食品工程原理实验讲义
- 格式:doc
- 大小:2.69 MB
- 文档页数:31
生命科学与工程学院本科实验项目实验1 热风干燥实验1.1 实验目的1、学习干燥曲线和干燥速率曲线及临界湿含量的实验原理和测定方法;2、学习空气状态测定方法,学习被干燥物料与热空气之间对流传热系数和传质系数的测定方法;3、了解测定物料干燥速率曲线的工程意义;4、了解影响干燥速率的有关工程因素。
1.2 实验原理当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。
根据干燥过程中不同期间的特点,干燥过程分为两个阶段。
第一阶段为恒速干燥阶段。
在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。
因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段也称为表面气化控制阶段。
在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸气分压也维持恒定,故干燥速率恒定不变。
第二阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速阶段。
此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制,故此阶段亦称为内部迁移控制阶段。
随着湿含量逐渐减少,物料内部水分的迁移速率也逐渐减小,故干燥速率不断下降。
恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。
恒速阶段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据,本实验在恒定干燥条件下对浸透水的毛巾进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。
1、干燥速率的测定τττd dX d dX G G d G dw N C C C A -=-=-=式中:N A — 干燥速率(kg/kg.s ) Δτ— 时间间隔(s ) G C — 绝干物料量(kg )dX — 时间间隔内干燥气化的干基含水量2、物料的干基含水量XCC G G G X -=3、恒速阶段的对流传热系数αwtw C t t S dXr G t S Q)(-=∆=α 式中:t — 试样放置处的干球温度(℃) t w — 试样放置处的湿球温度(℃)r tw — 湿球温度下水的汽化潜热(J/kg. ℃)4、恒速阶段的对流传质系数K AGk ⨯=τ 式中:G — 恒速阶段除去的水分质量(kg )τ — 恒速阶段时间(s ) A —干燥面积(m 2)1.3 材料与仪器材料:毛巾主要仪器:分析天平、电热烘箱、空气温湿度计、秒表。
《食品工程原理实验》课程标准一、课程概述食品工程原理实验课是食品工程原理课程的一个重要教学环节,其基本任务是巩固和加深对食品工程原理课程中基本理论知识的理解,培养学生应用理论知识组织工程实验的能力及分析问题解决工程问题的能力,并在实验中学会一些操作技能。
二、课程目标1. 巩固和深化理论知识;食品工程原理课程中所讲授的理论、概念或公式,学生对它们的理解往往是肤浅的,对于各种影响因素的认识还不深刻,当学生做了食品工程原理实验后,对于基本原理的理解、公式中各种参数的来源以及使用范围会有更深入的认识。
2. 培养学生从事实验研究的能力;3. 培养学生实事求是、严肃认真的学习态度;三、课程内容和教学要求四、课程实施(一)课时安排与教学建议食品工程原理实验是食品工程原理课程中的实验教学环节,食品工程原理是食品科学与工程专业的必修课,系主干课程。
按照教学计划一般有18学时左右,具体课时安排见课程内容和教学要求。
(二)教学组织形式与教学方法要求1.按教学班分成若干实验组的形式进行教学组织,尽量使每个学生一组进行实验。
2.教学方法采用课堂讲授与学生独立实验相结合。
课堂教授主要是针对实验的目的和要求,实验中的注意事项,实验中须观察记录的数据向学生讲解清楚;学生独立实验是按照实验要求独立完成实验所要求的项目。
3.在教师指导下由学生独立完成实验。
五、教材编写与选用《食品工程原理实验》教材要在课程标准的统一要求下,实行多样化。
现还没有专门的食品工程原理实验教材可供选用,可以选用相近学科的教材[如祁存谦等主编的《简明化工原理实验》(华中师范大学出版社1993年版)],也可以选用根据本校实验条件自编的《食品工程原理实验》教材。
六、课程评价通过检查实验预习报告、观察实验态度、批改实验报告,确定实验成绩,每个实验中预习(报告)占10%,实际操作占30%,学习态度(考勤、值日、纪律、互助等)30%,实验总结报告30%。
该实验成绩占本课程总评成绩的10%。
实验一 恒压过滤常数测定实验【实验目的】1.熟悉板框压滤机的构造和操作方法;2.通过恒压过滤实验,验证过滤基本原理;3.学会测定过滤常数K 、q e 、τe 及压缩性指数S 的方法;4.了解操作压力对过滤速率的影响。
【实验原理】过滤是以某种多孔物质作为介质来处理悬浮液的操作。
在外力作用下,悬浮液中的液体通过介质的孔道而固体颗粒被截留下来,从而实现固液分离。
过滤操作中,随着过滤过程的进行,固体颗粒层的厚度不断增加,故在恒压过滤操作中,过滤速率不断降低。
