开关电源19、移相控制零电压开关PWM变换器
- 格式:ppt
- 大小:9.48 MB
- 文档页数:38
电气传动2016年第46卷第8期基于TMS320F28035的三相大功率充电机设计周映虹,冯晓培,郭思远,李志忠(广东工业大学信息工程学院,广东广州510006)摘要:分析了变压器原边与滞后桥臂相联的加钳位二极管的零电压开关脉宽调制全桥变换器工作原理,采用TMS320F28035实现了变换器的零电压开关脉宽调制,设计了1台功率为10kW 的三相直流充电机。
实验结果表明了设计方案是可行的。
关键词:全桥变换器;脉宽调制;零电压开关;移相控制;钳位二极管中图分类号:TM464文献标识码:ADesign of Three -phase Power Charger Based on TMS320F28035ZHOU Yinghong ,FENG Xiaopei ,GUO Siyuan ,LI Zhizhong(School of Information Engineering ,Guangdong University of Technology ,Guangzhou 510006,Guangdong ,China )Abstract:A clamping diode phase -shifted ZVS full -bridge converter using the transfer primary side combinedwith the lag bridge arm had been analyzed.And a 10kW three -phase power charger was built ,by utilizing a 32-bit fixed -point DSP -TMS320F28035as core controller to achieve the ZVS PWM.The experimental results show that the designed scheme is feasible.Key words:full -bridge converter ;pulse eidth modulation (PWM );zero voltage switch (ZVS );phase shift control ;clamp diodes基金项目:广东省新能源汽车专项(110105752020190)作者简介:周映虹(1978-),女,博士,讲师,Email :****************ELECTRIC DRIVE 2016Vol.46No.8移相控制的零电压开关全桥变换器具有输出功率大、效率高和可靠性好等特点,被大功率开关电源作为主电路广泛使用。
移相pwm
移相PWM(Phase Shifted Pulse Width Modulation)是一种调节电路开关器件(晶体管、IGBT等)通断时间以控制输出电压、电流的技术,在交流电机控制、电源变换器等领域广泛应用。
移相PWM的原理是将控制信号延迟并分别控制多个开关器件,使它们的开关瞬间错开,从而减小电容、电感等元件的损耗,并降低EMI (电磁干扰)。
此外,移相PWM可以实现多种输出波形,如正弦波、三角波、方波等。
移相PWM的应用包括变频空调、照明LED驱动、数据中心电源等领域。
对于半导体器件而言,移相PWM可以提高芯片的可靠性和寿命,因为电流、电压的波形会更加平滑,减少器件的热损耗。
1/ 1。
移相+PWM控制双Boost半桥双向DC-DC变换器软开关过程的分析肖旭;张方华;郑愫【摘要】移相+PWM控制结合了移相控制和PWM控制的优点,可以减小变换器的电流应力和通态损耗,减小环流能量,提高变换器传输功率的能力,扩宽开关管零电压关断(ZVS)的范围.本文以移相+PWM控制双Boost半桥双向DC-DC变换器为研究对象,给出了变换器在各种工作模式下开关过程的等效电路模型,以及漏电感电流和结电容电压的表达式.分析了各开关管ZVS开通的条件,以及影响各开关管实现ZVS的非理想因素.最后给出了在特定功率软开关条件下的参数设计方法,通过仿真和实验证明了理论分析与参数设计方法的正确性.【期刊名称】《电工技术学报》【年(卷),期】2015(030)016【总页数】10页(P17-25,55)【关键词】相移+PWM;双向DC-DC;双Boost半桥;ZVS【作者】肖旭;张方华;郑愫【作者单位】南京航空航天大学江苏省新能源发电与电能变换重点实验室南京210016;南京航空航天大学江苏省新能源发电与电能变换重点实验室南京 210016;南京航空航天大学江苏省新能源发电与电能变换重点实验室南京 210016【正文语种】中文【中图分类】TM4610 引言双向DC-DC变换器具有可以实现能量的双向传输、功率密度高等优点,在UPS、航空航天电源系统和电动汽车等场合具有很大的应用潜力[1-11]。
