管道膨胀量及弯管计算
- 格式:xlsx
- 大小:14.22 KB
- 文档页数:3
膨胀节习惯上也叫伸缩节,或波纹管补偿器,是利用波纹管补偿器的弹性元件的有效伸缩变形来吸收管线、导管或容器由热胀冷缩等原因而产生的尺寸变化的一种补偿装置,属于一种补偿元件。
可对轴向,横向,和角向位移的的吸收,用于在管道、设备及系统的加热位移、机械位移吸收振动、降低噪音等。
膨胀节为补偿因温度差与机械振动引起的附加应力,而设置在容器壳体或管道上的一种挠性结构。
由于它作为一种能自由伸缩的弹性补偿元件,工作可靠、性能良好、结构紧凑等优点,已广泛应用在化工、冶金、核能等部门。
在容器上采用的膨胀节,有多种形式,就波的形状而言,以U形膨胀节应用得最为广泛,其次还有Ω形和C形等。
而在管道上采用的膨胀节就结构补偿而言,又有万能式、压力平衡式、铰链式以及万向接头式等。
弯管式膨胀节将管子弯成U形或其他形体(图1),并利用形体的弹性变形能力进行补偿的一种膨胀节。
它的优点是强度好、寿命长、可在现场制作,缺点是占用空间大、消耗钢材多和摩擦阻力大。
这种膨胀节广泛用于各种蒸汽管道和长管道上。
波纹管膨胀节波纹管膨胀节是用金属波纹管制成的一种膨胀节。
它能沿轴线方向伸缩,也允许少量弯曲。
图2为常见的轴向式波纹管膨胀节,用在管道上进行轴向长度补偿。
为了防止超过允许的补偿量,在波纹管两端设置有保护拉杆或保护环,在与它联接的两端管道上设置导向支架。
另外还有转角式和横向式膨胀节,可用来补偿管道的转角变形和横向变形。
这类膨胀节的优点是节省空间,节约材料,便于标准化和批量生产,缺点是寿命较短。
波纹管膨胀节一般用于温度和压力不很高、长度较短的管道上。
随着波纹管生产技术水平的提高,这类膨胀节的应用范围正在扩大。
套管伸缩节套管伸缩节由能够作轴向相对运动的内外套管组成。
内外套管之间采用填料函密封。
使用时保持两端管子在一条轴线上移动。
在伸缩节的两端装设导向支架。
它的优点是对流体的流动摩擦阻力小,结构紧凑;缺点是密封性较差,对固定支架推力较大。
套管伸缩节主要用于水管道和低压蒸汽管道膨胀节标准标准编号:GB/T 12777-1999(新标准GB/T 12777-2008)膨胀节标准名称:金属波纹管膨胀节通用技术条件标准实施日期:2000-3-1 (新标准实施日期2009-02-01)颁布部门:国家质量技术监督局内容简介:本标准规定了金属波纹管膨胀节的定义、分类、要求、试验方法、检验规则、标志及包装、运输、贮存等。
管道计算第一章任务与职责1. 管道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1) 因应力过大或金属疲劳而引起管道破坏;2) 管道接头处泄漏;3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4) 管道的推力或力矩过大引起管道支架破坏;2. 压力管道柔性设计常用标准和规范1) GB 50316-2000《工业金属管道设计规范》2) SH/T 3041-2002《石油化工管道柔性设计规范》3) SH 3039-2003《石油化工非埋地管道抗震设计通则》4) SH 3059-2001《石油化工管道设计器材选用通则》5) SH 3073-95《石油化工企业管道支吊架设计规范》6) JB/T 8130.1-1999《恒力弹簧支吊架》7) JB/T 8130.2-1999《可变弹簧支吊架》8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》9) HG/T 20645-1998《化工装置管道机械设计规定》10) GB 150-1998《钢制压力容器》3. 专业职责1) 应力分析(静力分析动力分析)2) 对重要管线的壁厚进行计算3) 对动设备管口受力进行校核计算4) 特殊管架设计4. 