Ansoft Maxwell 3D圆柱永磁体受力仿真——Harris
- 格式:docx
- 大小:358.65 KB
- 文档页数:10
问题分析:两个圆柱形永磁铁,磁化方向为轴向,分析小圆柱磁铁在竖直方向不同位置受到的磁力。
仿真步骤:一、打开Maxwell软件,点击三维建模,保存文件及分析项目二、点击,设置SolutionType静磁场Magnetostatic求解器类型三、设置永磁材料复制永磁材料改参数:下图中的X/Y/Z Component后面有1/-1就表示该向正/反方向就是充磁方向双击添加的材料自动加载到项目材料中四、建模添加材料使用建大小两个圆柱,先选中大圆柱,按住Ctrl再选小圆柱,点击中的Boolean运算中的Subtract做减运算,得到空心圆柱模型小圆柱的Z向高度参数化:选中圆柱模型上右键,选择Properties其中InnerHeight是自命名的高度参数,参数化成功。
五、添加求解域点击,在Value里输入200六、添加求解参数,即磁力选中小圆柱,右键单击/Assign/Force七、求解设定及网格划分网格采用自动划分,不用在Mesh Operations中操作(这个是手动网格划分的选项)在上点击右键/Add Solution Setup,默认点确定即可在绘图区Ctrl+A,在Analysis上单击右键/Apply Mesh Operations,自动网格划分完毕八、参数扫描求解就是InnerHeight的变化过程中ZForce的值右击/Add/Parametric设置计算结果项该界面是默认力ZForce的输出设置,设置完后点击Add Calculation;如果要对Zforce插入其他公式输出,选择进行设置。
所有都设置好以后,在上单击右键,选择Analyze,等待仿真计算结束后还是上图位置处右击,选择View Analysis Results,即可看到仿真结果:九、磁场分布查看:先选中求解域,在上右击/Fields/B/B_Vector(磁长的矢量分布情况)或者Mag_B(大小强弱分布情况)。
精心整理问题分析:
两个圆柱形永磁铁,磁化方向为轴向,分析小圆柱磁铁在竖直方向不同位置受到的磁力。
仿真步骤:
一、
二、点击,设置
三、
四、
使用建大小两个圆柱,先选中大圆柱,按住
中的
选中圆柱模型上右键,选择Properties
其中InnerHeight是自命名的高度参数,参数化成功。
五、添加求解域
点击,在Value里输入200
六、添加求解参数,即磁力
选中小圆柱,右键单击/Assign/Force
七、求解设定及网格划分
在
八、
就是
右击/Add/Parametric
设置计算结果项
该界面是默认力ZForce的输出设置,设置完后点击AddCalculation;如果要对Zforce 插入其他公式输出,选择
进行设置。
所有都设置好以后,在上单击右键,选择Analyze,等待仿真计算结束后还是上图位置处右击,选择ViewAnalysisResults,即可看到仿真结果:
九、
在
或者(大小强弱分布情况)。
基于 Ansoft 的永磁同步电机退磁仿真分析摘要:为了保证永磁同步电机抗退磁能力仿真的准确性,本文提出了一种基于 Ansoft Maxwell 软件的永磁同步电机退磁仿真方法。
以12S10P磁同步电机为例(PMSM) ,首先详细的介绍了此退磁仿真的电磁设置;然后评估与验证了此退磁仿真方法的仿真值与实测值差异;最后提供了此仿真方法的问题与改进思路,为永磁同步电机退磁仿真提供了参考。
关键词:Ansoft;退磁引言在压缩机的应用工况下,为了保持整套系统的高可靠性,压缩机中所有零件都需要进行可靠性评估,使所有的零件都能保持在正常的状态下运行。
对于压缩机中的主要驱动零部件——电机来说,永磁体退磁是一个重要的指标[1]。
为了保证永磁同步电机按照设计的状态运行并达到设计的效果,永磁体需要在充磁饱和的状态下工作[2]。
当永磁同步电机转子永磁体发生不可逆退磁,整个电机将不再运行于最佳工作状态,进而影响到压缩机的性能。
因此对永磁同步电机进行抗退磁能力评估是一项重要的工作。
目前对于永磁同步电机的退磁电流的测试方法一般为:并接电机绕组某两相,给绕组通入电流使转子自动定位,并固定电机转子此时位置,随后通入反向电流,并对比测试通入退磁电流前后的线磁链值,以该值下降 3 % 为限定标准。
