行器设计空气动力学在飞行器设计中起着至关重要的作用。
通过分析飞行器在不同速度、高度和姿态下的气动特性,可以优化飞行器的结构和性能。
本节将介绍飞行器设计中的空气动力学考虑因素,如升力和阻力的平衡、操纵性和稳定性分析等。
2.2 汽车空气动力学优化除了飞行器设计,空气动力学在汽车工业中也有重要应用。
优化汽车的空气动力学特性可以降低气动阻力,提高汽车的燃油经济性,同时也会改善汽车的操控性和稳定性。
本节将介绍汽车空气动力学优化的方法和技术。
2.3 建筑物空气动力学分析在建筑设计中,空气动力学也起着重要作用。
通过分析建筑物在风中的响应和气动荷载,可以评估建筑物的结构安全性并优化建筑物的设计。
本节将介绍建筑物空气动力学分析的方法和实践。
3. 空气动力学实验和仿真3.1 空气动力学实验为了更好地理解和掌握空气动力学的原理,进行实验是一种常用的方法。
本节将介绍一些常见的空气动力学实验装置和实验方法,如风洞实验、气动力测量和力矩测量等。
3.2 空气动力学仿真除了实验,空气动力学也可以通过数值模拟和计算机仿真来进行研究。
本节将介绍空气动力学仿真的基本原理和方法,如计算流体力学(CFD)方法、有限元方法等。