移相控制双向 DC-DC变换器具有易于实现软开关、变换效率高、功率密度高和动态响应快等优点,得到了广泛关注[1,6]。
由于移相控制主要是利用变压器的漏感传递能量,当输入、输出电压不匹配时变换器的电流应力和通态损耗会大大增加,同时增大了环流能量,还会影响软开关的实现,不利于变换器效率的提升[1,6-11]。
因此文献[7]提出一种移相+PWM控制方式的双向DC-DC变换器,引入PWM控制,相当于在电路中加入一个电子变压器,使得变压器一次、二次电压匹配,从而减小了变换器的电流应力,减小了通态损耗和环流能量,提高了变换器传输能量的能力,拓宽了零电压开关的范围。
基于Matlab的移相零电压PWM变换器的电压模式控制仿真研究摘要:采用电压模式控制是移相控制零电压开关pwm变换器(ps-zvs-pwm变换器)实现稳压源控制的模式之一。
对该控制模式进行了分析研究,并提出克服电压型控制模式主要缺点的方法。
关键词:ps-zvs-pwm变换器电压型控制分析研究0 引言利用单环反馈的设计和分析比较容易,电压模式控制就是以输出电压作为反馈信号构成的单闭环电压型控制系统。
电压模式控制具有单一反馈电压环设计、调试比较容易;占空比调节不受限制;对输出负载的变化有较好响应调节等优点。
下面以ps-zvs-pwm变换器为例来分析研究其电压模式控制。
1 电压模式控制移相控制零电压开关pwm变换器利用变压器的漏感和功率管的寄生电容来实现零电压开关,是中大功率直-直变换场合理想的方式之一。
ps-zvs-pwm变换器实现的稳压源的控制模式有电压模式控制和电流模式控制,下面采用电压模式控制进行分析。
电压模式控制是指以输出电压作为反馈信号构成单闭环电压型控制系统,其结构框图如图1所示:■图1 电压模式控制结构框图这里kpwm=■=1,rp=■=124.4444e-3将各参数代入得控制对象的传递函数为:gvd(s)=■(1)是一个二阶系统,它的控制器按bode图设计[1,2]。
未调整前系统的开环bode图如下图2:电压控制器用pid控制器[3,4],采用pid校正,相当于在s平面原点增加了一个极点,同时使中频段以-20db/sec穿越0db线,高频段以-40db/sec衰减。
pid控制器的形式整定为:gavr(s)=■(2)整定后系统开环传递函数的bode图如图3所示,其开环截止频率为4.03e3rad/sec,相角裕量为55.9deg;幅值裕量为inf。
开环截止频率远小于pwm调制频率20khz,满足要求[5]。
2 电压模式控制的优缺点分析电压模式控制的优势:在采用低阻抗功率输出时,对多输出电源具有较好的交互调节性能;单环反馈的设计和分析比较容易;锯齿波振幅较大,可使稳定的调制过程具有较好的噪声余裕。
ZVS移相全桥低压大电流开关电源的设计∗徐平凡;肖文勋;刘承香【摘要】设计制作了一款ZVS移相全桥变换器的低压大电流开关电源,详细阐述了部分电路的设计过程和参数计算,并通过抑制桥式变换器中超前/滞后桥臂功率管的高频谐振,降低主电路中上下桥臂的直通风险。
最后设计制作的3 kW(15V/200 A)低压大电流电源验证了设计的可行性,给出了详细的实验结果,整机效率达90%以上,对电源开发者有一定的借鉴作用。
%A low voltage and high current switching power supply based on ZVS Phase-shifted Full-bridge converter is proposed. And the design process and parameters of power supply are introduced. In order to solve the short cir-cuit problem of bridge arms generated by the oscillation of the MOSFET gate,an improved design of driving circuit is proposed,which can eliminate the parasitic oscillation and voltage spikes effectively. Finally,a 3 kW( 15 V/200 A) prototype converter is built and the experimental results verify the effectiveness of design.