高考数学复习教案:直线与圆锥曲线的位置关系
- 格式:doc
- 大小:1.03 MB
- 文档页数:25
课题:直线与圆锥曲线的位置关系授课者:滦县第十中学陈智勇高考要求1掌握直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题2会运用“设而不求”解决相交弦长问题及中点弦问题3会利用圆锥曲线的焦半径公式解决焦点弦的问题掌握求焦半径以及利用焦半径解题的方法4会用弦长公式|AB|=21k|x2-x1|求弦的长;5会利用“设点代点、设而不求”的方法求弦所在直线的方程(如中点弦、相交弦等)、弦的中点的轨迹等一、复习目标(一)知识目标1、掌握用坐标法判断直线与圆锥曲线的位置关系,进一步体会曲线方程的解与曲线上点的坐标之间的关系;2、领会中点坐标公式和弦长公式及韦达定理在解题中的灵活应用;3、理解“点差法”在解决直线与圆锥曲线位置关系中的解题技巧;(二)能力目标1、通过多媒体课件的演示,培养学生发现运动规律、认识规律的能力.2、培养学生运用方程思想、分类讨论、数形结合思想解决问题的能力.(三)情感目标1、通过课件的演示获得培养学生探索数学的兴趣.2、通过师生、生生的合作学习,树立竞争意识与合作精神,感受学习交流带来的成功感,激发提出问题和解决问题的勇气,树立自信心。
二、教学重点与难点重点:直线与圆锥曲线的位置关系的判定及方程思想、分类讨论思想、数形结合思想运用;难点:等价转换、“点差法”设而不求在解题中的灵活应用。
三、方法指导:1、在研究直线与圆锥曲线的交点个数问题时,不要仅由判别式进行判断,一定要注意二次项的系数对交点个数的影响。
2、涉及弦长问题时,利用弦长公式及韦达定理求解,涉及弦的中点及中点弦问题,利用点差法较为简便。
3、要注意判别式和韦达定理在解题中的作用。
应用判别式,可以确定直线和圆锥曲线的位置关系,确定曲线中的参数取值范围,求几何极值等。
应用韦达定理,可以解先相交时的弦长问题,弦的中点问题或最值问题。
4、 要重视方程思想、等价转换思想、分类讨论、数形结合等数学思想的运用。
第九节 圆锥曲线的综合问题 第一课时 直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)能解决直线与椭圆、抛物线的位置关系等问题. (2)理解数形结合的思想. (3)了解圆锥曲线的简单应用. 2.定值(定点)与最值问题理解基本几何量,如:斜率、距离、面积等概念,掌握与圆锥曲线有关的定值(定点)、最值问题.3.存在性问题能够合理转化,掌握与圆锥曲线有关的存在性问题.知识点一 直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.易误提醒 (1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.[自测练习]1.若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:结合图形(图略)分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0),故选C.答案:C2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解析:直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.答案:A知识点二 弦长问题设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+1k 2·|y 1-y 2| =1+1k2·(y 1+y 2)2-4y 1y 2. 必备方法 遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0;在抛物线y 2=2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =py 0.[自测练习]3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析:则由题意得⎩⎪⎨⎪⎧c =2,b2a =1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.答案:x 24+y 22=14.已知抛物线y =ax 2的焦点到准线的距离为2,则直线y =x +1截抛物线所得的弦长等于________.解析:由题设p =12a =2,∴a =14.抛物线方程为y =14x 2,焦点为F (0,1),准线为y =-1.直线过焦点F ,联立⎩⎪⎨⎪⎧y =14x 2,y =x +1,消去x ,整理得y 2-6y +1=0,∴y 1+y 2=6, ∴所得弦|AB |=|AF |+|BF |=y 1+1+y 2+1=8. 答案:8考点一 直线与圆锥曲线的位置关系|1.(2016·兰州检测)若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0解析:∵直线mx +ny =4和圆O :x 2+y 2=4没有交点,∴4m 2+n2>2,∴m 2+n 2<4.∴m 29+n 24<m 29+4-m 24=1-536m 2<1,∴点(m ,n )在椭圆x 29+y 24=1的内部,∴过点(m ,n )的直线与椭圆x 29+y 24=1的交点有2个,故选B.答案:B2.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0 D.⎝⎛⎭⎫-153,-1 解析:由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6,得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2-4(1-k 2)×(-10)>0,x 1+x 2=4k1-k2>0,x 1x 2=-101-k2>0,解得-153<k <-1. 答案:D考点二 弦长问题|已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,O 为坐标原点,点P ⎝⎛⎭⎫-1,22在椭圆上,且PF 1→·F 1F 2→=0,⊙O 是以F 1F 2为直径的圆,直线l :y =kx +m 与⊙O 相切,并且与椭圆交于不同的两点A ,B .(1)求椭圆的标准方程;(2)当OA →·OB →=λ,且满足23≤λ≤34时,求弦长|AB |的取值范围.[解] (1)依题意,可知PF 1⊥F 1F 2,∴c =1,1a 2+12b 2=1,a 2=b 2+c 2,解得a 2=2,b 2=1,c 2=1.∴椭圆的方程为x 22+y 2=1.(2)直线l :y =kx +m 与⊙O :x 2+y 2=1相切,则|m |k 2+1=1,即m 2=k 2+1,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,得(1+2k 2)x 2+4kmx +2m 2-2=0, ∵直线l 与椭圆交于不同的两点A ,B . 