大学微积分l知识点总结(二)
- 格式:docx
- 大小:222.80 KB
- 文档页数:19
微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。
导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。
导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。
2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。
高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。
3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。
微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。
微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。
4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。
不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。
不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。
5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。
定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。
6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。
第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。
第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。
微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。
微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。
微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。
3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。
\large δ:是邻域半径。
2.极限的性质是什么?●唯一性极限存在必唯一。
从左从右逼近相同值。
●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。
●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。
●极限运算性质1、满足四则运算。
2、满足复合函数嵌套极限。
3、极限存在则左右极限相等。
●极限存在性质迫(夹)敛(逼)定理。
●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。
大学微积分的知识点汇总微积分是数学中的一门重要学科,也是大学数学课程中的一部分。
它主要包括微分学和积分学两个方面。
微分学研究函数的变化率和曲线的切线问题,而积分学研究函数与曲线的面积、体积以及累积等问题。
本文将从微分学和积分学两个方面对大学微积分的知识点进行汇总。
一、微分学1.函数的极限函数的极限是微积分的基本概念之一。
它描述了函数在某一点或正无穷、负无穷处的变化趋势。
例如,当自变量趋近于某一值时,函数的取值是否趋近于一个确定的值。
2.导数导数是函数在某一点的变化率。
它表示了函数在该点的切线的斜率。
导数可以用来解释函数的变化趋势,并且可以通过导数的性质求得函数的极值点和拐点等重要信息。
3.微分微分是导数的另一种形式。
它可以用来表示函数在某一点附近的变化情况。
微分可以用来近似计算函数的值,例如在物理学中的位移和速度之间的关系。
4.高阶导数高阶导数是导数的再次求导。
它描述了函数变化率的变化率。
高阶导数可以用来研究函数的凹凸性和函数曲线上的拐点。
二、积分学1.定积分定积分是对函数在一定区间上的面积进行求解。
