模拟移相电路的设计 通信类

  • 格式:doc
  • 大小:415.29 KB
  • 文档页数:22

下载文档原格式

  / 22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟移相电路的设计

摘要

目前,随着航空、航天技术的发展以及军事上的需要,对相位的测量提出了一些新的要求,如更高的测量精度及更高的分辨能力。测量相位中最重要的部件之一就是移相器。另外,移相器是相控阵雷达中的关键部件,其性能的优劣直接影响相控雷达系统的性能。本次课题源于航空、航天技术的发展以及军事上的需要及地面雷达接收系统的需要,设计了一个模拟移相网络。

本文设计的模拟移相网络的基本要求是:一路输入信号经过模拟移相电路输出两路信号:一路是原信号经过电压跟随器输出的信号,另外一路是经过移相网络输出的信号(要求是在不同频率下输出相位连续可调的信号)。

按任务要求,在输入信号频率为5kHz、50kHz、、100kHz上,设计相移范围从–60度到+60度连续变化,并且输出电压幅度为5V。我们总体讨论了设计方案,使用RC阻容移相网络以及集成运放、电压跟随器等元器件设计模拟移相网络。并且提出了改进移相器性能的措施,对移相器部件进行仿真测试。

关键词:模拟移相器RC阻容移相网络集成运放电压跟随器

目录第一章引言

1.1课题研究背景

1.2模拟移相器的发展状况

1.3本课题的主要内容

第二章移相网络的基本原理

2.1基本移相原理

2.2移相网络的方案选取

2.3移相网络的性能指标

2.4移相网络的参数设计

第三章模拟移相网络的仿真优化

3.1Multisim仿真软件的介绍

3.2在Multisim环境下的仿真结果

第四章结论

第五章附图

第一章引言

1.1课题研究背景

电磁波在传输时,不仅幅度会发生变化,同时相位也要发生变化。衰减和

相移是代表同一复参数的幅度和相角的变化。但是由于历史发展的原因,衰减

测量的重要性较早的被人们认识并解决,所以常把衰减作为一个单项指标和测

量任务来看待。从上个世纪六十年代开始,随着对人造卫星、洲际导弹、航天

飞机等各种飞行器及对其他的目标进行监控的需求日益增强,并且为了在复杂

的环境中提取更多的信息,出现了控阵天线及加速器等较新技术,相移的测量(即相位测量)则迟至了这些新技术出现时才被重视。

移相器一般用于雷达系统、通讯系统、微波仪器和测量系统等方面,其中,最主要的是用于相控阵雷达和智能天线系统中。目前,随着航空、航天技术的

发展以及军事上的需要,对相位的测量提出了一些新要求如更高的测量精度及

更高的分辨能力。本次课题源于航空、航天技术的发展以及军事上的需要及地

面雷达接收系统需要存在相位差的两个同频信号,我们设计了一个移相网络。

一般地说,依据不同的定义方法移相器可分为不同的种类。根据控制方式的不同,移相器可分为模拟式移相器和数字式移相器。数字移相器相移量只能在一定范围内取某些特定值,数字移相器虽然可以用数字控制电路,与外电路的接口比较容易,但是模拟移相器可以实现360度范围内的无极扫描,有更高的移相精度,它多用在系统相位自动调整的场合和移相精度要求特别高的场合。而模拟式移相器是一种电压控制连续线性移相的微波器件移相器,它可以实现相位线性连续的变化。所以我们这里只设计模拟式移相器。它的技术指标主要有:工作频带、相移量、相移精度、插入损耗、插入损耗波动、电压驻波比、功率容量、移相器开关时间等。

当前微波移相器广泛应用,微波电控器件利用参数可电调的材料和器件组成的控制微波信号幅度或相位的器件。可电调的材料和器件主要有半导体二极管(如PIN管﹑变容管和肖特基管等)和铁氧体材料。控制信号幅度的器件有衰减器﹑调幅器﹑开关器和限幅器等﹔控制信号相位的有移相器和调相器等。PIN管具有不同的正反向特性﹐当它被反向偏置时可等效为小电容而近似开路﹐而在正向偏置时则可等效为可变电阻﹐若偏压增大﹐其阻值则减小。PIN管衰减器就是

利用这一特性工作的﹐从它的等效电路可见﹐当PIN管反偏置时﹐衰减器即相当于滤波器﹐可设计成几乎没有衰减﹐而PIN管正偏置时﹐衰减器为一电阻衰减器﹐改变偏压即可改变衰减。但是它在当系统负荷较重、并且有持续快速攀升趋势时,需要进行电压紧急态势分,注视运行工况将可能通过何种途径逼近电网负荷供应能力的临界点。负荷在高位快速攀升时,电源如何分担负荷增量,可以从运行模式的调峰特征去寻找预估线索。主力调峰电源与负荷中心之间,各联络线在潮流上涨逼近限值方面,往往步调上有差异,线路潮流骤增时,对可能首先跳闸的联络线,应该给予特殊的关注,因为其保护跳闸势必引起功率转移,使其它联络线相继跳闸,产生恶性连锁反应,可能导致系统瘫痪。

而阻容移相电路中,由于级间耦合电容的隔直流作用,使各级静态工作点彼此独立;一般级间耦合电容值比较小,对中频高频信号可视为短路,即能有效地传输交流信号,并且体积小,易集成,易操作。因此,我选用阻容移相电路设计模拟移相电路。

1.2 模拟移相器的发展状况

在20世纪50年代电可调移相器出现之前,所有的移相器都是机械的,非常不准确。到了50年代出现了用于相控阵扫描的铁氧体移相器。20世纪60年代中期,采用PIN二极管作为开关元件的移相器。80年代后随着微电子工艺技术的提高及各种微波毫米波系统分析手段的完善,还有相控阵雷达,通信,导弹制导,武器发展的需要,促进了移相器的发展,才出现了几种其他类型的移相器,其中有有源移相器和静磁波时延移相器。九十年代,随着集成电路的发展,国外开展MMIC 移相器的研究,MMIC移相器使用了90度混合耦合器直通端、耦合端与低损耗的电抗网络相接。混合耦合器另两端便形成了电路的输入和输出端。国外的研究较早,设备先进,工艺成熟,并有单片移相器的相关研究。国内也出现了微波、毫米波集成的电路,工作频率较高,带宽较宽,但是缺点是移相开关的速度较慢。

随着新材料和新工艺的不断出现,移相器将朝着高性能、小型化,低成本的方向发展。

1.3本课题的主要内容

整个系统主要研究硬件设计,设计模拟移相的简单电路,一路输入信号经过模拟移相电路输出两路信号:一路是原信号经过电压跟随器输出的信号,另外一