设A (x 1,y 1),B (x 2,y 2). ∴Δ>0⇒k 2>0⇒k ≠0,x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 21+2k 2=1-k 21+2k 2,∴OA →·OB →=x 1x 2+y 1y 2=1+k 21+2k 2=λ∴23≤1+k 21+2k 2≤34,∴12≤k 2≤1, ∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2=22(k 4+k 2)4(k 4+k 2)+1设u =k 4+k 2⎝⎛⎭⎫12≤k 2≤1, 则34≤u ≤2,|AB |=22u4u +1=212-12(4u +1),u ∈⎣⎡⎦⎤34,2, ∵|AB |(u )在⎣⎡⎦⎤34,2上单调递增, ∴62≤|AB |≤43. 解决弦长问题的注意点(1)利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在时,可直接求交点坐标再求弦长.(2)涉及焦点弦长时要注意圆锥曲线定义的应用.已知抛物线y 2=8x 的焦点为F ,直线y =k (x -2)与此抛物线相交于P ,Q 两点,则1|FP |+1|FQ |=( ) A.12 B .1 C .2D .4解析:设P (x 1,y 1),Q (x 2,y 2),由题意可知, |PF |=x 1+2,|QF |=x 2+2,则1|FP |+1|FQ |=1x 1+2+1x 2+2=x 1+x 2+4x 1x 2+2(x 1+x 2)+4,联立直线与抛物线方程消去y 得,k 2x 2-(4k 2+8)x +4k 2=0,可知x 1x 2=4,故1|FP |+1|FQ |=x 1+x 2+4x 1x 2+2(x 1+x 2)+4=x 1+x 2+42(x 1+x 2)+8=12.故选A.答案:A考点三 中点弦问题|弦的中点问题是考查直线与圆锥曲线位置关系的命题热点.归纳起来常见的探究角度有:1.由中点弦确定直线方程. 2.由中点弦确定曲线方程. 3.由中点弦解决对称问题. 探究一 由中点弦确定直线方程1.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.解析:设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2).则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2).又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.答案:x +2y -8=0探究二 由中点弦确定曲线方程2.过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则抛物线方程为________.解析:设点A (x 1,y 1),B (x 2,y 2),依题意得,y ′=x p ,切线MA 的方程是y -y 1=x 1p (x-x 1),即y =x 1p x -x 212p .又点M (2,-2p )位于直线MA 上,于是有-2p =x 1p ×2-x 212p,即x 21-4x 1-4p 2=0;同理有x 22-4x 2-4p 2=0,因此x 1,x 2是方程x 2-4x -4p 2=0的两根,则x 1+x 2=4,x 1x 2=-4p 2.由线段AB 的中点的纵坐标是6得,y 1+y 2=12,即x 21+x 222p =(x 1+x 2)2-2x 1x 22p=12,16+8p 22p=12,解得p =1或p =2.答案:x 2=2y 或x 2=4y探究三 由中点弦解决对称问题3.已知双曲线x 2a 2-y 2b 2=1(a ,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 的值为( )A.32 B.52 C .2D .3解析:由双曲线的定义知2a =4,得a =2,所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m=32,选A. 答案:A对于中点弦问题,常用的解题方法是平方差法.其解题步骤为 ①设点:即设出弦的两端点坐标. ②代入:即代入圆锥曲线方程.③作差:即两式相减,再用平方差公式把上式展开. ④整理:即转化为斜率与中点坐标的关系式,然后求解.28.设而不求整体变换思想在圆锥曲线结合问题中的应用【典例】 (2016·台州模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点与抛物线C :x 2=43y 的焦点重合,F 1,F 2分别是椭圆的左、右焦点,且离心率e =12,过椭圆右焦点F 2的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的方程;(2)若OM →·ON →=-2,求直线l 的方程;(3)若AB 是椭圆C 经过原点O 的弦,MN ∥AB ,求证:|AB |2|MN |为定值.[思维点拨](1)待定系数法求a ,b .(2)注意判断l 的斜率是否存在.(3)利用弦长公式表示出|AB |,|MN |后整体变形得结论.[解] (1)椭圆的顶点为(0,3),即b =3,e =c a =12,∴a =2,∴椭圆的标准方程为x 24+y 23=1. (2)由题可知,直线l 与椭圆必相交. ①当直线斜率不存在时,经检验不合题意.②当斜率存在时,设直线l 的方程为y =k (x -1)(k ≠0), 且M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),得(3+4k 2)x 2-8k 2x +4k 2-12=0,x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,OM →·ON →=x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-(x 1+x 2)+1]=4k 2-123+4k 2+k 2⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-5k 2-123+4k 2=-2,解得k =±2,故直线l 的方程为y =2(x -1)或y =-2(x -1). (3)证明:设M (x 1,y 1),N (x 2,y 2),A (x 3,y 3),B (x 4,y 4), 由(2)可得|MN |=1+k 2|x 1-x 2| =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫8k 23+4k 22-4⎝ ⎛⎭⎪⎫4k 2-123+4k 2=12(k 2+1)3+4k 2,由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx 消去y 并整理得x 2=123+4k 2,|AB |=1+k 2|x 3-x 4|=43(1+k 2)3+4k 2,∴|AB |2|MN |=48(1+k 2)3+4k 212(k 2+1)3+4k 2=4,为定值. [方法点评] 对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值.A 组 考点能力演练1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.答案:A2.