它可以用来解决曲线下面积、体积、平均值等问题。
定积分可以通过定义求解,也可以通过积分的性质和定理进行计算。
2.不定积分不定积分是定积分的逆运算。
它可以用来求解函数的原函数。
不定积分可以通过积分表、基本积分公式和换元积分法等方法进行计算。
3.反常积分反常积分是对无界区间上的函数进行积分。
由于函数在无穷远处可能趋于无穷或趋于零,因此需要对反常积分进行特殊处理。
常见的反常积分有瑕积分和无穷积分。
4.积分应用积分的应用非常广泛。
它可以用来计算曲线的弧长、质心和转动惯量等物理量。
在经济学中,积分可以用来计算总收益、总成本和总利润等经济指标。
以上是大学微积分的知识点汇总。
微分学和积分学是微积分的两个重要方面,它们在数学和其他学科中有着广泛的应用。
掌握微积分的知识将有助于解决实际问题和深入理解数学的本质。
希望本文对你在学习微积分过程中有所帮助。
大一微积分每章知识点总结微积分是数学的重要分支之一,用于研究变化率与累积效应。
在大一微积分课程中,我们学习了许多重要的知识点,这些知识点为我们进一步学习高级数学打下了坚实的基础。
本文将对大一微积分每章的知识点进行总结,以帮助读者巩固所学内容。
第一章:函数与极限在这一章中,我们学习了函数的概念与性质,以及极限的定义与运算法则。
函数是一种将一个数集映射到另一个数集的规则,可以用数学公式或图形表示。
极限是函数在某个点无限接近于某个值的情况,是微积分的基础概念之一。
第二章:导数与微分导数是用来描述函数变化率的概念,它表示函数在某一点处的切线斜率。
我们学习了导数的计算方法,包括基本导数公式、加减乘除法则、链式法则等。
微分则是导数的应用,用于计算函数在某一点的近似值,并研究函数的局部特征。
第三章:微分中值定理与导数的应用在这一章中,我们学习了微分中值定理和导数的应用。
微分中值定理是描述函数在某个区间内存在某点的斜率等于该区间的平均斜率的定理,包括拉格朗日中值定理和柯西中值定理。
导数的应用包括函数的单调性、极值点、凹凸性等的判断与求解。
第四章:不定积分不定积分是导数的逆运算,用于求解函数的原函数。
我们学习了不定积分的基本性质和常用的积分公式,包括换元法、分部积分法、有理函数的积分等。
通过不定积分,我们可以求解函数的面积、曲线长度等问题。
第五章:定积分与定积分的应用定积分是用来计算曲线下面积的工具,也可以表示变化率与累积效应。
我们学习了定积分的定义和性质,以及计算定积分的方法,如换元法、分部积分法和定积分的几何应用等。
定积分的应用包括计算曲线的弧长、质量、物体的质心等。
第六章:微分方程微分方程是用导数和未知函数构成的方程,研究函数之间的关系。
我们学习了常微分方程的基本概念和解法,包括一阶线性微分方程和可分离变量的方程等。
微分方程是实际问题建模与求解的重要工具,应用广泛于物理、化学、工程等领域。
通过对大一微积分每章的知识点进行总结,我们回顾了函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分与定积分的应用、微分方程等内容,巩固了所学知识,并为之后学习高级数学打下了坚实的基础。
微积分笔记整理以下是一份微积分笔记整理的示例,涵盖了微积分的一些关键概念和公式:一、导数(Derivative)1. 定义:函数在某一点的切线斜率。
2. 公式:$(f(x+h)-f(x))\div h$(当$h$趋近于$0$时)。
3. 导数的意义:- 函数的变化率。
- 曲线的切线斜率。
- 判断函数的单调性。
二、微分(Differential)1. 定义:函数在某一点的切线增量。
2. 公式:$df=f^\prime(x)dx$。
3. 微分的意义:- 切线的近似值。
- 函数的增量。
三、积分(Integral)1. 定义:函数在某个区间上的面积。
2. 公式:$\int_{a}^{b}f(x)dx$。
3. 积分的意义:- 函数的面积。
- 函数的平均值。
- 求导的逆运算。
四、微积分基本定理(Fundamental Theorem of Calculus)1. 牛顿-莱布尼茨公式(Newton-Leibniz Formula):若$F^\prime(x)=f(x)$,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$。
2. 不定积分(Indefinite Integral):函数的原函数族。
3. 定积分(Definite Integral):函数在某个区间上的确定积分值。