【期刊名称】《电子器件》【年(卷),期】2015(000)004【总页数】4页(P790-793)【关键词】ZVS移相全桥;高频谐振;桥臂直通问题;低压大电流【作者】徐平凡;肖文勋;刘承香【作者单位】中山职业技术学院,电子信息工程学院,广东中山528404;华南理工大学,电力学院,广州510640;深圳艾默生网络能源有限公司,广东深圳518000【正文语种】中文【中图分类】TM46零电压开关移相全桥(FB-ZVSPWM)变换器利用变压器的漏感和功率管的寄生电容来实现零电压开关,大大降低了电源的开关损耗,在大功率DC/DC变换电路中得到了广泛的应用[1-3]。
PWM变换器的技术知识移相全桥零电压开关(ZVS)PWM变换器已广泛应用于大功率开关电源中,它保持了准谐振电路开关损耗小、工作于固定开关频率的优点,且与普通硬开关全桥电路相比,仅增加了一个谐振电感。
在换流时利用谐振实现开关器件的ZVS,消除了开关损耗,提高了电路效率,使电路能工作在更高的频率[3]。
移相全桥ZVS PWM变换器只能在有限的负载范围内实现所有开关器件的ZVS。
要在大的负载范围内实现所有开关器件的ZVS,可在变压器原边串联一个大电感,或增加变压器漏感,或外接一个电感。
电感的增加对变换器性能有相当大的影响,会引起占空比的丢失。
同时,输出整流管存在反向恢复过程,在输出整流管上产生电压尖峰和电压振荡[4]。
在变压器副边加无源RCD缓冲器或在原边加两个箝位二极管和一个谐振电感可解决副边整流管上存在的电压振荡,但都无法解决占空比丢失的问题。
国内外学者提出了一些电路拓扑,利用储存在辅助电路电感中的能量来实现原边所有开关管的ZVS,不仅减少了占空比丢失和抑制了输出整流管上的电压尖峰和电压振荡,且能在更宽的负载范围内实现所有开关管的ZVS。
文献10提出了一种新的移相全桥变换器拓扑结构(如图1)。
该拓扑结构解决了硬开关全桥电路输出整流管上存在电压尖峰和电压振荡的问题,减少了占空比丢失,能在全负载范围内实现所有开关器件的ZVS,并能根据负载情况自动调节由辅助电路供给的能量。
但存在如下缺点:在续流期间,电路中环流非常大,损耗严重,降低了变换器效率。
最大程度减轻了存在的环流问题。
2改进后的拓扑结构介绍2.1与原电路拓扑结构的比较改进后的拓扑结构如图2所示。
与原电路拓扑结构的不同之处:在变压器TRA与变压器Tk的连线上加了一个双向开关Q1和相应的驱动电路。
控制电路根据检测到的负载电流的大小做出相应的决策:(1)当负载电流大于滞后桥臂实现ZVS所要求的值时,不会控制双向开关Q 导通。
D和Df,不会在续流期间导通,避免不必要的能量损耗。
基于数字信号处理器控制的新型全桥移相式零电压零电流开关
PWM DC-DC变换器
孙铁成;王高林;汤平华;张学广
【期刊名称】《中国电机工程学报》
【年(卷),期】2005(25)18
【摘要】针对传统的全桥移相式零电压零电流开关(ZVZCS)PWM DC-DC变换器在实现滞后桥臂开关管零电流开关(ZCS)的过程中,存在着辅助谐振电路附加损耗较大、软开关实现方式复杂以及功率开关管电压和电流应力高等缺点,提出了一种通过辅助无源钳位网络来实现软开关的新型全桥ZVZCS PWM DC-DC变换器。
分析了变换器的软开关实现原理,并采用TMS320F240 DSP作为控制芯片,设计了变换器数字控制系统。
通过一台0.8kW,60kHz的样机验证了这种基于数字控制的软开关变换器相关理论的正确性。
【总页数】5页(P46-50)
【关键词】电力电子;DC-DC变换器;零电压零电流开关;无源钳位;数字控制;数字信号处理器
【作者】孙铁成;王高林;汤平华;张学广
【作者单位】哈尔滨工业大学电气工程系
【正文语种】中文
【中图分类】TM46
【相关文献】
1.带辅助电感的全桥移相零电压零电流PWM软开关变换器的设计 [J], 刘生华;张忠相;
2.一种新型零电压零电流开关移相全桥变换器 [J], 王光;余明友;朱忠尼;金建伟