工作程序1) 工程规定2) 管道的基本情况3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿4) 用目测法判断管道是否进行柔性设计5) L型U型管系可采用图表法进行应力分析6) 立体管系可采用公式法进行应力分析7) 宜采用计算机分析方法进行柔性设计的管道8) 采用CAESAR II 进行应力分析9) 调整设备布置和管道布置10) 设置、调整支吊架11) 设置、调整补偿器12) 评定管道应力13) 评定设备接口受力14) 编制设计文件15) 施工现场技术服务5. 工程规定1) 适用范围2) 概述3) 设计采用的标准、规范及版本4) 温度、压力等计算条件的确定5) 分析中需要考虑的荷载及计算方法6) 应用的计算软件7) 需要进行详细应力分析的管道类别8) 管道应力的安全评定条件9) 机器设备的允许受力条件(或遵循的标准)10)防止法兰泄漏的条件11)膨胀节、弹簧等特殊元件的选用要求12)业主的特殊要求13)计算中的专门问题(如摩擦力、冷紧等的处理方法)14)不同专业间的接口关系15)环境设计荷载16)其它要求第二章压力管道柔性设计1. 管道的基础条件包括:介质温度压力管径壁厚材质荷载端点位移等。
3.自然补偿3.1利用管道自然弯曲形状(或设计成L或Z管道)所具有的柔性,补偿其管道自身的热胀和端点的位移称之为自然补偿。
蒸汽直埋管道正是在温度变化时,弯管部分塑性变形和一定量的弹性变形实现管道的自然补偿的。
热力管道热伸长量ΔL=a(t2-t1)L ﻩmma——管道在相应温度范围内的线胀系数 mm/m℃L——管道长度 mt1——管道安装温度℃t2——管道设计使用(介质)温度℃上式计算的管道伸长量ΔL是相对保守的,它没有考虑管道与其接触面(保温材料等)摩擦约束作用、相对位移影响等。
3.2 L型自然补偿文献[8]提出L长≦0.85Lkp或(L长+L短)/2≦0.85LkpL kp ——极限臂长,是L弯管的臂长达到Lkp时热胀和内压作用弯头处引起综合应力达到安定性变形的极限值2σs。
通常Q235,σs取80MPa。
此与L=1.1x[(ΔLDw)/300]1/2计算结果基本一致。
对于绝大多数蒸汽直埋保温管多采用钢外套或玻璃钢/钢外套管形式,这不同于架空软质外套保温,要求工作管除自身应力满足安全需要外,外护管还必须有足够空间,保证工作管道的膨胀或位移不受外套管的阻碍、限制,同时保证绝热效果良好。
这就在某些工况下,要求设有补偿直管段(较通常管径扩大的直管段)或补偿弯头(偏心补偿驼背弯头)等。
3.3 Z型自然补偿文献[8]提出最小短臂长度Lmin概念Lmin=0.8x0.65(ΔLDw) 1/2 mﻩﻩL长≦0.85lkpﻩL短≧1.15 Lmin同时满足上两式要求,才能保证管道塑性变形不超过安定范围。
即短臂不过短,刚度不过大,不引起强度破坏或疲劳破坏。
Z型也可按两个L型进行补偿计算。
3.4 图解L型补偿随着科技进步,蒸汽直埋保温管设计结构有新的发展,可位移固定墩问世应用(1998)。
文献[5]介绍了在不考虑弯管柔性系数和应力加强系数情况下,利用经验绘制的图表可迅速的对L管道进行柔性补偿判断,确定长、短臂尺寸。
一、热膨胀量的计算管道安装完毕投入运行时,常因管内介质的温度与安装时环境温度的差异而产生伸缩。
另外,由于管道本身工作温度的高低,也会引起管道的伸缩。
实验证明,温度变化而引起管道长度成比例的变化。
管道温度升高,由于膨胀,长度增加;温度下降,则由于收缩,长度缩短。
温度变化1度相应的长度成比例变化量称为管材的线膨胀系数。
不同材质的材料线膨胀系数也不同。
碳素钢的线膨胀系数为12×10—6/℃,而硬质聚氯乙烯管的线膨胀系数为80X10—6/℃,约为碳素钢的七倍。
管材受热后的线膨胀量,按下式进行计算: ()L t t L 21-=∆α式中△L ——管道热膨胀伸长量(m);——管材的线膨胀系数(1/K)或(1/℃);t 2——管道运行时的介质温度(℃);t l ——管道安装时的温度(℃),安装在地下室或室内时取t 1=—5℃;当室外架空敷设时,t 1应取冬季采暖室外计算温度;L ——计算管段的长度(m)。