五、常见函数的导数和积分1. 常数函数:导数为$0$,积分为$cx$($c$为常数)。
2. 线性函数:导数为常数,积分为$cx+d$($c$、$d$为常数)。
3. 指数函数:导数为指数本身,积分为指数加$1$的反函数。
4. 对数函数:导数为$\frac{1}{x}$,积分为$x\ln|x|+c$。
5. 三角函数:正弦函数的导数为余弦函数,余弦函数的导数为负的正弦函数;积分根据不同的三角函数有不同的公式。
大学大一微积分知识点总结微积分是数学中的重要分支,也是大多数理工科专业学生必修的一门课程。
在大学的微积分课程中,学生们需要掌握一系列基本的知识点,并能够运用这些知识点解决实际问题。
本文将对大学大一微积分课程的知识点进行总结,以帮助学生们更好地理解和掌握微积分的内容。
一、导数与微分1. 导数的定义及求导法则导数表示了函数在某一点上的变化率,可以通过定义或者求导法则来计算。
求导法则包括常数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等。
2. 高阶导数与隐函数求导高阶导数表示导数的导数,可以通过递归地求导来计算。
隐函数求导用于求解含有隐含变量的函数的导数。
二、微分应用1. 最值与极值利用导数的概念和性质,可以求解函数的最值和极值问题。
其中,极值点需要通过导数的一阶和二阶导数条件进行判断。
2. 曲线的凹凸性与拐点利用导数的一阶和二阶导数可以判断曲线的凹凸性和拐点位置,从而帮助分析曲线的性质和形状。
3. 泰勒公式与近似计算泰勒公式是一种利用函数在某一点的导数信息来逼近函数值的方法,可以用于计算函数在某一点的近似值。
三、不定积分与定积分1. 不定积分的定义与性质不定积分表示函数的原函数,可以通过反向计算导数来求解。
不定积分具有线性性质和换元积分法则等特点。
2. 基本积分公式与常见积分表达式基本积分公式包括幂函数积分、三角函数积分、指数函数的积分等常用积分表达式,学生需要熟练掌握。
3. 定积分的概念与性质定积分表示函数在一定区间上的累积效果,可以通过面积的概念来理解。
定积分具有线性性质、积分中值定理等特点。
4. 牛顿-莱布尼茨公式与定积分的应用牛顿-莱布尼茨公式表示定积分与不定积分之间的关系,可以简化定积分的计算。
定积分的应用包括求曲线下的面积、求弧长、求体积等。
四、微分方程1. 微分方程的基本概念与分类微分方程描述了函数与其导数之间的关系,可以根据方程中未知函数的阶数和自变量的个数进行分类。
2. 一阶常微分方程的解法一阶常微分方程的解法包括可分离变量法、齐次方程法、一阶线性方程法等方法。
大学微积分l 知识点总结【第一部分】大学阶段准备知识 1、不等式:ab 2ba ≥+ab2b a 22≥+3abc 3c b a ≥++ ()n n21n 21...a a a n a ...a a ≥+++abc 3c b a 333≥++2b a 2b a ab b1a 1222+≤+≤≤+b a b a b -a +≤±≤()nn 21n 21n 21n x ...x x y p p x ...x x x ...x x y ⎪⎭⎫⎝⎛+++=+++•••=的最大值为:则为常数,且扩展:若有柯西不等式:设a 1、a 2、...a n ,b 1、b 2、...b n 均是实数,则有:()()()()()()()()()22221222212n n 2211......a a b a ...b a b a n n b b b a +++++≤+++()时取等号为常数,当且仅当,n ...3,2,1i b a i i ==λλ2、函数周期性和对称性的常用结论1、若f (x+a )=±f (x+b ),则f (x )具有周期性;若f (a+x )=±f (b-x ),则f (x )具有对称性。
口诀:“内同表示周期性,内反表示对称性” 2、周期性(1)若f (x+a )=f (b+x ),则T=|b-a| (2)若f (x+a )=-f (b+x ),则T=2|b-a| (3)若f (x+a )=±1/f (x ),则T=2a(4)若f (x+a )=【1-f (x )】/【1+f (x )】,则T=2a (5)若f (x+a )=【1+f (x )】/【1-f (x )】,则T=4a 3、对称性(1)若f (a+x )=f (b-x ),则f (x )的对称轴为x=(a+b )/2(2)若f (a+x )=-f (b-x )+c ,则f (x )的图像关于((a+b )/2,c/2)对称引申双向不等式: 两侧均在ab ≥0或ab ≤0时取等号4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。