3.一种辅助电流可控的移相全桥零电压开关PWM变换器 [J], 张欣;陈武;阮新波
4.对移相控制零电压开关PWM全桥直流变换器的新型理论分析方法 [J], 许大宇;阮新波;严仰光
5.一种新型全桥移相PWM零电压零电流变换器 [J], 姚建红;张艳红;刘继承
因版权原因,仅展示原文概要,查看原文内容请购买。
移相控制零电压开关PWM变换器电流模式控制分析摘要:采用电流模式控制是移相控制零电压开关pwm变换器(ps-zvs-pwm变换器)实现稳压源控制的模式之一。
对该控制模式进行分析研究,并提出克服电流型控制模式主要缺点的方法。
关键词:ps-zvs-pwm变换器电流型控制分析研究1 概述电压型控制模式是传统的pwm开关稳压电源主要采用的控制模式,只对输出电压采样并作为反馈信号实现闭环控制,来稳定输出电压。
但仅采用电压方式稳压,有稳定性差,响应速度慢等缺点。
电流型控制器正是针对其缺点发展起来的。
它增加了一个电流环,很容易不受约束地得到完善的大、小信号特性和大的开环增益。
下面以ps-zvs-pwm变换器为例来分析研究其电流模式控制。
2 电流模式控制移相控制零电压开关pwm变换器利用变压器的漏感和功率管的寄生电容来实现零电压开关,是中大功率直-直变换场合理想的方式之一。
ps-zvs-pwm变换器实现的稳压源的控制模式有电压模式控制和电流模式控制,下面采用电流模式控制进行分析。
电流模式控制是指在电压环内增加了一个电感电流反馈的电流内环的双闭环控制系统。
其结构框图如图1所示[1]:图1 平均电流模式控制系统结构框图①电流控制器的设计[2,3,4],这里简单取电流反馈系数kif=1,(s)对输出的传递函数gid(s)带入参数如式:g(s)= =(1)则电流内环的控制对象为2gid(s)。
控制目标是把内环变为一个快速跟随环节,电流环节开环bode图如图2所示:电流控制器采用pi调节器。
将pi调节器具体整定为:gacr(s)= (2)调整后的电流内环的开环传递函数的bode图如图3所示,其截止频率为1.26e4rad/sec,相角裕量为78.5deg;幅值裕量为inf。
②电压外环控制器的设计[2,3,4],电流内环有很好的跟随性,因此在设计电压外环时可以把电流内环视为一个比例环节。
由于电流反馈系数kij=1,一次电流环节的比例增益为1。
题目:移相全桥零电压开关PWM设计实现移相全桥零电压开关PWM设计实现摘要移相全桥电路具有结构简单、易于恒频控制和高频化 , 通过变压器的漏感和功率开关器件的寄生电容构成谐振电路 , 使开关器件的应力减小、开关损耗减小等优点 , 被广泛应用于中大功率场合。
近年来随着微处理器技术的发展,各种微控制器和数字信号处理器性能价格比的不断提高,采用数字控制已经成为大中功率开关电源的发展趋势。
相对于用实现的模拟控制,数字控制有许多的优点。
本文的设计采用 TI 公司的高速数字信号处理器 TMS320F2802系列的DSP作为控制器。
该模块通过采样移相全桥零电压 DC-DC变换器的输出电压、输入电压及输出电流,通过实时计算得出移相PW M信号,然后经过驱动电路驱动移相全桥零电压DC-DC 变换器的四个开关管来达到控制目的。
实验表明这种控制策略是可行的,且控制模块可以很好的实现提出的控制策略。
关键词:移相全桥;零电压; DSPPhase-shifted Full-bridge Zero-voltage Switching PWM Designand ImplementationABSTRACTPhase-shifted full-bridge circuit has the advantages of simple structure, easy to constant frequency control and high-frequency resonant circuit constituted by the leakage inductance of the transformer and the parasitic capacitance of the power switching devices, to reduce the stress of the switching devices, switching loss is reduced,which widely used in high-power occasion. In recent years, with the