(2016·福州质检)抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点,若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2xC .x 2=2yD .y 2=-2x解析:设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减可得2p =y 1-y 2x 1-x 2×(y 1+y 2)=k AB ×2=2,即可得p =1,∴抛物线C 的方程为y 2=2x ,故选B.答案:B3.已知双曲线 x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A.⎝⎛⎭⎫-33,33 B .(-3,3) C.⎣⎡⎦⎤-33,33 D .[-3,3]解析:由题意知F (4,0),双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.答案:C4.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =( )A.12 B.22C. 2D .2解析:如图所示,设F 为焦点,取AB 的中点P ,过A ,B 分别作准线的垂线,垂足分别为G ,H ,连接MF ,MP ,由MA →·MB →=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,所以∠GAM =∠AMP =∠MAP ,又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF ,所以∠AFM =∠AGM=90°,则MF ⊥AB ,所以k =-1k MF=2. 答案:D5.已知椭圆x 24+y 2b 2=1(0<b <2),左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32 D. 3解析:由椭圆的方程,可知长半轴长为a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a=3,可求得b 2=3,即b = 3. 答案:D6.抛物线y 2=-12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形的面积等于________.解析:y 2=-12x 的准线方程为x =3,双曲线x 29-y 23=1的渐近线为y =±33x . 设抛物线的准线与双曲线的两条渐近线的交点分别为A ,B ,由⎩⎪⎨⎪⎧ x =3,y =33x ,求得A (3,3),同理B (3,-3),所以|AB |=23,而O 到直线AB 的距离d =3,故所求三角形的面积S =12|AB |×d =12×23×3=3 3. 答案:3 3 7.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.解析:如图,由题知OA ⊥AF ,OB ⊥BF 且∠AOB =120°,∴∠AOF =60°.又OA =a ,OF =c ,∴a c =OA OF =cos 60°=12, ∴c a=2. 答案:28.直线l 过椭圆x 22+y 2=1的左焦点F ,且与椭圆相交于P ,Q 两点,M 为PQ 的中点,O 为原点.若△FMO 是以OF 为底边的等腰三角形,则直线l 的方程为________.解析:法一:由椭圆方程得a =2,b =c =1,则F (-1,0).在△FMO 中,|MF |=|MO |,所以M 在线段OF 的中垂线上,即x M =-12, 设直线l 的斜率为k ,则其方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,得x 2+2k 2(x +1)2-2=0, 即(2k 2+1)x 2+4k 2x +2(k 2-1)=0,∴x P +x Q =-4k 22k 2+1,而M 为PQ 的中点, 故x M =12(x P +x Q )=-2k 22k 2+1=-12, ∴k 2=12,解得k =±22. 故直线l 的方程为y =±22(x +1),即x ±2y +1=0. 法二:设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),由题意知k PQ =-k OM ,由P 、Q 在椭圆上知⎩⎨⎧ x 212+y 21=1,x 222+y 22=1,两式相减整理得k PQ =y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2)=-x 02y 0,而k OM =y 0x 0,故x 02y 0=y 0x 0, 即x 20=2y 20,所以k PQ =±22,直线PQ 的方程为y =±22(x +1),即x ±2y +1=0. 答案:x ±2y +1=09.(2016·洛阳模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (3,0),且椭圆C 经过点P ⎝⎛⎭⎫3,12. (1)求椭圆C 的方程;(2)设过点F 的直线l 交椭圆C 于A ,B 两点,交直线x =m (m >a )于M 点,若k P A ,k PM ,k PB 成等差数列,求实数m 的值.解:(1)由题意,⎩⎪⎨⎪⎧ a 2-b 2=3,3a 2+14b 2=1,得a 2=4,b 2=1. ∴椭圆C 的方程为x 24+y 2=1. (2)设直线l :y =k (x -3),A (x 1,y 1),B (x 2,y 2),M (m ,y m ).将直线方程代入椭圆方程x 2+4y 2=4中,得(1+4k 2)x 2-83k 2x +12k 2-4=0,则x 1+x 2=83k 21+4k 2,x 1·x 2=12k 2-41+4k 2. 此时k P A =y 1-12x 1-3=k -12(x 1-3),k PB =y 2-12x 2-3=k -12(x 2-3). ∴k P A +k PB =⎣⎢⎡⎦⎥⎤k -12(x 1-3)+⎣⎢⎡⎦⎥⎤k -12(x 2-3) =2k -x 1+x 2-232[x 1x 2-3(x 1+x 2)+3]=2k -83k 21+4k 2-232⎝ ⎛⎭⎪⎫12k 2-41+4k 2-3·83k 21+4k 2+3=2k - 3.又M (m ,y m )在直线l 上,∴y m =k (m -3),则k PM =y m -12m -3=k -12(m -3).若k P A ,k PM ,k PB 成等差数列,则2k PM =k P A +k PB ,则2k -1m -3=2k -3,解得m =433. 10.已知抛物线C :y 2=2px (p >0)上一点P (x 0,-2)到该抛物线焦点的距离为2,动直线l 与C 交于两点A ,B (A ,B 异于点P ),与x 轴交于点M ,AB 的中点N ,且直线P A ,PB 的斜率之积为1.(1)求抛物线C 的方程;(2)求|AB ||MN |的最大值. 解:(1)因为点P (x 0,-2)在抛物线上,所以2px 0=4⇒x 0=2p. 由抛物线的定义知,2p +p 2=2⇒(p -2)2=0⇒p =2, 故抛物线C 的方程为y 2=4x .(2)由(1)知,x 0=1,得P (1,-2).设A (x 1,y 1),B (x 2,y 2),设直线P A ,PB 的斜率分别为k 1,k 2,设直线AB 的方程为x =my +t ,联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,消去x 得y 2-4my -4t =0. Δ=16m 2+16t >0⇒m 2+t >0,①y 1+y 2=4m ,y 1y 2=-4t ,因为k 1=y 1+2x 1-1=y 1+2y 214-1=4y 1-2. 