微积分二知识点总结引言微积分是数学中的重要分支,用于研究函数的变化和曲线的性质。
微积分可以分为微分学和积分学两个部分。
本文将总结微积分二中的一些重要知识点,包括泰勒展开、泰勒级数、函数的傅里叶级数展开、常微分方程等内容。
泰勒展开和泰勒级数泰勒展开是函数在某一点附近用幂级数逼近的方法。
假设函数f(x)在x=a处具有n阶导数,那么泰勒展开可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)其中Rn(x)为余项,它表示当n趋向于无穷大时的误差。
泰勒级数是泰勒展开的一种特殊情况,当a=0时,泰勒展开可以简化为泰勒级数:f(x) = f(0) + f'(0)x + f''(0)x^2/2! + ... + f^n(0)x^n/n! + Rn(x)泰勒级数的应用非常广泛,可以用来近似计算各种函数的值。
傅里叶级数展开傅里叶级数展开是一种将周期函数表示为正弦和余弦函数的线性组合的方法。
假设f(x)是一个周期为2π的函数,傅里叶级数展开可以表示为:f(x) = a0/2 + Σ(an*cos(nx) + bn*sin(nx))其中a0、an和bn为函数f(x)的系数。
傅里叶级数展开的基本思想是将一个周期函数分解成多个简单的正弦和余弦函数的叠加。
这种表示方法在信号处理和频谱分析中非常有用。
常微分方程常微分方程是描述函数的变化规律与函数本身及其导数之间的关系的方程。
常微分方程可以分为一阶和二阶常微分方程。
一阶常微分方程可以表示为:dy/dx = f(x, y)其中f(x, y)为已知函数。
二阶常微分方程可以表示为:d^2y/dx^2 = f(x, y, dy/dx)常微分方程在物理学、工程学和经济学等领域中都有着广泛的应用。
总结微积分二是微积分的进阶课程,涵盖了泰勒展开、泰勒级数、函数的傅里叶级数展开、常微分方程等重要知识点。
微积分1知识点总结微积分1是大学数学中的一门重要课程,它主要包括导数和不定积分两大部分。
微积分1是数学系、物理系、工程系等专业的重要基础课程,对学生的数学思维能力、逻辑思维能力和解决实际问题的能力都有较高的要求。
微积分1知识点较多,本文将对微积分1的相关知识点进行总结,以帮助学生更好地理解和掌握微积分1的知识。
一、函数与极限1.1 函数的概念函数是一个变量与变量之间的一种对应关系。
通常用 f(x) 或 y 来表示函数,x 是自变量,y 是因变量。
函数在微积分中有着非常重要的作用,它可以用来描述数学模型中的关系、描述实际问题中的情况等。
1.2 函数的极限极限是微积分中的一个重要概念,它描述的是当自变量趋向于某一点时,函数值的趋势。
极限的概念为后续的导数和积分提供了重要的理论基础。
1.3 极限的性质极限有一些重要的性质,比如极限的唯一性、函数极限存在的条件、函数极限的运算性质等。
掌握这些性质对于理解和计算函数的极限具有重要的意义。
1.4 极限的计算计算极限是微积分中的一个重要技能。
常见的计算技巧包括利用基本极限、利用夹逼定理、利用洛必达法则等。
二、导数2.1 导数的定义导数是函数的变化率,描述了函数在某一点的变化趋势。
导数的定义是函数在某一点的切线的斜率。
2.2 导数的计算导数的计算是微积分1中的重要内容。
常见的计算技巧包括使用导数的定义、使用导数的性质、使用求导法则等。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、导数的运算法则、导数的几何意义等。
2.4 高阶导数导数的概念可以进一步推广到高阶导数,高阶导数描述了函数的变化趋势更加细致的情况。
三、不定积分3.1 不定积分的概念不定积分是导数的逆运算,描述了函数的积分情况。
不定积分的概念是微积分1中的一个重要内容。
3.2 不定积分的计算计算不定积分是微积分1中的一个关键技能。
对于一些特定的函数,可以通过不定积分的性质、不定积分的基本积分公式等来进行计算。
大学微积分知识点归纳总结微积分是数学的分支之一,是研究变化率和累积效应的数学工具。
在大学中,微积分通常是理工科学生必修的一门课程,也是后续学习高等数学和其他相关学科的基础。
本文将对大学微积分中的一些重要知识点进行归纳总结,帮助读者复习和回顾相关概念和技巧。
一、导数与微分导数是微积分中最基础的概念之一,表示函数在某一点处的变化率。
导数的计算方法包括用极限和求导法则两种途径。