development of microprocessor technology, a variety of microcontrollers and digital signal processor cost performance continues to improve, the use of digital control has become the development trend of the large and medium-sized power switching power supply. Relative to achieve analog control, digital control has many advantages. The design uses DSP ,the TI company TMS320F28027series of high-speed digital signal processor, as the controller. The module through the sampling phase-shifted full-bridge zero-voltage DC-DC converter output voltage, input voltage and output current, obtained through real-time calculation of phase-shifted PWMsignal phase-shifted full-bridge zero-voltage DC-DCconversion, and then after the drive circuit the four switch control purposes. The experiments show that this control strategy is feasible, and the control module can achieve the proposed control strategy.Key words: phase-shifted full-bridge ; zero-voltage ;DSP目录1 引言. (1)1.1 移相全桥软开关研究背景及现状. (1)1.2 本文要做的工作 (1)2 移相全桥电路的工作原理 (1)2.1 电路工作状态及特点 (2)2.2 电路的运行模式分析 (2)2.2.1工作过程分析 (3)2.3 软开关实现的条件 (7)3DSP吉构功能 (9)3.1DSP适合于数字信号处理的特点 (9)3.2TMS32C系列DSP既况 (9)3.3TMS320F2802芯片特点 (9)3.4CCSv5平台 (11)3.5利用CCSV5.1导入已有工程 (12)3.6利用CCSv5.1调试工程 (13)4系统程序设计实现 (14)4.1PW啲产生原理 (14)4.2主程序的流程图 (14)4.3 程序设计. .......................4.4最终实现的波形图 .....................5 总结 ............................参考文献...........................致谢....................17172223 错误! 未定义书签。
《电力电子与能源变换》课程教学大纲课程编号:081050211课程名称:电力电子与能源变换英文名称:Power Electronics and power converter课程类型:专业课课程要求:选修学时/学分:4龄(讲课学时:44实验学时:4上机学时:0)适用专业:自动化一、课程性质与任务电力电子与能源变换是自动化(电力电子)专业一门重要的专业方向选修课,限选。
目的和任务:使学生理解开关型电力电了变换基本原理及控制方法;理解开关型电力电子变换器的基本特性;掌握常用电力电子器件的特性和使用方法;熟悉电力电子变换器中的辅助元器件和系统;掌握谐振开关型变换器原理、分析设计方法及应用;了解典型多级复合型电力电子变换器的结构、工作原理、控制方法;了解多级开关电路组合型电力电子变换电源的应用:了解电力电子开关型电力补偿、控制器。
着重学生在电力电子应用技术方面应具备的基本设计方法和基本技能的训练,使学生具有进一步研究学习电力电了技术的能力,为今后从事电力电子装置的研制和开发打下良好的专业基础。
