Data Mining的十种分析方法
- 格式:docx
- 大小:16.99 KB
- 文档页数:3
如有你有帮助,请购买下载,谢谢!数据挖掘Data Mining第一部 Data Mining的觀念............... 错误!未定义书签。
第一章何謂Data Mining ..................................................... 错误!未定义书签。
第二章Data Mining運用的理論與實際應用功能............. 错误!未定义书签。
第三章Data Mining與統計分析有何不同......................... 错误!未定义书签。
第四章完整的Data Mining有哪些步驟............................ 错误!未定义书签。
第五章CRISP-DM ............................................................... 错误!未定义书签。
第六章Data Mining、Data Warehousing、OLAP三者關係為何. 错误!未定义书签。
第七章Data Mining在CRM中扮演的角色為何.............. 错误!未定义书签。
第八章Data Mining 與Web Mining有何不同................. 错误!未定义书签。
第九章Data Mining 的功能................................................ 错误!未定义书签。
第十章Data Mining應用於各領域的情形......................... 错误!未定义书签。
第十一章Data Mining的分析工具..................................... 错误!未定义书签。
第二部多變量分析....................... 错误!未定义书签。
第一章主成分分析(Principal Component Analysis) ........... 错误!未定义书签。
如何使用Data Mining进行数据分析随着数据的不断积累和互联网的普及,数据分析被越来越多的企业和组织所重视。
Data Mining作为一种重要的数据分析方法,逐渐被广泛应用。
那么,如何使用Data Mining进行数据分析呢?下面就为大家详细介绍。
一、明确问题的目标在进行数据分析之前,首先要明确需要解决的问题及其目标。
不同的问题需要采用不同的Data Mining技术,因此目标的明确对于分析结果的准确性和可靠性至关重要。
二、数据的收集和处理数据的收集是进行数据分析的第一步。
数据来源有多种方式,可以是企业内部系统、互联网等。
采集的数据需要进行处理和清洗,以保证数据的质量和完整性。
在进行数据处理过程中,可采用数据挖掘方法,如分类、聚类、关联等,以分析数据的关系和特性。
三、选择Data Mining算法根据问题的目标和数据的性质,选择合适的Data Mining算法进行数据分析。
常用的算法包括决策树、神经网络、支持向量机等。
通过对数据的建模和预测,可以帮助企业或组织制定相应的策略,并预测未来的发展趋势。
四、模型评估和优化在进行数据分析过程中,需要对模型进行评估和优化,以提高分析结果的准确性和可靠性。
评估方法包括交叉验证、AUC曲线、ROC曲线等。
优化方法包括特征选择、参数调优等,以提高算法的性能和效率。
五、应用分析结果对分析结果的应用是进行数据分析的重要环节。
将分析结果转化为可操作的策略和决策,帮助企业或组织实现业务增长、优化流程等目标。
同时也需要对分析结果进行监控和调整,以适应市场变化和业务需求的变化。
通过以上几步,我们可以使用Data Mining进行数据分析,得出准确的结论和预测结果。
数据分析不但可以帮助我们深入了解数据的特性和规律,还可以指导企业或组织的业务决策,加速业务的发展。
因此,掌握数据分析技术对于提高业务的竞争力和创新能力,有着非常重要的意义。
数据挖掘案例分析数据挖掘(Data Mining)指的是从大量数据中发现隐含的、之前未知的、有价值的信息或模式。
它是数据分析的一种方法,通过使用统计分析、机器学习、模式识别等技术,从结构化或非结构化的数据中提取知识和信息。
在企业和组织中,数据挖掘可以帮助决策者快速获取有价值的信息,为企业的决策制定提供支持。
以下是一个关于销售数据挖掘的案例分析。
背景介绍:电商平台希望通过数据挖掘了解其产品的销售情况,并根据相关的数据分析结果来优化其供应链管理和市场推广策略。
该平台销售各种类型的商品,包括数码产品、家居用品、服装配饰等。
数据采集:该电商平台有一套完整的销售数据记录系统,可以获取到产品的销售数据、用户的购买行为数据、用户的评价数据以及其他相关信息。
该平台以月为单位,可以提供近三年的销售数据。