同理k 2=4y 2-2.所以k 1k 2=4y 1-2·4y 2-2=1,即y 1y 2-2(y 1+y 2)-12=0,即-4t -8m -12=0⇒t =-2m -3.代入①得m 2-2m -3>0⇒m <-1或m >3.因为|AB |=1+m 2|y 1-y 2| =1+m 2·(y 1+y 2)2-4y 1y 2 =1+m 2·16m 2+16t =41+m 2·m 2-2m -3,又y M =0,y N =y 1+y 22=2m , 则|MN |=1+m 2|y M -y N |=21+m 2|m |. 所以|AB ||MN |=2m 2-2m -3|m |=21-2m -3m 2 =2-3⎝⎛⎭⎫1m +132+43, 故当m =-3时,|AB ||MN |取到最大值433. B 组 高考题型专练1.(2015·高考福建卷)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p 2. 由已知|AF |=3,得2+p 2=3, 解得p =2,所以抛物线E 的方程为y 2=4x .(2)法一:如图,因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223, 所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.法二:设以点F 为圆心且与直线GA 相切的圆的半径为r .因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0,从而r =|22+22|8+9=4217. 又直线GB 的方程为22x +3y +22=0,所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.2.(2015·高考重庆卷)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PF 1|=|PQ |,求椭圆的离心率e .解:(1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1. (2)法一:连接QF 1,如图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2,求得x 0=±a c a 2-2b 2,y 0=±b 2c. 由|PF 1|=|PQ |>|PF 2|得x 0>0,从而|PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2. 由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a ,于是(2+2)(1+2e 2-1)=4,解得e=12⎣⎢⎡⎦⎥⎤1+⎝⎛⎭⎪⎫42+2-12=6- 3.法二:连接QF1,如图,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PQ,|PF1|=|PQ|,知|QF1|=2|PF1|,因此,4a-2|PF1|=2|PF1|,则|PF1|=2(2-2)a,从而|PF2|=2a-|PF1|=2a-2(2-2)a=2(2-1)a,由PF1⊥PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e=ca =|PF1|2+|PF2|22a=(2-2)2+(2-1)2=9-62=6- 3.。
①掌握点与椭圆、双曲线、抛物线位置关系的判定方法:代数方法②掌握直线与椭圆、双曲线、抛物线位置关系(交点个数) 的判定方法:代数方法和几何法(数型结合方法)。
③掌握直线与椭圆、双曲线、抛物线位置关系的常见题型的解题思路与方法,会根据直线与圆锥曲线的位置确定参数的值(或范围)。
①培养学生运算能力、探索能力,分析问题解决问题的能力;②培养学生数形结合思想、转化思想函数方程思想及分类讨论思想。
①培养学生运动变化观点;②培养学生认识事物的特殊性与一般性规律。
直线与圆锥曲线位置关系的判定是高中数学的重点内容,是高考数学考查的重要内容,在高考试卷中占有相当的分量。
该内容经常与方程组的解的讨论、方程的区间根、直线的斜率,以及数形结合思想,分类讨论思想、转化化归思想、函数方程思想方法等知识相结合。
该内容知识的综合性、应用性较强,是学生学习的难点之一。
点、直线与圆锥曲线位置关系的判定方法,以及判定方法的灵活应用。
直线与圆锥曲线在某个区间内有交点的问题。
求参数的取值范围。
根据本内容的特点结合学生的实际,采用讲解和学生讨论探索,最后教师总结归纳的教学方法。
指导学生掌握通性,同时注重对一题多解和一题多变的训练,培养思维能力。
<>1、给出下列曲线:① 4x+2y-1=0 , ② ,③⑤=2x. 其中与直线 y=-2x-3 有交点的所有曲线是(A .①③ B.②④⑤ C.①②③ D.②③④2①若题目中没给出直线方程,假设直线方程时应对直线方程的斜率存在和不存在两种情况进行分类讨论。
②对于研究给定区间的位置关系问题,应转化为方程ax2+bx+c=0 的区间根问题,结合二次函数图象加以解决。
联立方程,消去x或y,得到关于x (或y)的方程ax2+bx+c=0 (或ay2+by+c=0)。
(1)当a=0 时 (2)当 a ≠0 时3<1>判断直线与圆锥曲线交点个数;<2>证明直线与圆锥曲线的位置关系;<3>已知直线与圆锥曲线的位置关系,求直线方程(或确定参数的值);<4>已知直线与圆锥曲线的位置关系,求参数的取值范围。
直线与圆锥曲线的位置关系教案一、教学目标1. 理解直线与圆锥曲线的位置关系,掌握相关概念和性质。
2. 能够运用直线与圆锥曲线的位置关系解决实际问题。
3. 培养学生的逻辑思维能力和数学解决问题的能力。
二、教学内容1. 直线与圆锥曲线的基本概念和性质。
2. 直线与圆锥曲线的相切、相离和相交情况。
3. 直线与圆锥曲线的交点个数与判别式。
4. 直线与圆锥曲线的应用问题。
三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。
2. 通过图形演示和实际例子,引导学生直观理解直线与圆锥曲线的位置关系。
3. 鼓励学生进行自主学习和合作学习,提高解决问题的能力。
四、教学准备1. 教学课件和教学素材。
2. 直尺、圆规等绘图工具。
3. 练习题和答案。
五、教学过程1. 引入:通过简单的例子,引导学生思考直线与圆锥曲线的位置关系。
2. 讲解:讲解直线与圆锥曲线的基本概念和性质,解释相切、相离和相交情况的定义。
3. 案例分析:分析具体的直线与圆锥曲线的位置关系案例,引导学生通过判别式判断交点个数。
4. 练习:让学生进行相关的练习题,巩固所学知识。
6. 作业布置:布置相关的练习题,巩固所学知识。
六、教学拓展1. 探讨直线与圆锥曲线的位置关系在实际问题中的应用,如光学、工程等领域。
2. 介绍直线与圆锥曲线位置关系在现代数学中的研究进展和应用。
七、课堂小结1. 回顾本节课所学内容,直线与圆锥曲线的位置关系及其应用。
2. 强调重点概念和性质,提醒学生注意在实际问题中的应用。
八、作业布置1. 完成课后练习题,巩固所学知识。
