灯杆强度设计计算书
- 格式:xls
- 大小:17.50 KB
- 文档页数:4
太阳能LED路灯灯杆强度计算说明书10米灯杆光伏板功率:130Wp*2光伏板尺寸:1650*550mm1、整灯抗风计算风压(Wp):Wp=0.5*Ρ*V²Ρ:为空气密度[kg/m3] v:为风速[m/s]空气密度Ρ==r/g r:重度(标准状态r=0.01225 [kN/m3]) g:重力加速度9.8[m/s2]即:将Ρ带入Wp=0.5*Ρ*V²公式中,得wp=0.5·r·v2/g将r、g带入公式wp=0.5·r·v2/g,得Wp= v2/1600[kN/m²]1、要求抗风等级12级根据以上公式:Wp=v²/160012级风速:32.7~36.9m/s代入公式(选择最大),得:Wp= 36.9²/1600=0.851[kN/m²]根据太阳能路灯灯杆截面积:(a+b)*H/2a=0.136m b=0.28m10米灯杆截面积及光伏板面积为:S总=(0.136+0.28)*10/2+1.65*0.55*2=3.895m²S 光伏板=1.65*0.55*2=1.815m²力臂长度:10米依据力学中的杠杆公式,此时固定螺钉所承受的弯矩为:M=0.851*3.895*10=33.2n.m根据设计:螺栓使用M24高强度螺栓,六个螺栓固定。
螺栓扭矩力大于需要的承受力,因此根据数据表明,该抗风设计完全符合设计要求。
螺栓扭矩力:参考以下表格或GB/T 3098.13-1996高强度螺栓施工扭矩值参考表系数值即可得施工终拧扭矩钢结构用大六角高强度螺栓连接副的施工扭矩是根据实测的扭矩系数进行计算而得的,即为了满足规范中所规定的预拉力值要求,根据试验所获得的真实的扭矩系数用GB50205-2001附录中的计算公式计算而得。
详见《钢结构工程施工质量验收规范》(GB50205-2001)第65页“附录B 紧固件连接工程检验项目”中的第B.0.3条规定。
A、已知条件1、风速U=36.9m/s约12级台风2、灯杆材质Q2353、屈服强度[σ]=235Mpa4、弹性模量E=210Gpa5、灯杆尺寸H=22000mm d=400mm D=600mm δ=15mm 6、组件倾斜角度0°B、风压P=U 2/1.6=851.01N/m 2C、迎风面积S 塔杆==11.00m 2S 挑臂=60×1200×0=0.00m 2S 灯具=100×600×0=0.00m 2S 组件=1580×810×6=7.68m 2×sin 0S 风叶=300×600×=0.00m 2D、扭矩核算1、重心高度Hx==10.27m M 塔杆==96106.97N·mM 挑臂==0.00N·m M 灯具==0.00N·m M 组件==0.00N·m M 风叶==0.00N·m =96106.97N·mW==0.00m 3[M]==923911.91N·m综上所述=9.61E、挠度核算De==500.00mm2、截面惯性矩I==672312759.38mm 4因此灯杆强度是太阳能路灯强度校验π×De 4×[1-(De 内径/De)4]/64W*[σ][M]/M 总>11、圆锥杆,相当于直杆,近似计算(d+D)/2P×S 组件×H P×S 风叶×HM 总=M 塔杆+M 挑臂+M 灯具+M 组件+M 风叶3、灯杆根部的截面抵抗距π×(D 外径4-D 内径4)/32D4、灯杆根部实际理论扭矩允许值P×S 灯具×H (d+D)*H/2(2d+D)*H/3(d+D)2、风压对路灯各部位的扭矩P×S 塔杆×Hx P×S 挑臂×H3、重心处载荷Q==9361.07Nfmax==23.92mm[fmax]==550.00mm6、综上所述=23.00还有地基强度和地脚螺栓强度计算,我也上传了[fmax]/fmax>1因此灯杆挠度是结论:考虑风速的不均匀系数,空气动力系数,以及风向与灯杆、灯具的夹角等,实际危险截面力及灯顶的挠度均比以上计算的结果低,故此灯杆设计是安全可靠的。
28米高杆灯强度符合国际计算书横向水平风荷载产生的风压(一)、自然条件参数:10米高度风速32M/S,最大风压0.6KN/M2。
(二)、杆形结构参数:灯杆:上口径250mm;灯杆的横断截面形状:16边形。
灯杆:下口径650mm;灯杆高:27m。
灯盘迎风面积:0.2M2;单个灯具迎风面积:0.3 M2。
灯杆迎风面积:19.3M2;灯具9个。
公式:ω=βz×μs×μz×μl×ω。
公式中:ω:作用在高杆结构单位面积上的风荷载ω:基本风压KN/M2;σs:风载体型系数μz:Z高度处的高度变化系数μl:重观调整系数βz:Z高度处的风振系数1、基本风压:根据当地气象条件:离地10米高处风速32m/s,基本风2、风载体型系数:灯杆为16边形按照GBJ130-90标准,μs=1.13、风压高度变化系数:按B类,即田野空旷系数取风压高度变化系数:表11、风振系数公式:βz =1+ξ×δ1×δ2。