数据分析目标:通过对销售数据的挖掘,电商平台希望回答以下问题:1.各个产品类别的销售情况如何,哪些产品类别的销售额较高?2.哪些产品具有较高的用户评价,哪些产品的用户评价较差?3.用户购买行为有什么特点,比如用户购买的时间、地点、金额等方面的特征?4.哪些因素会对产品的销售额产生影响,比如产品的价格、促销活动等?5.如何利用数据分析结果来改进供应链管理和市场推广策略?数据挖掘过程:1.数据清洗和预处理:对从电商平台获取的原始数据进行清洗和预处理,包括去掉重复、缺失或异常的数据,并进行数据格式转换和标准化等操作。
2.数据探索和可视化:对清洗和预处理后的数据进行探索,使用统计分析和可视化工具来揭示数据的基本特征和潜在的模式。
3.数据建模:根据分析目标和数据特点,选择合适的建模方法,比如聚类分析、分类分析、关联规则挖掘等,来寻找数据中的模式和规律。
4.模型评估和优化:对建模结果进行评估和优化,包括模型的准确性、稳定性、可解释性等方面的评估,同时根据评估结果对模型进行优化。
5.结果解释和应用:根据分析结果,回答上述的问题,并给出相应的建议和改进措施。
数据挖掘常⽤的⼗⼤算法 数据挖掘(英语:Data mining),⼜译为资料探勘、数据采矿。
它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的⼀个步骤。
数据挖掘⼀般是指从⼤量的数据中通过算法搜索隐藏于其中信息的过程。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多⽅法来实现上述⽬标。
数据挖掘经典算法1. C4.5:是机器学习算法中的⼀种分类决策树算法,其核⼼算法是ID3算法。
解析:C4.5算法是机器学习算法中的⼀种分类决策树算法,其核⼼算法是ID3 算法。
C4.5算法继承了ID3算法的长处。
并在下⾯⼏⽅⾯对ID3算法进⾏了改进:1)⽤信息增益率来选择属性,克服了⽤信息增益选择属性时偏向选择取值多的属性的不⾜。
2)在树构造过程中进⾏剪枝;3)可以完毕对连续属性的离散化处理;4)可以对不完整数据进⾏处理。
C4.5算法有例如以下长处:产⽣的分类规则易于理解,准确率较⾼。
其缺点是:在构造树的过程中,须要对数据集进⾏多次的顺序扫描和排序,因⽽导致算法的低效。
1、机器学习中。
决策树是⼀个预測模型。
他代表的是对象属性与对象值之间的⼀种映射关系。
树中每⼀个节点表⽰某个对象,⽽每⼀个分叉路径则代表的某个可能的属性值,⽽每⼀个叶结点则相应从根节点到该叶节点所经历的路径所表⽰的对象的值。
决策树仅有单⼀输出。
若欲有复数输出,能够建⽴独⽴的决策树以处理不同输出。
2、从数据产⽣决策树的机器学习技术叫做决策树学习,通俗说就是决策树。
3、决策树学习也是数据挖掘中⼀个普通的⽅法。
在这⾥,每⼀个决策树都表述了⼀种树型结构,他由他的分⽀来对该类型的对象依靠属性进⾏分类。
每⼀个决策树能够依靠对源数据库的切割进⾏数据測试。
这个过程能够递归式的对树进⾏修剪。
当不能再进⾏切割或⼀个单独的类能够被应⽤于某⼀分⽀时。
orange data mining 用法
Orange Data Mining 是一个基于Python的数据可视化和数据分析工具,特别适用于数据挖掘任务。
以下是一些基本的用法步骤:
通过图形用户界面(GUI)使用Orange3:
1. 安装与启动:
首先按照之前的指令安装Orange3,创建并激活虚拟环境后,通过conda安装Orange3。
启动Orange3应用程序。
2. 导入数据:
打开Orange3,点击“File”菜单或工具栏上的“Ope n Data”按钮导入数据集,支持多种格式,如CSV、Excel 等。
数据导入后,可以在“Data Table”视图中查看和编辑数据。
3. 数据预处理:
使用Orange提供的各种数据预处理组件,包括但不限
于特征选择、离散化、标准化、缺失值处理等。
4. 可视化探索:
利用内置的可视化模块,如scatter plots、histogr ams、box plots等来探索数据分布和关系。
5. 建模与分析:
将数据拖放到机器学习算法组件上,如分类器、回归器、聚类器等进行训练和预测。
可以利用评估组件(如Cross Validation)检验模型性能。
6. 工作流构建:
在Orange的工作流界面上,可以通过拖拽方式将各个组件连接起来形成数据处理和分析流水线。
以上仅为简单示例,实际应用中可根据具体需求调整和扩展上述操作。
对于详细教程和API文档,请参考官方文档。
数据挖掘与统计学方法的比较分析在当今大数据时代,数据挖掘和统计学方法成为了从庞大数据中提取有用信息的重要手段。
数据挖掘(Data Mining)是通过从大量数据中发现潜在模式、关联性和规律来获得有价值的知识的过程。
而统计学是通过对数据进行收集、分析和解释来揭示数据背后的规律和趋势。
本文将对数据挖掘和统计学方法进行比较分析,并探讨它们各自的优势和适用场景。