其中,求导法则主要包括常数法则、幂函数法则、和差法则、乘法法则、除法法则和复合函数法则等。
通过运用这些法则,我们可以计算各种函数的导数。
微分是导数的一种应用形式,表示函数在某一点附近的近似线性变化量。
微分的计算方法是利用导数的概念,通过对变量的微小改变进行线性逼近得到。
微分在物理学、工程学等领域中具有重要的应用价值,例如在运动学中描述物体的速度和加速度。
二、积分与不定积分积分是导数的反运算,表示函数曲线下某一区间上的累积效应。
积分的计算方法包括定积分和不定积分两种形式。
其中,定积分是计算函数在给定区间上的累积值,可以通过黎曼和牛顿-莱布尼茨公式进行求解。
而不定积分是求解函数的原函数,通常表示为一个函数族,通过添加常数项来表示原函数的不确定性。
在应用方面,积分可以用于求解曲线下的面积、物体的质量和流体的体积等问题。
它也是微分方程中的重要工具,用于求解描述变化规律的方程。
三、微分方程与应用微分方程是涉及未知函数及其导数的方程,描述了变量之间的关系。
微分方程在自然科学、经济学和工程学等领域中有广泛的应用。
常见的微分方程类型包括一阶常微分方程、高阶常微分方程、线性微分方程和非线性微分方程等。
求解微分方程的方法主要包括分离变量法、常系数线性微分方程的特征根法、常系数线性微分方程的待定系数法和变化参数法等。
通过运用这些方法,我们可以推导出函数的解析表达式,揭示变量之间的定量关系。
微积分作为数学的一门基础课程,不仅具有理论的重要性,更有实际的应用价值。
【第五部分】不定积分1.书本知识(包含一些补充知识)(1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。
(2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表⎰⎰+==c x dx dx 1c x dx x +⋅+∂=⋅+∂∂⎰111(α≠1,α为常数) c dx xx +=⋅⎰ln 1 ()()()⎰⎰⎰⎰⎰+-⋅=⋅+-=⋅-+-=⋅++=⋅≠+=⋅cx x x dx x cx x dx x c x arc x dx x c e dx e a a a c a a dx a x x x xln ln arccos arcsin 11cot arctan 1110ln 22或或为常数,,> ()c xa xa a dx x a c axa dx x a c axdx x a cx x dx x +-+⋅=⋅-+=⋅++=⋅-+++=⋅+⎰⎰⎰⎰ln 211arctan 11arcsin 11ln 1122222222c x xxd cshx dx chx cchx dx shx +-=-+=⋅+=⋅⎰⎰⎰cos ln cos coscx dx x c x dx x c x dx x +=⋅+=⋅+-=⋅⎰⎰⎰cos ln tan sin cos cos sinc x dx x +=⋅⎰sin ln cotcx dx x x c x dx x x c x dx x c x dx x c x x dx x c x x dx x c x x dx x c x x dx x cx x dx x c x x dx x +-=⋅⋅+=⋅⋅+-=⋅+=⋅+--=⋅+-=⋅++=⋅+-=⋅+-=⋅++=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰csc cot csc sec tan sec cot csc tan sec cot cot tan tan 2sin 412cos 2sin 412sin cos csc ln csc tan sec ln sec 222222c x dx ax a x ++=⋅++⎰22ln122(4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则[]⎰⎰⎰⎰⎰⋅±⋅=⋅±⋅⋅=⋅⋅dxx g dx x f dx x g x f dxx f a dx x f a )()()()()()(②①(7)[][]c x F dx x x f +=⋅⎰)()(')(ϕϕϕ复合函数的积分:cb x F dx b x fc b ax F a b axd b ax f a dx b ax f ++=⋅+++⋅=+⋅+⋅=⋅+⎰⎰⎰)()()(1)()(1)(一般地,(9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。