公式中:βz——Z高度的风振系数β——脉动增大系数δ1——脉动和高度系数δ2——振型,结构外形影响系数(1)、灯杆的自振周期对于基本振周期T1>0.25s时,应采用风振系数来考虑风压脉动的影响,本高杆灯配单侧照明灯盘,计算可考虑按单水箱搭的自振周期公式来进行计算:公式:T1=3.63×sqr(H3/)(E×1)×(M+0.236×P.AH)公式中 H:灯杆的高度mA:灯杆的横截面M2m:灯杆高度为H时杆体的质量I:横截面惯性矩m4P:灯杆的密度750kg m4E:弹性模量2E+1 1PaA:3.14×(D`2-(D-t)-2)/4A:0.01612704 m2I:0.05×(D~2×t)~4I:0.00084688/ m4灯杆的自振周期为T1=1.715613693(2)、脉动增大系数ξ脉动增大系数根据ω。
6米太阳能路灯强度计算书一、主要计算依据1、路灯总高6m,上口径为90㎜下口径150㎜的锥形钢杆;钢杆壁厚为4㎜,灯具距地面高度为6m,太阳能电池板迎风面积1.2m2。
其它数据详见附表1。
2、基本风压ω○=v○2·μr /1600=1.26kN/㎡ (v○=45米/秒)μr——重现期调整系数, μr=1.13、计算依据:《高耸结构设计手册》、《建筑地基设计规范》、《建筑荷载高等规范》、《钢体结构设计手册》、《土力学》(钱家欢编)、其他相关规范。
风荷载计算二、风荷载计算1、作用在灯杆上的风压力迎风体所受的风压力由下式计算:·F=∑Fi=∑βzi·μsi·A i·μz·μri·ω○·S i式中 F——作用在迎风体上的风压力,kN迎风体迎风面积,S i——㎡W——设计风压,kN/㎡βz——风振系数,βz =1.0(由于中杆灯属于较低高耸结构,因此忽略风振周期的影响。
)μs——体形系数,μs =0.7μz——高度系数,μzi=(z/10)0.32ω○ ——基本风压,=1.26 kN/㎡经计算,整个杆体所受总风力为:F 总= F 杆+F 灯+F 臂+F 迎=1.99 kN2、总弯矩计算M 总= M 杆+M 灯+M 臂+M 迎=8.7 kN·m其中:M 杆=∑Fi·Zi;M 灯= F 灯·H 灯;M 臂= F 臂·H 臂;M 迎= F 迎·H 迎式中:Fi——距地面i 高处杆体所受风力 Zi——距地面i 高处杆体型芯F 迎——灯体上部连接件或固定件等迎风体所受风力 H 迎——迎风体型心其它具体数值详见附表2(钢杆强度校核计算结果数据一览表) 三、强度与挠度校验计算强度与挠度校验计算 1、强度验算灯杆强度验算取杆门处截面进行,作用于该截面处的荷载按灯杆底部杆计算,见下式:Wz =π(D 4-d 4)/32D σmax =Wz总M τ=kQ/A A=π(D 2-d 2)/4式中: σmax ——最大正应力,Mp aWz——校验处抗弯矩模量 M 总——杆根弯矩,M=8.7kN·mD——灯杆迎风外径,D=146㎜d——灯杆迎风内径,d=138㎜τ——剪应力,Mp ak——安全系数,k=2Q——剪力,Q= F总=1.99kN,2A——截面面积㎜经计算可得:σmax=141.11 Mp a < [σ]A3=210 Mp aτ=2.23 Mp a < 93 Mp a由此可知此灯型设计符合钢杆强度要求。
11m 路灯灯杆抗风、抗挠技术1、已知条件最大风速 Vm=36m/s (P 风压:ω0=m 2)材料 材质符合GB700-88(A3)许用应力[σ]=210Mpa(《钢结构设计规范》)[QB50017-2003]弹性模量:E=×1011N/M 2(《机械设计手册》)灯管外形为选用A3钢板卷制焊接,梢径ф1=900mm,根径Φ2=200mm ,壁厚分别为4mm.灯体自重15kg ,杆重180kg(不包括底法兰)2、迎风面积S 灯体=S 灯杆=8×(+)×=3、结构自振周期I= ⨯64πA=⨯4π T1=×)236.0(3AH m EI H ρ+ =T1>采用风振系数来考虑,风压脉动的影响。
4、风振系数βz基本风压 ω0T 12= × = m 2∴脉动增大系数 ξ =风压脉动和风压高度变化的影响系数ε1 =振型、结构外形影响系数 ε2=∴β =1+ξ ·ε1•ε2=5、顶端灯具大风时的风荷载: (u τ 取)F1=βzUsUzU τ灯体S ⋅0ω=×××××=6、灯杆大风的风荷载:F2=βzUsUzU τ杆S ⋅0ω=×××××1=7、灯杆距底法兰处所受的最大弯矩:M 总=×8+×4=·m8 、灯杆底端(危险截面即筋板上部开孔处的截面) 风压弯曲应力 σb σb = S M 总 =34417.0)162.017.0(098.004.8mmKN -⨯⋅ =87MPaσb <[ σb ]=210Mpa结论:结构设计是满足国家相关设计规程的要求是安全的。