一、数据挖掘方法数据挖掘方法基于大数据的特点,旨在从数据中提取隐藏的模式和知识。
数据挖掘方法使用了多种算法和技术:1.聚类分析:聚类分析是将数据根据相似性进行分类的方法。
它可以帮助我们找到数据集中的不同群组,并揭示数据之间的相似性和差异性。
2.分类模型:分类模型是通过已知标签的数据样本来预测新数据的分类。
它可以帮助我们做出预测和分类,并为未来的决策提供参考。
3.关联规则:关联规则是发现数据中的相关性和依赖性的方法。
它可以帮助我们找到数据中的隐藏关系,从而进行交叉销售、市场调研等应用。
二、统计学方法统计学方法是一种收集、处理、分析和解释数据的科学方法。
统计学方法侧重于对数据的描述和解释,通过运用各种统计技术来揭示数据的潜在模式和规律:1.描述统计:描述统计是对数据进行总结和描述的方法。
它通过计算平均值、中位数、标准差等指标来揭示数据的分布和趋势。
2.推断统计:推断统计是通过对样本数据进行统计分析来推断总体特征的方法。
它通过假设检验、置信区间等技术来做出总体特征的估计和推断。
3.回归分析:回归分析是研究变量之间关系的方法。
它可以帮助我们了解变量之间的因果关系,并进行预测和建模。
三、数据挖掘与统计学方法的比较数据挖掘方法和统计学方法有许多相似之处,也有一些不同之处:1.数据需求:数据挖掘方法通常需要大规模的数据集来获得准确的模式和规律,而统计学方法可以使用小样本数据来进行推断和分析。
2.数据处理:数据挖掘方法侧重于数据的清洗、转换和预处理,以便生成可供模型训练的数据集,而统计学方法则更加注重数据的描述和解释。
数据挖掘的分析方法数据挖掘是通过从大规模数据集中提取关键信息的过程。
在数据挖掘中,可以使用多种分析方法来发现隐藏在数据中的模式、关联、趋势和规律。
以下将详细介绍数据挖掘的几种常见的分析方法。
1. 关联规则分析(Association Rule Mining)关联规则分析是一种寻找数据中的相关关系的方法。
它通过发现数据项之间的频繁项集和关联规则来分析数据。
频繁项集是指经常同时出现的一组数据项,而关联规则描述了这些数据项之间的关系。
例如,在超市的购物数据中,可以利用关联规则分析来找到顾客购买某个商品时常同时购买的其他商品,从而帮助超市调整产品陈列和推荐相关产品。
2. 聚类分析(Cluster Analysis)聚类分析是将相似的数据点分组到一起的一种分析方法。
它通过计算数据点之间的相似度或距离来寻找具有相似特征的群组。
聚类分析可以帮助发现数据中的潜在群体和模式,以及进行可视化和分类。
例如,在市场细分的研究中,可以使用聚类分析来将顾客分成不同的群组,从而更好地理解他们的行为和需求。
3. 分类分析(Classification)分类分析是根据已知类别的数据样本来构建分类模型,并将未知样本分配到不同类别中的方法。
它是一种监督学习方法,通过从已标记的训练数据中学习特征和模式,然后将这些学习应用于未标记的测试数据来进行预测。
例如,在电子邮件中进行垃圾邮件识别时,可以使用分类分析来将邮件分为垃圾邮件和非垃圾邮件。
4. 预测分析(Prediction)预测分析是利用已知数据来预测未来事件或趋势的一种方法。
它基于历史数据和模式来构建预测模型,并对未来数据进行预测。
预测分析可以帮助企业做出决策、规划资源和优化业务流程。
例如,在销售预测中,可以使用预测分析来预测未来销售额,以帮助企业制定销售策略和计划生产量。
5. 回归分析(Regression)回归分析是一种用来预测和建立变量之间关系的统计方法。
它通过分析自变量与因变量之间的关系来预测未来的结果。
简述TDM的实施步骤引言TDM(Temporal Data Mining)是一种通过分析时间序列数据来发现模式和趋势的数据挖掘技术。
实施TDM的过程包括准备数据、选择算法、数据预处理、模式发现和结果解释等几个基本步骤。
本文将对TDM的实施步骤进行简述。
准备数据1.收集时间序列数据:首先需要确定所要分析的时间序列数据,可以是传感器数据、金融数据或其他领域的数据。
收集的数据需要包含时间戳和数值。
2.数据清理:对收集到的数据进行清洗,处理缺失值、异常值和重复值等问题。
3.数据整理:将清洗后的数据进行整理,按照时间序列的顺序排列。
选择算法选择适合分析时间序列数据的挖掘算法。
常用的TDM算法包括ARIMA模型、时间序列聚类、时间序列规则挖掘等。
数据预处理1.数据平滑:对数据进行平滑处理,以减少噪声和离群点的影响。
常用的平滑方法有移动平均法和指数平滑法。
2.数据聚集:将时间序列数据按照一定的时间段进行聚集,以降低数据维度和计算复杂度。
3.数据转换:进行数据变换,常见的方法有差分变换和对数变换。
4.数据归一化:对数据进行归一化处理,使得不同指标的数据具有可比性。
模式发现使用选择的TDM算法对预处理后的数据进行模式发现。
1.ARIMA模型:对时序数据进行ARIMA模型的拟合,进而预测未来的趋势。