影响过滤速率的主要因素除压强差、滤饼厚度外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等,在低雷诺数范围内,过滤速率计算式为:Lp a K u μεε∆-=223')1(1(5-1)式中,u ——过滤速度,m/s ;K ’——康采尼常数,层流时,K ’=5.0;ε——床层空隙率,m 3/m 3 ;μ——滤液粘度,Pa·s ;a ——颗粒的比表面积,m 2/m 3;△p ——过滤的压强差,Pa ;L ——床层厚度,m 。
由此可以导出过滤基本方程式: )('12Ve V v r p A d dV s +∆=-μτ(5-2)式中,V ——过滤体积,m 3;τ——过滤时间,s ;A ——过滤面积,m 2;Ve ——虚拟滤液体积,m 3;r ——滤饼比阻,1/m 2,r=5.0a 2(1-ε)2/ε3; r ’ ——单位压强下的比阻,1/m 2,r= r ’△p s ;V ——滤饼体积与相应滤液体积之比,无因次;S ——滤饼压缩性指数,无因次,一般S =0~1,对不可压缩滤饼,S =0。
恒压过滤时,令k=1/μr ’v ,K=2k △p 1-s,q=V/A ,q e =V e /A ,对(5-2)式积分得:(q+q e )2=K(τ+τe ) (5-3)式中,q ——单位过滤面积的滤液体积,23/m m ;q e ——单位过滤面积的虚拟滤液体积,23/m m ;τe ——虚拟过滤时间,s ;K ——滤饼常数,由物料特性及过滤压差所决定,s m /2。
实验五 传热实验一、实验目的1、了解换热器的结构及用途2、学习换热器的操作方法3、了解传热系数的测定方法4、测定所给换热器的传热系数K5、学习应用传热学的概念和原理去分析和强化传热过程,并实验之二、实验原理根据传热方程m t ∆=KA Q ,只要测得传热速率Q 、有关各温度和传热面积,即可算出传热系数K 。
在该实验中,利用加热空气和自来水通过列管式换热器来测定K ,只要测出空气的进出口温度、自来水进出口温度以及水和空气的流量即可。
在工作过程中如不考虑热量损失,则加热空气放出的热量Q 1与自来水得到的热量Q 2应相等,但实际上因热损失的存在,次两热量不相等,因此实验中以Q 2为准。
三、实验流程及设备本实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计等组成。
空气走管程,水走壳程。
列管式换热器的传热面积由管径、管数和管长进行计算。
四、实验步骤及操作要领1、熟悉设备流程,掌握各阀门、转子流量计和温度计的作用2、在实验开始时,先开水路,再开气路,最后再开加热器3、控制所需的气体和水的流量4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量和进出口温度,记录设备的有关参数,重复一次5、保持空气的流量不变,改变自来水的流量,重复第四步6、保持第四步水的流量,改变空气的流量,重复第四步7、实验结束后,关闭加热器、风机和自来水阀门五、实验数据记录和整理1、设备参数及有关常数:列管换热器的管数:n= 根 管长:l= m 空气温度: ℃ 大气压: MPa 转子材料: 换热流型: 逆流 换热面积: 0.4 m 22、实验数据记录表序号风机出口压强KPa 空气流量读数m 3/h 空气进口温度℃ 空气出口温度℃ 水流量L/h 水进口温度℃ 水出口温度℃ 1 14 16 117.8 30.2 120 20.2 22.3 2 14 16 115.0 30.1 120 20.2 22.3 1 14 16 115.0 29.6 80 20.4 22.9 2 14 16 114.5 30.6 80 20.4 23.2 1 14 16 110.7 32.9 40 20.4 25.9 2 14 16 116.0 33.3 40 20.4 25.9 1 14 11 111.0 32.0 40 20.4 24.6 2 14 11 115.0 31.5 40 20.4 24.4 114 6 113.0 30.2 40 20.4 22.9 2146115.729.54020.422.73、数据处理表 以序号①为例:水:水质量流量为s /kg 033.0360011203600V Wc =⨯=⨯=ρ水的平均温度为25.2123.222.202t t t 21=+=+=水的传热速率为06.291)2.203.22(4200033.0)t -t (12=-⨯⨯==PC C C W Q J/s 查表得:0.98tϕ=,对数平均温差89.372.202.303.228.117ln)2.202.30()3.228.117(t t ln t -t t 2121m=-----=∆∆∆∆=∆m t 0.98=,m m t t *37.89*0.9837.13t ∆=ϕ==所以水的m 21t ()pc pc K A W C t t ∆=-21m()0.033420019.60t 0.437.13pc pc W C t t K A -⨯⨯(22.3-20.2)===∆⨯传热系数为K W/m 5.34620.2-.3224.006.291)t -t (222===)(A Q K由热平衡可得)1221()-(t t C W T T C W Q cp c ph h -==故可得空气的传热系数为2112()0.03342007.62()0.4pc pc W C t t K A T T -⨯⨯(22.3-20.2)===-⨯(117.8-22.3)水W/m 2K则传热系数K 的平均值为219.607.6213.61W /m K 22K K K ++===水空序号空气流量10-3m 3/s 水流量kg/s 水的算术平均温度水的比热J/kg 