但是,目前采用的仿真分析方法为在永磁体上设定取样曲线,并计算施加退磁电流后取样曲线上剩磁回复值,按照剩磁平均值降低 3 % 为限定标准。
以上实验测试方法和仿真分析方法存在判定指标不一致的情况,因此为了提高仿真准确性以及仿真与测试的一致性,以及充分应用 Ansoft 的退磁仿真功能,本文对 Ansoft 的退磁仿真功能进行了研究。
1 Ansoft仿真分析软件退磁仿真1.1基本设置1.1.1电机退磁仿真工况电机运行状态按照正常的电机性能仿真设定,仿真模型为模拟电机正常运行并通入了较大电流时电机永磁体发生退磁的情况,按照 3 % 磁链降低为界限限定。
电磁场与电磁波项目训练报告仿真求解圆柱形电容器班级:通信13-2姓名:闫振宇学号:1306030222指导教师:徐维老师成绩:电子与信息工程学院信息与通信工程系项目训练一 仿真求解圆柱形电容器1. 实验目的和任务1)掌握用ANSYS Maxwell 软件仿真的方法;2)学会利用所学的场强,电容,电场的知识来解决实际现实生活中的计算问题; 3)利用ANSYS Maxwell 软件仿真圆柱形电容器。
2. 实验内容1)学习ANSYS Maxwel 有限元分析步骤; 2)学习ANSYS Maxwel 的基本仿真操作步骤;3)对圆柱体电容器计算理论值和实验的仿真值进行比较,得出结论。
3. 实验原理电容是反映电容器储存的电荷本领大小的物理量。
电容的定义:一个电容器所带的电量Q 总与其电压U 成正比,比值Q/U 叫电容器的电容。
以C 表示电容器的电容,就有公式:UQ C =电容器的电容决定于电容器的本身结构,即是导体的形状,尺寸以及两导体间电介质的种类等,而与它所带的电量无关。
首先,假设本题中圆柱体电容器的内部的外表面,和外部的内表面分别带有绝对值为Q 的电量。
两筒之间充满相对介电常数为εr的电介质。
(m F o 1012855313.8-⨯=ε)所以,在距离轴线为r 的电介质中一点的电场强度E 为:rLQ E r εεπ 2=对E 进行积分,可以得到两圆筒间的电压U 为:dr RR rL Q U r ⎰=212εεπ =R R L Q r 12ln 2εεπ就得到了圆柱形电容器的电容C 为:)ln(212RR L C r εεπ =根据以上的公式,代入R2=1mm,R1=0.6mm,得出长度为L的圆柱形电容器电容。
4.实验步骤4.1建模(Model)Project > Insert Maxwell 3D DesignFile>Save as>Cylinder Cap(工程命名为“Cylinder yuanzhuti”)选择求解器类型:Maxwell > Solution Type> Electric> Electrostatic(静电的)4.1.1 创建中心圆柱体导体Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(0.6, 0.6,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder5Assign Material > copper(设置材料为铜copper)4.1.2 创建内外导体间空心圆柱体介质Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(0.6, 0.6,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder1Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(1.0, 1.0,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder2选中Cylinder1,Cylinder2Modeler (建模)> Boolean > Sbutract(分离)Blank park:Cylinder1Tool park:Cylinder2将分离出的圆环命名为Cylinder4Assign Material > air(设置材料为空气air)4.1.3创建外空心圆柱体导体Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(1.0, 1.0,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder6Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(1.2, 