2. 选择一道与直线与圆锥曲线位置关系相关的综合应用题,进行练习。
九、课后反思1. 学生对本节课内容的掌握程度,哪些方面需要加强。
2. 教学方法的适用性,是否达到预期教学效果。
十、教学评价1. 学生作业、练习题和课堂表现的评价。
2. 对学生掌握直线与圆锥曲线位置关系知识的程度的评价。
3. 教学反馈,了解学生对教学内容的满意度和建议。
菏泽第一中学《直线与圆锥曲线的位置关系》教学设计设计人:直线与圆锥曲线的位置关系教学设计设计人:【教材分析】圆锥曲线是解析几何的核心内容,在整章的复习中,主要以课本知识系统为线索,全面、深刻地复习基础知识、基本技能和其中蕴涵的基本的数学思想方法.本章内容主要突出了解析几何中的数形结合思想,方程思想,函数思想,对应和运动变化思想等数学思想及定义法,待定系数法,参数法等常用的基本方法.其中,直线与圆锥曲线的位置关系是考查的重点内容之一,主要涉及的问题有直线与圆锥曲线的位置关系的判断,求相交弦长,焦点弦长及中点弦等问题,主要考查数形结合,等价转化,函数与方程等数学思想.【学情分析】《直线与圆锥曲线的位置关系》.学生在高二解析几何的学习中已经基本掌握了圆锥曲线的定义、方程、性质以及直线与圆的位置关系等,具备了一定的知识基础和分析问题、解决问题的能力.通过对方程组解的讨论,巩固用代数的方法来研究直线与圆锥曲线公共点的问题,掌握直线与圆锥曲线之间的位置关系的判断,进一步领会用代数方法研究几何问题的数学本质.同时,借助几何画板,运用运动变化的观念,让学生在直接观察、运动变化的过程中实现自主探究,数形结合,以形助数.【教学目标】1.知识与技能:了解直线与圆锥曲线的位置关系,能利用对方程组解的的讨论来研究直线与圆锥曲线的位置关系2.过程与方法:在探究过程中,运用数形结合和方程的思想,以运动的观点观察问题,思考问题,分析问题,进一步提高学生解决问题的能力3.情感、态度与价值观:让学生欣赏圆锥曲线曲线之美,体会数形结合和方程的思想在解决几何问题中的价值,体验探索的乐趣,增强学习数学的乐趣。
【教学重点】重点:用代数的方法(对方程组解的讨论)来研究直线与圆锥曲线的公共点问题,对直线与圆锥曲线仅有一个公共点时位置关系的应用探究。
难点:对直线与圆锥曲线仅有一个公共点时位置关系的应用探究,直线与圆锥曲线的综合应用。
【教学程序与设计环节】——与以前所学知识类比,引起认知上的冲突——通过对一个讨论题组的研究,巩固研究问题的基本方法——在讨论和探索中,进一步巩固基本的研究方法,发现容易出错之处并引起重视——师生交流共同小结,归纳一般方法及易错点,解决课前提出的疑问——巩固本节课的知识及方法【教学过程与操作设计】【情景一】 问题1:直线与圆位置关系有相离,相切,相交三种.如果把圆换成椭圆、双曲线、抛物线,又有怎样的位置关系呢?如何判定?【设计意图】与直线和圆的位置关系进行类比,引起学生认知上的冲突.【情景二】讨论题组1题型一:直线与圆锥曲线的公共点问题1.直线y=kx-k+1与椭圆 14922=+y x 的位置关系为( ) (A) 相交 (B) 相切 (C) 相离 (D) 不确定2.已知双曲线方程x 2-y 2=1,过P (0,1)点的直线l 与双曲线只有一个公共点,则l 的条数为( )(A) 4 (B) 3 (C) 2 (D) 13.直线2+=kx y 与抛物线x y 82=有且只有一个公共点,则k 的值为4(A ) 1 (B) 1或3 (C )0 (D) 1或04.已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围问题2:浏览之后想一想,你打算用什么方法来解决这几个问题呢?【设计意图】复习巩固直线与圆锥曲线位置关系判断的两种方法,几何法和代数法,注意利用数形结合。
复习专题二 直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系问题是高考的重点内容,除在客观题中考查外,解答题对解析几何的考查也以直线与圆锥曲线的位置关系为主。
本专题的复习内容与要求是:1.掌握研究直线与二次曲线的位置关系问题(如弦长、中点弦、对称等)的基本方法.2.能够综合运用代数、三角、几何方面的知识解决直线与圆锥曲线的位置关系问题。
圆锥曲线的几种常见题型(1)直线与圆锥曲线位置关系的判定;(2)求直线与圆锥曲线相交的弦长的方法:设弦端点A ),(),,(2211yx B y x ______________________.AB =(3)圆锥曲线的弦中点问题的解法:(4)解析几何中的最值和定值的方法: 【热身练习】1、方向向量为)2,1(--=a 且与抛物线2x y =相切的直线的方程是______________。
2、“a =b ”是“直线222()()2y x x a y b =+-++=与圆相切"的______________条件。
3、过椭圆141622=+y x 内一点)1,1(M 的直线交椭圆于B A ,两点,且满足MB AM =,则该直线的方程_________。
4、直线3y x =-与抛物线24yx =交于,A B 两点,过,A B 两点向抛物线的准线作垂线,垂足分别为,P Q ,则梯形APQB 的面积为______________.5、等轴双曲线C :221xy -=的左焦点为F ,若点P 为左下半支上任意一点(不同于左顶点),则直线PF的斜率的取值范围是________________。
6、已知实数x,y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值是_____________。
7、已知圆M :1)sin ()cos (22=-++θθy x ,直线l :kx y =,下列四个命题:A 、对任意实数k 与θ,直线l 和圆M 相切B 、对任意实数k 与θ,直线l 和圆M 有公共点C 、对任意实数θ,必存在对实数k ,使得直线l 和圆M 相切D 、对任意实数k ,必存在实数θ,使得直线l 和圆M 相切 其中真命题的代号是 (写出所有真命题)【例题分析】例1、已知抛物线y 2=2px (p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M. (1)求抛物线方程;(2)过M 作MN ⊥FA, 垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M.当K (m ,0)是x 轴上一动点时,讨论直线AK 与圆M 的位置关系。
直线与圆锥曲线的位置关系1一、教学目标1、熟练的掌握直线与圆锥曲线的位置关系的判断方法,会求直线与圆锥曲线相交时的弦长、定值、范围等问题。
2、体会方程的数学思想、转化的数学思想及点差法、判别式法等数学思想方法应用。
二、知识要点分析1、直线与圆锥曲线的位置关系的判断,(直线与圆锥曲线的位置关系有相交、相切、相离)设直线L 的方程是:0=++C By Ax ,圆锥曲线的方程是0),(=y x f ,则由⎩⎨⎧==++0)y ,x (f 0C By Ax 消去)或消去y x (,得:02=++c bx ax )0(≠a …………(*) 设方程(*)的判别式ac b 42-=∆ 交点个数问题①当a =0或a ≠0,∆=0时,曲线和直线只有一个交点; ②当a ≠0,∆>0时,曲线和直线有两个交点; ③当a ≠0,∆<0时,曲线和直线没有交点。
2、直线L 与圆锥曲线相交时的弦长。