(10)不定积分的计算方法①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性ta x dx a x t a x dx a x t a x dx x a tan sec sin 222222⋅=⇒⋅+⋅=⇒⋅-⋅=⇒⋅-⎰⎰⎰ 数乘运算加减运算线性运算(8)③分部积分法:⎰⎰⎰⎰⎰⎰⋅-⋅=⋅⋅⋅-⋅=⋅⋅⋅⋅⋅⋅==duv v u dv u dx x v x u x v x u dx x v x u dx x v x u dx x v x u x v v x u u 简写为:并有:也存在存在,则均可导,且若)()(')()()(')()(')()()(')(),(【解释:一阶微分形式不变性】 释义:函数 对应:y=f(u)du u f du y dy ⋅=⋅=)(''功能:说明:[][][]()[]变性。
这称为一阶微分形式不,均有是自变量还是中间变量因此,无论带入得:因为的微分形式为:为中间变量,自变量为那么复合函数复合函数求导得:,即变量为函数即为复合函数。
自是中间变量,即如果的微分形式为:是自变量,则函数此时如果设函数为du u f dy u duu f dy du dx x g x g u dx x g x g f dx y dy u x g x x g f y x g x g f y x g y x x g u u duu f du y dy u f y u u f y ⋅=⋅==⋅=⋅⋅=⋅===⋅===⋅=⋅===)(')('.)('),(.)(')(''')()().(')('',)(:),()('')(),((11)c x dx ax a x ++⇒⋅++⎰22ln122(12)分段函数的积分 例题说明:{}dx x ⋅⎰2,1max()需要调整连续的原则,需要说明的一点,依据)>()()<()>()()<(解:321322132222,,1323111-1-3231),1max(111-11-,1max c c c x c x x c x x c x dx x x x x x x x ⎪⎪⎩⎪⎪⎨⎧++≤≤++-=⋅⎪⎩⎪⎨⎧≤≤=⎰(13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一⎰⎰⋅-=⋅x d x dx x dx cos sin sin 23的部分。
如次方处理到最后化简的目的。
并以达到再进行计算或将二者合量将其转化成同一次方要通过三角函数公式尽则需情况同时出现且指数不同的与,若遇到)在做不定积分问题时(,cosx sinx 14 2x cos 2x sin 2sinx sinx 15⋅=的问题,则中,如果单独遇到)在计算不定积分过程( (16)隐函数求不定积分 例题说明:,带入。
所以:所以:解法带入。
,则:令解法确定的隐函数,试求是由方程例题:设∂∂=∂∂+∂=∂=-∂=-⇒=-+-⇒=--=-==-⋅=-⎰cos sin ;cos sin sin sin 1cos )(11)()(2,1,113y-x 1)(2222222232y x yxy x yxy x x y x y t ty t t x t y x dx x y x y y(17)三角有理函数积分的万能变换公式2222222212tan 2tan ,12sin 11cos 12)12,11(2tan )cos ,(sin t t x x t t t x t t x dt t t t t t R x t dx x x R -=→=⎪⎪⎩⎪⎪⎨⎧+=+-=⋅+⋅++-=⋅⎰⎰其中:令(18)某些无理函数的不定积分()()() (1111)21141822122221t t 222222222=⋅⎪⎭⎫ ⎝⎛-++-=⋅-+-=⋅--⋅⋅+--+=⋅-+=⎰⎰⎰⎰dt t t dt t t t dt t tt t t x x t dx x x x A A 令例如:,即个根号变为(根号),变形时将整①无理函数中带有②欧拉变换at t c b x ax tx a t c bx ax c xt c bx ax c x a t c bx ax a c bx ax -⋅+=+-=++⎪⎩⎪⎨⎧=++=++++222222222-0-0对于②可得:对于①可得:②,令>若①,令>若的积分含有(19)其他形式的不定积分c x f x xf dx x f x f x x df x dx x f x +-=⋅-⋅=⋅=⋅⋅⎰⎰⎰)()(')(')(')(')(''① ()()()()x x I I x dx I I dxx x xI dxxx xI c A x A x A e dx e B x B x B cA x A x A e dx e x c x e A x e A dx x e x x x x x x x cos 2sin ln 21cos 2sin cos cos 2sin sin cos sin sin 212121322122213221221+=+-=⋅=+⋅+=⋅+=++⋅+⋅=⋅⋅+⋅+⋅++⋅+⋅=⋅⋅+⋅⋅+⋅⋅=⋅⋅⎰⎰⎰⎰⎰⎰⑤组合法:④③待定系数法②2.