1.2,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder7选中Cylinder6,Cylinder7Modeler (建模)> Boolean > Sbutract(分离)Blank park:Cylinder6Tool park:Cylinder7将分离出的圆环命名为Cylinder3Assign Material > copper(设置材料为铜copper)图4-1仿真效果图4.2设置参数4.2.1 创建设置区域(Region)Draw > RegionPadding Percentage:0%减少电场的边缘效应(fringing effect)4.2.2 设置激励电压(Assign Excitation)选择Cylinder5Maxwell 3D> Excitations > Assign>V oltage > 5V选择Cylinder3Maxwell 3D> Excitations > Assign >V oltage > 0V4.2.3设置自适应计算参数(Create Analysis Setup)Maxwell 3D > Analysis Setup > Add Solution Setup最大迭代次数:Maximum number of passes > 10误差要求:Percent Error > 1%每次迭代加密剖分单元比例:Refinement per Pass > 50%4.2.4 设置计算参数(Assign Executive Parameter)Maxwell 3D > Parameters > Assign > Matrix > V oltage1, V oltage2 4.2.5 check,计算,查看结果Maxwell 3D > Reselts > Solution data > Matrix图4-2仿真数据图5.数据取电容器长度L为:2mm,则有:电容值:C=0.2186pF表 4-1 理论及仿真的值理论计算值仿真输出值0.2179pF 0.2186pF图5-1电压分布图6.心得体会通过利用Maxwell软件制作圆柱体电容器,了解了Maxwell软件的基本操作和使用方法。
1. 静电场问题实例:平板电容器电容计算仿真平板电容器模型描述:上下两极板尺寸:25mm×25mm×2mm,材料:pec(理想导体)介质尺寸:25mm×25mm×1mm,材料:mica(云母介质)激励:电压源,上极板电压:5V,下极板电压:0V。
要求计算该电容器的电容值1.建模(Model)Project > Insert Maxwell 3D DesignFile>Save as>Planar Cap(工程命名为“Planar Cap”)选择求解器类型:Maxwell > Solution Type> Electric> Electrostatic创建下极板六面体Draw > Box(创建下极板六面体)下极板起点:(X,Y,Z)>(0, 0, 0)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为DownPlateAssign Material > pec(设置材料为理想导体perfect conductor)创建上极板六面体Draw > Box(创建下极板六面体)上极板起点:(X,Y,Z)>(0, 0, 3)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为UpPlateAssign Material > pec(设置材料为理想导体perfect conductor)创建中间的介质六面体Draw > Box(创建下极板六面体)介质板起点:(X,Y,Z)>(0, 0, 2)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 1)将六面体重命名为mediumAssign Material > mica(设置材料为云母mica,也可以根据实际情况设置新材料)创建计算区域(Region)Padding Percentage:0%忽略电场的边缘效应(fringing effect)电容器中电场分布的边缘效应2.