设直线L 与圆锥曲线交于),(),,(2211y x Q y x P ,直线L 的斜率为k ,则2122122124)(1||1||x x x x k x x k PQ -+⋅+=-+==||11212y y k -+=2122124)(11y y y y k-+⋅+3、设A (11y ,x ),B (x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且21x x ≠,0x x 21≠+,M (x 0,y 0)为AB 的中点,则两式相减可得2221212121ab x x y y x x y y -=++⋅--,22OMAB ab k k -=⋅。
这种方法叫点差法,最后需要检验直线与曲线是否相交。
【典型例题】例1、已知抛物线的方程为x y 42=,直线l 过定点P (-2,1),斜率为k ,k 为何值时,直线l 与抛物线x y 42=只有一个公共点;有两个公共点;没有公共点?【尝试解答】 直线l 的方程为y -1=k (x +2),即y =kx +2k +1,由⎩⎪⎨⎪⎧y =kx +2k +1,y 2=4x ,得k 2x 2+(4k 2+2k -4)x +(2k +1)2=0,(*)当k =0时,方程(*)为-4x +1=0,即x =14,此时直线l 和抛物线只有一个交点,当k ≠0时,Δ=(4k 2+2k -4)2-4k 2(2k +1)2=-32k 2-16k +16,由Δ=0,即-32k 2-16k +16=0,得 2k 2+k -1=0, 解得k =-1或k =12,∴当k =-1或k =12时,方程(*)有两个相等的实根,当-1<k <12且k ≠0时,方程(*)有两个不等的实根,当k <-1或k >12时,方程(*)没有实根.综上知 ,当k =0或k =-1,或k =12时,直线与抛物线只有一个公共点,当-1<k <12且k ≠0时,直线与抛物线有两个公共点,当k <-1或k >12时,直线与抛物线没有公共点.,例2、过椭圆2222=+y x 的一个焦点的直线交椭圆于A 、B 两点,求△AOB 的面积的最大值(O 为原点).解:不妨设AB 过焦点(0,1), 当AB 斜率不存在时显然不合题意.设AB 的方程为y -1=kx ,A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧y =kx +1,2x 2+y 2=2得(2+k 2)x 2+2kx -1=0,所以x 1+x 2=-2k 2+k 2,x 1x 2=-12+k 2, 所以|AB |=1+k 2·x 1+x 22-4x 1x 2=221+k 22+k 2.又设点O 到直线AB 的距离为d ,则d =11+k 2, 所以S △AOB =12|AB |·d=2·1+k 22+k 2=2·1+k 21+k 2+1=21+k 2+11+k 2≤22,所以S △AOB 的最大值为22.例3. 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程;(2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.解:(1)即设)1,2(A 的中点弦两端点为),(),,(222111y x P y x P ,则有关系2,42121=+=+y y x x .又据对称性知21x x ≠,所以2121x x y y --是中点弦21P P 所在直线的斜率,由1P 、2P 在双曲线上,则有关系22,2222222121=-=-y x y x .两式相减是:0))(())((221212121=-+--+y y y y x x x x∴0)(2)(422121=---⋅y y x x ∴42121=--xx y y所求中点弦所在直线为)2(41-=-x y ,即074=--y x .(2)可假定直线l 存在,而求出l 的方程为)1(21-=-x y ,即012=--y x方法同(1),联立方程⎪⎩⎪⎨⎧=--=-0122222y x y x ,消去y ,得03422=+-x x然而方程的判别式08324)4(2<-=⋅⋅--=∆,无实根,因此直线l 与双曲线无交点,这一矛盾说明了满足条件的直线l 不存在.四.课堂巩固1.直线y x b =+与抛物线22y x =,当b ∈ 时,有且只有一个公共点;当b ∈ 时,有两个不同的公共点;当b ∈ 时,无公共点.2.若直线1y kx =+和椭圆22125x y m+=恒有公共点,则实数m 的取值范围为 .3.抛物线2y ax =与直线y kx b =+(0)k ≠交于,A B 两点,且此两点的横坐标分别为1x ,2x ,直线与x 轴的交点的横坐标是3x ,则恒有 ( )()A 312x x x =+ ()B 121323x x x x x x =+ ()C 3120x x x ++= ()D 1213230x x x x x x ++=4.椭圆122=+ny mx 与直线1=+y x 交于,M N 两点,MN 的中点为P ,且OP 的斜率为22,则nm的值为 ()()A 22()B 322()C 229()D 2732 5.已知双曲线22:14y C x -= ,过点(1,1)P 作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有 ( )()A 1 条()B 2条 ()C 3条()D 4条。
课题:直线和圆锥曲线的位置关系【教学目标】1. 知识目标:能从“数”和“形”角度判断直线和圆锥曲线的位置关系。
2. 能力目标:培养学生提出问题和解决问题的能力;培养学生的自主探索精神和创新能力。
3. 情感目标:通过课堂中和谐、民主的师生关系,让学生在平等、尊重、信任、理解和宽容的氛围中受到激励和鼓舞,培养学生严谨的科学态度。
【教学重点、难点与关键】1. 重点:利用“代数”或“几何”的方法解决直线和圆锥曲线的位置关系。
2. 难点:在开放式教学中让学生自己发现问题,提出问题。
3. 关键点:帮助学生寻找“数”、“形”之间的联系。
【教学方法与手段】教学方法:开放式、探究式教学。
教学手段:利用教学软件几何画板辅助教学。
【教学过程及说明】:一、引例:已知椭圆C :12422=+y x ,直线l :y =ax +b ①请你具体给出a ,b 的一组值,使直线l 和椭圆C 相交。
②直线l 和椭圆C 相交时,a ,b 应满足什么关系?③若a +b =1,试判定直线l 和椭圆C 的位置关系。
分析: ②:联立方程:22142y ax b x y =+⎧⎪⎨+=⎪⎩,消去y ,得:(1+2a 2)x 2+4ab x+2b 2-4=0 (*) 则△=(4ab )2-4(1+2a 2)(2b 2-4)>0,整理得:b 2-4a 2<2③:思路一:(1-a )2-4a 2=-3a 2-2a +1=-3(a +21433)+<2恒成立。
所以直线和椭圆相交。
思路二:直线y=a x+(1-a )过定点(1,1),而点(1,1)在椭圆内部,所以直线和椭圆相交。
引例设计说明:问题①是个开放题,结果不唯一。
学生可以分别从形与数这两个角度考虑这个问题,给出一组符合题意的a ,b 的值。
问题②是在问题①基础上的提升,探求直线和椭圆相交时的一般情况。
切入本节课的主题。
也为后面比较直线和双曲线位置关系的代数处理的异同点,做个铺垫。