2.时间序列聚类:将时间序列数据划分为不同的类别,每个类别描述一种特定的模式。
3.时间序列规则挖掘:发现时间序列数据中的潜在关联规则,帮助理解数据中的模式和趋势。
结果解释对发现的模式和趋势进行解释和分析,将结果可视化展示。
1.可视化展示:使用图表、图形等方式将分析结果进行可视化展示,以便更好地理解数据中的模式和趋势。
2.结果解释:将分析的结果进行解释,描述模式的含义和对业务的影响。
总结TDM的实施步骤包括准备数据、选择算法、数据预处理、模式发现和结果解释等几个基本步骤。
在实施过程中,需要对数据进行清洗和整理,选择适合的算法,对数据进行预处理,进行模式发现,并进行结果解释和分析。
什么是数据挖掘数据挖掘(Data Mining),又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。
并非所有的信息发现任务都被视为数据挖掘。
例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。
虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。
尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。
数据挖掘的起源为迎接前一节中的这些挑战,来自不同学科的研究者汇集到一起,开始着手开发可以处理不同数据类型的更有效的、可伸缩的工具。
这些工作建立在研究者先前使用的方法学和算法之上,在数据挖掘领域达到高潮。
特别地,数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2) 人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。
数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。
一些其他领域也起到重要的支撑作用。
特别地,需要数据库系统提供有效的存储、索引和查询处理支持。
源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。
分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。
数据挖掘能做什么1)数据挖掘能做以下六种不同事情(分析方法):·分类(Classification)·估值(Estimation)·预言(Prediction)·相关性分组或关联规则(Affinity grouping or association rules)·聚集(Clustering)·描述和可视化(Des cription and Visualization)·复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)2)数据挖掘分类以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘·直接数据挖掘目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。
Data Mining的十种分析方法
时间:2011-08-13 00:47来源:网络转载作者:不详围观: 376次
1.记忆基础推理法(Memory-Based Reasoning;MBR)
记忆基础推理法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。
记忆基础推理法中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。
距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。
记忆基础推理法的优点是它容许各种型态的数据,这些数据不需服从某些假设。
另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。
较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。
此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。
其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。
2.市场购物篮分析(Market Basket Analysis)
购物篮分析最主要的目的在于找出什么样的东西应该放在一起?商业上的
应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些
产品,找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。