设置激励(Assign Excitation)选中上极板UpPlate,Maxwell 3D> Excitations > Assign >Voltage > 5V选中下极板DownPlate,Maxwell 3D> Excitations > Assign >Voltage > 0V3.设置计算参数(Assign Executive Parameter)Maxwell 3D > Parameters > Assign > Matrix > Voltage1, Voltage2 4.设置自适应计算参数(Create Analysis Setup)Maxwell 3D > Analysis Setup > Add Solution Setup最大迭代次数:Maximum number of passes > 10 误差要求:Percent Error > 1%每次迭代加密剖分单元比例:Refinement per Pass > 50%5. Check & Run6. 查看结果Maxwell 3D > Reselts > Solution data > Matrix电容值:31.543pF2. 恒定电场问题实例:导体中的电流仿真恒定电场:导体中,以恒定速度运动的电荷产生的电场称为恒定电场,或恒定电流场(DC conduction ) 恒定电场的源:(1)Voltage Excitation ,导体不同面上的电压 (2)Current Excitations ,施加在导体表面的电流(3)Sink (汇),一种吸收电流的设置,确保每个导体流入的电流等于流出的电流。
AnsoftMaxwell3D圆柱永磁体受⼒仿真——Harris 问题分析:两个圆柱形永磁铁,磁化⽅向为轴向,分析⼩圆柱磁铁在竖直⽅向不同位置受到的磁⼒。
仿真步骤:⼀、打开Maxwell软件,点击三维建模,保存⽂件及分析项⽬⼆、点击,设置Solution Type静磁场Magnetostatic求解器类型三、设置永磁材料复制永磁材料改参数:下图中的X/Y/Z Component后⾯有1/-1就表⽰该向正/反⽅向就是充磁⽅向双击添加的材料⾃动加载到项⽬材料中四、建模添加材料使⽤建⼤⼩两个圆柱,先选中⼤圆柱,按住Ctrl再选⼩圆柱,点击中的Boolean运算中的Subtract做减运算,得到空⼼圆柱模型⼩圆柱的Z向⾼度参数化:选中圆柱模型上右键,选择Properties其中InnerHeight是⾃命名的⾼度参数,参数化成功。
五、添加求解域点击,在Value⾥输⼊200六、添加求解参数,即磁⼒选中⼩圆柱,右键单击/Assign/Force七、求解设定及⽹格划分⽹格采⽤⾃动划分,不⽤在Mesh Operations中操作(这个是⼿动⽹格划分的选项)在上点击右键/Add Solution Setup,默认点确定即可在绘图区Ctrl+A,在Analysis上单击右键/Apply Mesh Operations,⾃动⽹格划分完毕⼋、参数扫描求解就是InnerHeight的变化过程中ZForce的值右击/Add/Parametric设置计算结果项该界⾯是默认⼒ZForce的输出设置,设置完后点击Add Calculation;如果要对Zforce插⼊其他公式输出,选择进⾏设置。
所有都设置好以后,在上单击右键,选择Analyze,等待仿真计算结束后还是上图位置处右击,选择View Analysis Results,即可看到仿真结果:九、磁场分布查看:先选中求解域,在上右击/Fields/B/B_Vector(磁长的⽮量分布情况)或者Mag_B(⼤⼩强弱分布情况)。
Rmxprt+Maxwell 2d+Maxwell 3d完成BLDC仿真作者:saleing 完成日期:2010 年1 月8 日自学ansof这个软件有一段时间了,第一次做BLDC电机的仿真,本人还是菜鸟级别,还不知道结果对不对呢!特把仿真过程发上来大家一起探讨。
在此要特别感谢“欧阳庆”、“y1949b”以及帮助过我的前辈们,你们真的很棒!一、首先用rmxprt进行建模及初步设计因比较简单,所以具体的尺寸就不一一列出,直接出结果。
二、创建maxwell 2d模型及分析Auto step必须勾选设置机械运动选项设置setup其它设置保持默认就可以了,下面开始仿真,时间大约20分钟就可以出结果。