直线与圆锥曲线的位置关系【考试大纲要求】1.掌握直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.2.会运用“设而不求”解决相交弦长问题及中点弦问题.3.会利用圆锥曲线的焦半径公式解决焦点弦的问题掌握求焦半径以及利用焦半径解题的方法.4.会用弦长公式|AB |=21k +|x 2-x 1|求弦的长;5.会利用“设点代点、设而不求”的方法求弦所在直线的方程(如中点弦、相交弦等)、弦的中点的轨迹等.【高考命题走向】近几年来直线与圆锥曲线的位置关系在高考中占据高考解答题压轴题的位置,且选择、填空也有涉及,有关直线与圆锥曲线的位置关系的题目可能会涉及线段中点、弦长等。
分析这类问题,往往利用数形结合的思想和“设而不求”的方法,对称的方法及韦达定理等.预测2010年高考:1.会出现1道关于直线与圆锥曲线的位置关系的解答题;2.与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.【基础知识归纳】1.点00(,)M x y 与圆锥曲线C :f(x ,y)=0的位置关系(如表1). 2.直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点.直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为方程组解的个数与交点的个数是一样的.直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可归纳为:(1)0∆>⇔相交;(2)0∆=⇔相切; (3)0∆<⇔相离.注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.曲线条件结论 椭 圆22221x y a b += 点在曲线上 22221x y a b +>点在曲线外22221x y a b +< 点在曲线内双 曲 线22221x y a b -= 点在曲线上22221x y a b -< 点在曲线外22221x y a b -> 点在曲线内抛 物 线2002y px = 点在曲线上2002y px > 点在曲线外2002y px <点在曲线内( 表1)3.直线与圆锥曲线相交的弦长公式设直线l :y=kx+n ,圆锥曲线:F(x,y)=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2), 且由⎩⎨⎧+==n kx y y x F 0),(,消去yax 2+bx+c=0(a≠0),Δ=b 2 -4ac .则弦长公式为:d=221221)()(y y x x -+-=2212))(1(x x k -+=22)1(ak Δ+=Δ||)1(2a k +. 焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率).【典型例题解析】题型1:向量与点的轨迹问题【例1】(06·江苏)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为 ( ) A .x y 82= B .x y 82-= C .x y 42= D .x y 42-= 【答案】B.【解析】设(,)P x y ,0,0x y >>,(2,0),(2,0)M N -,4MN =, 则(2,),(2,)MP x y NP x y =+=-, 0=⋅+NP MN MP MN , 则224(2)4(2)0x y x ++-=, 化简整理得x y 82-=题型2 :直线与圆锥曲线相结合问题【例2】(06·辽宁)直线2y k =与曲线2222918k x y k x += (,k R ∈且0)k ≠的公共点的个数为 ( )A . 1B . 2C . 3D . 4 【答案】D【解析】将2y k =代入2222918k x y k x +=,22229418k x k k x +=29||1840x x ⇒-+=,显然该关于||x 的方程有两正解,即x 有四解,所以交点有4个.【例3】(06·四川)直线3y x =-与抛物线24y x =交于,A B 两点,过,A B 两点向抛物线的准线作垂线,垂足分别为,P Q ,则梯形APQB 的面积为 ( ) A .56 B .64 C .48 D .72 【答案】C【解析】直线3y x =-与抛物线24y x =交于,A B 两点,过,A B 两点向抛物线的准线作垂线,垂足分别为,P Q ,联立方程组得243y xy x ⎧=⎨=-⎩,消元得21090x x -+=,解得12x y =⎧⎨=-⎩,和96x y =⎧⎨=⎩,∴ |AP|=10,|BQ|=2,|PQ|=8, 梯形APQB 的面积为48,选C. 【例4】(07·全国) 若直线1x ya b+=与圆221x y +=有公共点,则 ( ) A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .2211a b+≥1【答案】D【解析】将2211x ya b x y ⎧+=⎪⎨⎪+=⎩联立消y 得2222222()20a b x ab x a b a +-+-=,由22110a b∆≥⇒+≥1. 题型3:圆锥曲线中的最值问题【例5】(06·全国)设P 是椭圆()22211x y a a+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的最大值.【解析】依题意可设P (0,1),Q (x,y ),则 |PQ|=x 2+(y -1)2 ,又因为Q 在椭圆上,所以,x 2=a 2(1-y 2) ,|PQ |2=a 2(1-y 2)+y 2-2y +1=(1-a 2)y 2-2y +1+a 2=(1-a 2)(y -11-a 2 )2-11-a2+1+a 2 .因为|y |≤1,a >1,若a ≥2, 则|11-a 2|≤1.题型4:变量取值范围问题【例6】(07年·江苏)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点。
(Ⅰ) 求双曲线C 2的方程; (Ⅱ) 若直线l :2+=kx y 与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅(其中O 为原点),求k 的取值范围.【解析】(Ⅰ)设双曲线C 2的方程为12222=-b y a x ,则2413,a =-= 再由2222 1.a b c b +=⇒=故C 2的方程为22 1.3x y -= (II )将2+=kx y 代入1422=+y x 得:0428)41(22=+++kx x k ,由l 与椭圆C 1恒有两个不同的交点得222116(14)k k ∆=-+216(41)0,k =->即214k >①将y kx =+2213x y -=,得22(13)90k x ---=.