传热速率J/s 对数平均温差换热面积m 2传热系数K W/m 2KK 的平均值W/m 2K1 4.44 0.033 21.25 4200 291.06 37.13 0.4 19.60 13.952 4.44 0.033 21.25 4200 291.06 36.28 0.4 20.06 14.31 1 4.44 0.022 21.65 4200 231.00 35.27 0.4 16.37 11.57 2 4.44 0.022 21.80 4200 258.72 36.26 0.4 17.84 12.77 1 4.44 0.011 23.15 4200 254.10 37.00 0.4 17.17 12.67 2 4.44 0.011 23.15 4200 254.10 38.93 0.4 16.32 12.00 1 3.06 0.011 22.50 4200 194.04 36.51 0.4 13.29 9.71 2 3.06 0.011 22.40 4200 184.80 37.11 0.4 12.45 8.99 1 1.67 0.011 21.65 4200 115.50 35.48 0.4 8.14 5.81 21.670.01121.554200106.2635.38 0.47.515.30六、实验结果及讨论1.求出换热器在不同操作条件下的传热系数 答:见上解答。
食品工程原理复习第一章 流体力学基础1.单元操作与三传理论的概念及关系。
不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉碎、乳化萃取、吸附、干燥 等。
这些基本的物理过程称为 单元操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。
凡是遵循流体流动基本规律的单元操作,均可用动量传递的理论去研究。
热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。
凡是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。
质量传递 : 两相间物质的传递过程即为质量传递。
凡是遵循传质基本规律的单元操作,均可用质量传递的理论去研究。
单元操作与三传的关系“三传理论”是单元操作的理论基础,单元操作是“三传理论”的具体应用。
同时,“三传理论”和单元操作也是食品工程技术的理论和实践基础2.粘度的概念及牛顿内摩擦(粘性)定律。
牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。
μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈大。
所以称为粘滞系数或动力粘度,简称为粘度3.理想流体的概念及意义。
理想流体的粘度为零,不存在内摩擦力。
理想流体的假设,为工程研究带来方便。
4.热力体系:指某一由周围边界所限定的空间内的所有物质。
边界可以是真实的,也可以是虚拟的。
边界所限定空间的外部称为外界。
5.稳定流动:各截面上流体的有关参数(如流速、物性、压强)仅随位置而变化,不随时间而变。
6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。
7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。
8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。
食品工程原理实验指导王洪志食品工程原理-前言一、食品工程原理实验的特点食品工程原理实验属于工程实验范畴,它不同于基础课程的实验。
后者面对的是基础科学,采用的方法是理论的、严密的,处理的对象通常是简单的、基本的甚至是理想的,而工程实验面对的是复杂的实际问题和工程问题。
对象不同,实验研究方法也必然不同,工程实验的困难在于变量多、涉及的物料千变万化、设备大小悬殊,实验工作量之大之难是可想而知的。
因此不能把处理一般物理实验的方法简单地套用于食品工程原理实验。
数学模型方法和因次论指导下的实验研究方法是研究工程问题的两个基本方法,因为这两种方法可以非常成功地使实验研究结果由小见大、由此及彼地应用于大设备生产设计上。
二、实验教学目的1. 培养学生从事实验研究的初步能力。
从科学实验中,我们体会到从事实验研究应具有这样一些能力:对实验现象有敏锐的观察能力;运用各种实验手段正确地攫取实验数据和实验现象实事求是地得出结论,并能提出自己见解的能力以及对所研究的问题具有旺盛的探索和创造力。
2. 初步掌握一些有关食品工程学的实验研究方法和实验技术。
为此,基础实验中也应力求接触一些新的测试技术和手段,以便能适应不断发展着的科学技术。
3. 培养学生运用所学的理论,分析和解决实验问题的能力。
在理论与实验相结合的过程中,必将有助于巩固和加深对某些基本原理的理解,进而在某些方面还能得到适当的充实和提高。
三、实验教学要求1. 认真阅读实验指导书和有关参考资料,了解实验目的和要求。
2. 进行实验室现场预习,了解实验装置,摸清实验流程、测试点、操作控制点,此外还须了解所使用的检测仪器、仪表。
3. 预先组织好5—6人的实验小组,实验小组讨论并拟定实验方案,预先作好分工。
4. 进行实验操作:要求认真细致地记录实验原始数据。
操作中应能进行理论联系实际的思考。
5. 实验数据的处理,如果用计算机处理实验数据,则学生须有一组手算的计算示例。
6. 撰写实验报告。