力矩波形相电流转速感应电动势磁链磁通磁场强度三、创建3D模型及分析Modeler——Export——指定路径——打开创建OuterRegion、InnerRegion、Band。
选中Band进行运动设置(初始角7.5度,衡速在额定转速下,主要看你要仿真起动、空载还是额定)设置主边界设置辅边界ZeroTangentialHField边界激励设置:对先线圈进行截面提取,有两个截面的要分离设线圈匝数(和rmxprt一致)Add winding(选择用外电路方式)定义外电路(和2d的外电路一样,就用2D的外电路)Setup设置(和2d差不多)Analysis(用了差不多24个小时,啊!很郁闷)结果(步长不是很密,所以曲线看起来不是很正常)到此,仿真真结束!请大大家一起探讨,互相学习!Saleing 2009年1月8日。
Ansoft Maxwell电磁仿真软件的应用实验报告一Maxwell 简介Ansoft公司的Maxwell是一个功能强大、结果精确、易于使用的二维/三维电磁场有限元分析软件。
包括静电场、静磁场、时变电场、涡流场、瞬态场和温度场计算等,可以用来分析电机、传感器、变压器、永磁设备、激励器等电磁装置的静态、稳态、瞬态、正常工况和故障工况的特性。
Maxwell还可以产生高精度的等效电路模型以供Ansoft的SIMPLORER模块和其他电路分析工具调用。
三维静电场分析(3D Electrostatic Field)用于分析由静止电荷、直流电压引起的静电场。
该模块直接计算标量电位,得到电场强度(E),电位移矢量(D),电场力、电场能量、转矩、电容值等。
可用于分析直流高压绝缘问题,电容器储能问题等。
三维直流磁场分析(3D DC Magnetic)用于分析由恒定电流、永磁体及外部激磁引起的磁场。
该模块可计算磁场强度(H),电流密度(J),磁感应强度(B),磁场力、磁场能量、转矩、电感等。
可用于分析直流载流线圈磁场,永磁体产生磁场等。
涡流场分析(Eddy Current Field)用于分析受涡流、集肤效应、邻近效应影响的系统。
它求解的频率范围可以从0到数百兆赫兹,能够计算损耗、铁损、力、转矩、电感与储能。
可用于分析导体中的涡流分布。
三维正弦电磁场特性等。
瞬态场(Transient Field)用于求解某些涉及到运动和任意波形的电压、电流源激励的设备。
该模块能同时求解磁场、电路及运动等强耦合的方程,因而可轻而易举地解决上述装置的性能分析问题。
二Maxwell 仿真步骤1 选择求解器类型2 建模3 设置材料属性(电导率,介电常数,磁导率等)4 设置激励源和边界条件5 自适应网格剖分6 有限元计算7 后处理三Maxwell仿真实例题目三:静电除尘器电磁场分析要求:掌握静电除尘的工作原理,建立静电除尘器模型,观测内部电场及能量的分布情况,并对结果进行分析。
如何利用ansoft磁路法计算生成maxwell有限元电磁计算模型如何利用ansoft中磁路法计算,一键生成maxwell有限元电磁计算模型1、以一台凸极式永磁同步电机为例:打开软件,进入下图所示截面,选中RMxprt打开选择Adjust-Speed Synchronous Machine2、进入RMxprt界面,如下图所示:3、双击Machine,出现下图界面:极数:16转子位置:内转子各种损耗:可大致设置为额定功率的2%左右额定转速:790r/min线圈交流电AC及Y3星型联接4、双击stator,出现下图界面:定子外径:250定子内径:165定子轴向长度:160叠压系数:0.97定子材料:JFE_steel_50JN800定子槽数:36定子槽型:选3斜槽数:15、双击slot,如下图示:(一开始先将Auto Design后面√去除,点确认退出,再次双击slot 进入,即出现下图设置界面)3号槽型,设置数据如上图所示6、双击winding,选择winding界面线圈层数:2线圈形式:全极式绕组线圈并联之路:2每槽导体数:38(上下两层总计数)线圈跨距:4每匝线圈数:暂时空着,系统自动计算线圈漆包厚度:0.06平均线径:单击Diameter,进入设计截面,设置如下,点击OK再选择End/Insulation界面框线圈端部长:10槽绝缘厚度:0.3楔子厚度:2层绝缘厚:0.3槽满率:0.87、双击Rotor转子外径:162.5转子内径:110转子轴向长度:160转子材料:steel_1010叠压系数:1(转子为整个铸件)磁极类型:2 