举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计吸引客户的商业套餐等等。
购物篮分析基本运作过程包含下列三点:
(1)选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。
(2)经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。
(3)克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。
购物篮分析技术可以应用在下列问题上:
(1)针对信用卡购物,能够预测未来顾客可能购买什么。
(2)对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。
(3)保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。
(4)对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。
3.决策树(Decision Trees)
决策树在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。
典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。
此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。
4.基因算法(Genetic Algorithm)
基因算法学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。
基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。
基因算法在群集(cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。
5.群集侦测技术(Cluster Detection)
这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。
它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。
6.连结分析(Link Analysis)
连结分析是以数学中之图形理论(graph theory)为基础,藉由记录之间的关系发展出一个模式,它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。
例如电信服务业可藉连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案。
除了电信业之外,愈来愈多的营销业者亦利用连结分析做有利于企业的研究。
7.在线分析处理(On-Line Analytic Processing;OLAP)
严格说起来,在线分析处理并不算特别的一个数据挖掘技术,但是透过在线分析处理工具,使用者能更清楚的了解数据所隐藏的潜在意涵。
如同一些视觉处理技术一般,透过图表或图形等方式显现,对一般人而言,感觉会更友善。
这样的工具亦能辅助将数据转变成信息的目标。
8.类神经网络(Neural Networks)
类神经网络是以重复学习的方法,将一串例子交与学习,使其归纳出一足以区分的样式。
若面对新的例证,神经网络即可根据其过去学习的成果归纳后,推导出新的结果,乃属于机器学习的一种。
数据挖掘的相关问题也可采类神经学习的方式,其学习效果十分正确并可做预测功能。
9.区别分析(Discriminant Analysis)
当所遭遇问题它的因变量为定性(categorical),而自变量(预测变量)为定量(metric)时,区别分析为一非常适当之技术,通常应用在解决分类的问题上面。
若因变量由两个群体所构成,称之为双群体—区别分析(Two-Group Discriminant Analysis);若由多个群体构成,则称之为多元区别分析(Multiple Discriminant Analysis;MDA)。
(1)找出预测变量的线性组合,使组间变异相对于组内变异的比值为最大,而每一个线性组合与先前已经获得的线性组合均不相关。
(2)检定各组的重心是否有差异。
(3)找出哪些预测变量具有最大的区别能力。
(4)根据新受试者的预测变量数值,将该受试者指派到某一群体。
10.罗吉斯回归分析(Logistic Analysis)
当区别分析中群体不符合常态分配假设时,罗吉斯回归分析是一个很好的替代方法。
罗吉斯回归分析并非预测事件(event)是否发生,而是预测该事件的机率。
它将自变量与因变量的关系假定是S行的形状,当自变量很小时,机率值接近为零;当自变量值慢慢增加时,机率值沿着曲线增加,增加到一定程度时,曲线协率开始减小,故机率值介于0与1之间。