补充知识(课外补充)☆【例谈不定积分的计算方法】☆1、不定积分的定义及一般积分方法2、特殊类型不定积分求解方法汇总1、不定积分的定义及一般积分方法(1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。
其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c被积表达式积分变量被积函数积分号→⋅→→→⎰dx x f x x f )()(dxx f k dx x f dxx f k x f ni i i i ni i ⋅⋅=⋅⋅⋅=⎰∑⎰∑==)()()()(11则:推论:若(2)一般积分方法值得注意的问题: 第一,一般积分方法并不一定是最简便的方法,要注意综合使用各种积分方法,简便计算;第二,初等函数的原函数并不一定是初等函数,因此不一定都能够积出。
不能用普通方法积出的积分:()......10sin 1111ln 1sin ,sin ,223422<<例如:K dx x k dxx dxxdxx dxx dx x x dx e x⋅⋅⋅-⋅+⋅+⋅⋅⋅⋅⎰⎰⎰⎰⎰⎰⎰-2、特殊类型不定积分求解方法汇总 (1)多次分部积分的规律()dxv u v u v u v u dx v u v u v u dx v u v u dx v u n n n n n n n n n n n ⋅⋅⋅-++⋅+⋅-⋅==⋅⋅+⋅-⋅=⋅⋅-⋅=⋅⋅⎰⎰⎰⎰++----+)1(1)2()1()()1()1()()()()1(1...'''......'''')'sin cos ()sin cos (sin cos sin cos sin cos 2x d x c B x d x c A x b x a dx xd x c xb x a ⋅+⋅⋅+⋅+⋅=⋅+⋅⋅⋅+⋅⋅+⋅⎰求解方法为:令的积分)对于(dx xx xx ⋅+-⎰sin cos sin cos 3例如:求即可解:令)'sin (cos )sin (cos sin cos 3x x B x x A x x +++=-(3)简单无理函数的积分被积函数为简单式的有理式,可以通过根式代换化为有理函数的积分()的最小公倍数是其中令③令②设①n m p b ax t dx b ax b ax x R d cx b ax t dx d cx b ax x R b ax t dx b ax x R pm n n n n n ,,,,,),(+=→⋅++++=→⋅⎪⎪⎭⎫ ⎝⎛+++=→⋅+⎰⎰⎰[]dxb x a x b x a x b a I k b a dx b x a x dxI ⋅⎥⎦⎤⎢⎣⎡+⋅++-+⋅-=≠-⋅+⋅+=⎰⎰)sin()sin()()(sin )sin(1,)sin()sin(4解法:π其中)求(nnnn n bx a x t dx bx ax b x a x I n dx b x a x dxI --=⋅----=⋅-⋅-=⎰⎰-+令解法:为自然数其中,)求:(,))((1,)()(511tx dx c bx ax x I m 162=⋅++⋅=⎰解法:令)求(c bx b bx a ba e dx bx e I c bxb bx a b a e dx bx e I ax axaxax+⋅+⋅⋅+=⋅⋅=+⋅-⋅⋅+=⋅⋅=⎰⎰)sin cos (cos )cos sin (sin 7222221)统一公式(tx x x t x x x t x x x t x x x cos arccos 1sin arcsin 1sin 1tan 182222=-=-=-=+时,令和④同时出现时,令和③同时出现时,令和②同时出现时,令和①同时出现)计算技巧(dxx a x a x a x a a I dxx a ⋅-⋅+-++⋅=⋅-⎰⎰)()()()(211922解法:令)求(小结:几分钟含有根号,应当考虑采用合适的方法去掉根号再进行计算。