8、双击pole极狐系数:0.8偏移:0(即磁钢内外径同心)磁钢材料:NdFe35 磁钢厚度:4.659、shaft轴可不设置10、右键单击Analysis单击选择Add solution setup,出现下图额定功率:17 (设置时注意单位的选择)额定电压:340额定转速:790其它默认即可11、至此RMxprt设置完成,右键点击增加的Setup1,单击Analyze 进行分析12、分析完成后可右键,可右键Results,选择Solution Data查看相关结果参数13、右键Setup1,选择Create Maxwell Design(生成有限元计算模型)选择Maxwell2D Design(或者3D,根据自己需求选择)14、系统会根据槽极比生成最小有限元单元,如此处生成1/4模型,若想生成全模型,可在RMxprt模块下,选择窗口中RMxprt,单击Design Settings,选择出现窗口下User Defined Date,设置如下(Fraction 1注意大小写及字母与数字间空一格),再点击重新计算即可生成有限元全模型谢谢!。
利用ansoft进行电磁铁的3D仿真
整理:舒伟方,记录一下自己的操作过程,存在一些不足之处望大家指点一二。
1、先用solidworks软件绘制电磁制动器数模,要是零件体,且各零件之间不要求和,是分离的体。
(且绕组与软磁材料之间流出间隙1mm左右,铁板与软磁之间流出气隙距离,在此我留了0.5mm)
1、转成STP、STEP、XT其中一种格式
2、导入Maxwell
3、设置求解器类型
4、设置零件材料
先设置零件材料库,将路算里的材料库导入,且设置为默认
设置零部件材料选中相应数模
5、设置绕组电流激励源现将零件设置成透明的
在绕组上分出施加激励的面,选中绕组
可见YX方向可将绕组对称剖开
分离面
将多余的面删除
选中面1施加电流源
根据实际情况施加电流且注意电流流向,类型选择stranded(其中电流大小为单根电流乘以匝数)
6、添加求解域
输入扩大百分比为10% 8输入求解电感及吸力
勾上
输入圈数
选中被吸的铁板
选中铁板后添加吸力求解
9、添加setup,默认便可
分析
10、查看结果选中软磁和铁块
吸力是Z方向
力为-2.1kn,方向为z负方向电感如下
可见线圈1自感54mH,线圈12互感2.56mH,线圈2自感54.42mH 再根据两个电感是串联还是并联计算总电感
公式如下。
问题分析:
两个圆柱形永磁铁,磁化方向为轴向,分析小圆柱磁铁在竖直方向不同位置受到的磁力。
仿真步骤:
一、打开Maxwell软件,点击三维建模,保存文件及分析项目
二、点击,设置Solution
Type静磁场Magnetostatic求解器类型
三、设置永磁材料
复制永磁材料改参数:
下图中的X/Y/Z Component后面有1/-1就表示该向正/反方向就是充磁方向
双击添加的材料自动加载到项目材料中
四、建模添加材料
使用建大小两个圆柱,先选中大圆柱,按住Ctrl再选小圆柱,点击
中的Boolean运算中的Subtract做减运算,得到空心圆柱模型小圆柱的Z向高度参数化:
选中圆柱模型上右键,选择Properties
其中InnerHeight是自命名的高度参数,参数化成功。
五、添加求解域
点击,在Value里输入200
六、添加求解参数,即磁力
选中小圆柱,右键单击/Assign/Force
七、求解设定及网格划分
网格采用自动划分,不用在Mesh Operations中操作(这个是手动网格划分的选项)
在上点击右键/Add Solution Setup,默认点确定即可
在绘图区Ctrl+A,在Analysis上单击右键/Apply Mesh Operations,自动网格划分完毕八、参数扫描求解
就是InnerHeight的变化过程中ZForce的值
右击/Add/Parametric
设置计算结果项
该界面是默认力ZForce的输出设置,设置完后点击Add Calculation;如果要对Zforce插入其他公式输出,选择
进行设置。
所有都设置好以后,在上单击右键,选择Analyze,等待仿真计算结束后还是上图位置处右击,选择View Analysis Results,即可看到仿真结果:
九、磁场分布查看:
先选中求解域,在上右击/Fields/B/B_Vector(磁长的矢量分布情况)或者Mag_B(大小强弱分布情况)。