由直线l 与双曲线C 2恒有两个不同的交点2222130,()36(13)0.k k ⎧-≠⎪⎨∆=-+->⎪⎩22113k k ≠<且 ②设(,),(,),A A B B A x y B x y 则29.13A B A B x x x x k-+=⋅=-由66,A B A B OA OB x x y y ⋅<⇒+< 而A B A B x x y y +(2)(2)A B A B x x kx kx =+222222(1)2()292(1)22131337.31A B A B k x x k x x kk k k k k k =++++-=+⋅+⋅+--+=-于是22376,31k k +<-即2215130.31k k ->- 解此不等式得21315k >或21.3k < ③ 由①、②、③得21143k <<或213 1.15k <<故k 的取值范围为13311,,152⎛⎛⎫--- ⎪ ⎪⎝⎝⎭1313,,1.215⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭题型5:定值问题【例7】(07·山东)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【解析】(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b +=>> 3,1a c a c +=-=,22,1,3a c b ===221.43x y ∴+=(Ⅱ)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->, 22340k m +->.212122284(3),.3434mk m x x x x k k -+=-⋅=++ 1212()()y y kx m kx m ⋅=+⋅+221212222()3(4).34k x x mk x x m m k k=+++-=+以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122y yx x ∴⋅=---, 1212122()40,y y x x x x +-++=2222223(4)4(3)1640.343434m k m mkk k k --+++=+++2271640m mk k ++=,解得1222,7km k m =-=-, 且满足22340k m +->.当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:7l y k x ⎛⎫=- ⎪⎝⎭,直线过定点2,0,7⎛⎫⎪⎝⎭综上可知,直线l 过定点,定点坐标为2,0.7⎛⎫⎪⎝⎭题型6:向量与圆锥曲线相结合的问题【例8】(06·全国)设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF ⋅=,则12PFPF += ( )A B .C D .【答案】B【解析】设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF ⋅=,则12PF PF +=2||PO =12||F F =【例9】(07·辽宁)设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为 ( )A .B .12C .D .24【答案】B【解析】因为12||:||3:2PF PF =, 设x PF x PF 2||,3||21==,根据双曲线定义得2223||||21===-=-a x x x PF PF , 所以12||6,||4,PF PF ==12||F F =2224652)132(+==,又12PF F △为直角三角形,∴其面积为124621=⨯⨯. 题型7: 存在性问题【例10】(08·江西)椭圆)0(12222>>=+b a b y a x 的离心率23e =,A 、B 是椭圆上关于,x y 轴均不对称的两点,线段AB 的垂直平分线与x 轴交于(1,0)P ,点 F 是椭圆的右焦点.(Ⅰ)设AB 的中点为00(,)C x y ,求0x 的值; (Ⅱ)若||||3AF BF +=,求椭圆的方程;(Ⅲ)过P 的直线交(2)中的椭圆于,C D 两点,在x 轴上是否存在定点E ,使得CED ∠总被x 轴平分,若存在,求出点E 的坐标;若不存在,请说明理由.【解析】(Ⅰ)由22,33c c a =⇒=∴222229b ac a =-=, ∴椭圆方程是22229 1.5x y a a += 设A (x 1,y 1),B(x 2,y 2),AB 的中点为C (x 0,y 0),则由2221122222595595x y ax y a⎧+=⎪⎨+=⎪⎩得121212125()()9()()0.x x x x y y y y -⋅++-⋅+= ∵点A 、B 是关于x 、y 轴均不对称的两点,12120121212120,0,55.99x x y y x y y x x x x y y y ≠+≠-+∴=-⋅=-⋅-+∴000059..95AB PC x yk k y x =-∴= 即0000099,.154y y x x x ==- (Ⅱ)过A 、B 分别作右准线的垂线,垂足分别为A 1、B 1.得1111||||2||||,||||3||||AF BF AF BF AA BB AA BB +===+119||||.2AA BB ∴+=∴209,4a x c -=即3993.244a a -=⇒= ∴椭圆的方程为221.95x y += (Ⅲ)当CD x ⊥轴时,显然存在点E 满足条件; 当CD 与x 轴不垂直时,设CD:y=k(x-1)与椭圆方程联立,并消去y 得2222(95)189450k x k x k +-+-=,设1122(,),(,)C x y D x y ,则2212122218945,9595k k x x x x k k -+==++ ①设()0,0E x 存在,则121020EC ED y y k k x x x x +=+--121010(1)(1)0.k x k x x x x x --=+=--对任意的k 恒成立,即121201202()()20x x x x x x x x -+-++=, 将①式代入得09x =. 题型8:对称性问题【例11】(07·安徽)已知双曲线2213y x -=上存在关于直线:4l y kx =+的对称点,求实数k 的取值范围.【解析】设11(,)P x y ,22(,)Q x y 是双曲线上关于直线4y kx =+的对称点,PQ 所在直线方程为1y x m k=-+,(0k ≠)代入2213y x -=, 得22222(31)230k x kmx k m k -+--=,2310k -≠,2222244(31)(3)0k m k m k ∆=+-+>,即222310k m k +-> ①122231kmx x k -+=-,21212216()2.31k my y x x m k k -+=++=-PQ 中点2223,3131km k m M k k ⎛⎫- ⎪--⎝⎭在直线4y kx =+上,2222343131k m k mk k -=+--22310k m k -+=, ∴2231k m k-=代入①得33k >或33k <-或1122k -<< 且0k ≠.【重点方法提炼】1.加强直线与圆锥曲线的位置关系的复习:由于直线与圆锥曲线的位置关系一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想来设.而不求法与弦长公式及韦达定理联系去解决.这样就加强了对数学各种能力的考查.2.关于直线与圆锥曲线相交弦则结合韦达定理采用设而不求法.利用引入一个参数表示动点的坐标x 、y ,间接把它们联系起来,减少变量、未知量采用参数法.有些题目还常用它们与平面几何的关系,利用平面几何知识会化难为易,化繁为简,收到意想不到的解题效果.3.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.4.当直线与圆锥曲线相交时 涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化。