二、课程与其他课程的联系本课程是在学习过电路基础、模拟电子技术、数字电子技术、电力电子技术等有关学科基础课程后设置的专业课。
在具有良好的学科基础上,着重培养学生在电力电子应用技术方面应具备的基本设计方法和基本技能。
并行开设的相关课程有变频器原理与应用,为后续相关课程电力电子建模与仿真和生产实习等教学环节打好基础。
三、课程教学目标1. 使学生理解开关型电力电子变换基本原理及控制方法;理解开关型电力电子变换器的基本特性;掌握常用电力电子器件的特性和使用方法:熟悉电力电子变换器中的辅助元器件和系统;能够识别完成电力电子变换器设计任务面临的电力电子器件等各种制约条件,并得出可接受的指标。
(支撑毕业能力要求 3.3)掌握谐振开关型变换器原理、分析设计方法及应用;能够对于谐振开关型变换器模型进行正确的推理,并能够给出解。
(支撑毕业能力要求13)2. 学习了解典型多级复合型电力电子变换器的结构、工作原理、控制方法;了解多级开关电路组合型电力电子变换电源的应用;了解电力电子开关型电力补偿、控制器。
浅谈移相全桥变换器作者:曹加强来源:《中国科技博览》2014年第35期[摘要]随着科学技术的发展,移相全桥变换器以其突出的特点,越来越多的得到了发展与应用。
本文主要是针对移相全桥变换器的研究,从其基本结构到通过移相实现输出电压的调节,最后通过一个实例验证理论的正确性。
移相全桥零电压开关(ZVS)变换器开关损耗比较小,而且控制简单,顺应了直流电源小型化、高频化的发展趋势,因而在中大功率DC/DC变换场合中得到了较为广泛的研究和应用。
研究此课题就显得尤为有意义。
[关键词]全桥变换器;电压中图分类号:TG37 文献标识码:A 文章编号:1009-914X(2014)35-0045-011、全桥变换器的基本结构全桥变换器是由基本的Buck电路演变得来的,本质上是Buck类隔离变换器。
Buck变换器引入一个变压器得到单管正激变换器;用两只开关管替代单管正激变换器的一只开关管得到双管正激变换器;全桥变换器可看成由两个双管正激变换器交错并联而成,并且两个变压器要共用一副磁芯,可以通过共用一个原边绕组实现;如上图,Q1-Q4为开关管、D1-D4为二极管、Lr谐振电感、、为输出整流二极管、Lf为输出滤波电感、Cf为输出滤波电容。
2、全桥变换器的基本工作原理全桥变换器的控制方式有双极性控制、有限单极性控制和移相控制方式;本文采用移相控制方式,在该方式中,每个桥臂中的两只开关管都是180°互补导通,且两个桥臂的开关信号间存在一个相移,可通过控制此相移来控制输出电压脉宽大小,进而控制输出电压。
全桥变换器工作时,斜对角两只开关管为同时导通,主要波形如下:当斜对角开关管Q1和Q4同时导通时,如图,移相全桥中点间电压为vAB,即变压器原边电压,为Vin;此时副边整流二极管Dr1会导通,且整流后的电压为(K是变压器原副边匝数比);输出滤波电感Lf端电压为,其内电流iLf是线性增加的;那么原边电流,也线性增加,流过Q1和Q4。
移相全桥零电压开关PWM电路图:
波形图:
原理: t0~t1时段,S1和S4都导通,直到t1时刻S1关断。
t1~t2时段:t1时刻开关
S1关断后,电容Cs1、Cs2与电感r L 、L 构成谐振回路。
谐振开始时i A U t u =)(
1 ,在谐振的过程中,0=A u ,S2VD 导通,电流Lr i 通过S2VD 续流。
t2~t3时段:t2时刻开关S2开通,由于此时其反并联二极管S2VD 正处于导通状态,因此S2开通时电压为零,开关过程中不会产生开关损耗,S2开通后电路状态不会改变,继续保持到t3时刻S4关断。
t3~t4时段:t3时刻开关S4关断后,这时变压器二次整流侧1VD 和2VD 同时导通,变压器一次和二次电压均为零,相当于短路,因此变压器一次侧Cs3、Cs4与r L 构成谐振回路。
谐振电感r L 的电流不断减小,B 点电压不断上升,直到S3的反并联二极管S3VD 导通。
这种状态维持到S3
开通。
S3开通前S3VD 导通,因此S3是在零电压的条件下开通,开通损耗为零。
t4~t5时段:S3开通后,谐振电感r L 的电流继续减小。
电感电流Lr i 下降到零后,便反向,不断增大,直到t5时刻T L Lr k I i / ,变压器二次侧整流管VD1的电流下降到零反而关断,电流L I 全部移到VD2中。
t0~t5时段正好是开关周期的一半,而在另一半开关周期t5~t0时段中,电路的工作过程与t0~t5时段完全对称。