不同材质管材的。
值见表2—1。
表2—1不同材质管材的线膨胀系数在管道工程中,碳素钢管应用最广,其伸长量的计算公式为()L t t L 2161012-⨯=∆- 管道材质线膨胀系数/(×10—6/℃) 管道材质 线膨胀系数/(×10—6/℃) 碳素钢铸铁中铬钢不锈钢镍钢奥氏体钢 12 17 纯铜(紫铜) 黄铜 铝 聚氯乙烯 氯乙烯 玻璃 80 10 5式中12×10—6——常用钢管的线膨胀系数(1/)。
根据式(2—2)制成管道的热伸长量△L表(见表2—2),由表中可直接查出不同温度下相应管长的热伸长量。
例有一段室内热水采暖碳素钢管道,管长70m,输送热水温度为95℃,试计算此段管道的热伸长量。
解根据钢管的热膨胀伸长量计算式(2—2)△L=12×10—6(t1—t2)L=12×10—6(95+5)×70=由已知管长及送水温度,直接查表2—2,也可得管道的热伸长量△L。
自适应海底管线膨胀位移的管道终端设计及计算郭磊;段梦兰;李婷婷;程光明【摘要】In order to meet the developing of deeper-water oil & gas fields,a new pipeline end termination (PLET) with a sliding device which could adapt to the instant maximum slide about 1, 5 m caused by pipeline expansion is designed. Because the instant slide displacement caused by 35 km pipeline is 0. 995 m which is smaller than 1. 5 m,so the sliding device could stop the instant slide damaging other structure. The PLET also has a creative structure called force transfer device (FTD) which could effectively disperse the intent force from 1700 m pipeline.%为满足我国深水油气田开发的需求,设计了一种全新的管道终端(PLET).该PLET具有1套快速自适应滑移机构,最大滑移距离为1.5m,能够自适应海底管道的线膨胀位移.滑移机构能在很大程度上缓冲35 km的海底管道累积产生的0.995m瞬间膨胀位移,避免了瞬间滑动对该PLET其他结构造成破坏.此外,该PLET还有1个力转移座,在PLET的第2端安装时,为分散设定的1700m海底管道引起的集中力起到了很好的作用.【期刊名称】《石油矿场机械》【年(卷),期】2012(041)004【总页数】6页(P25-30)【关键词】深水;管道;PLET;滑移机构,膨胀位移【作者】郭磊;段梦兰;李婷婷;程光明【作者单位】中国石油大学(北京),北京102249;中国石油大学(北京),北京102249;中国石油大学(北京),北京102249;中国石油大学(北京),北京102249【正文语种】中文【中图分类】TE952我国已经在南海开发超过1 500m水深的油气田,这标志着我国的海洋油气开发迈向了深水和超深水。
膨胀节的分类/注意事项解析膨胀节其实也可以称为补偿器,或伸缩节。
它是由波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成。
一种能够自由伸缩的弹性补偿元件,具有工作可靠、性能良好、结构紧凑等优点,已经在化工、冶金、核能等得到了广泛应用。
在生活中不同地方所用的膨胀节也有所不同,因此,我们要了解它的各个分类之间有什么不同的地方。
亚光波纹管膨胀节的分类主要分为两大类:金属膨胀节和非金属膨胀节。
其中金属膨胀节又分为弯管式膨胀节、波纹管膨胀节和套筒式膨胀节。
非金属膨胀节分为橡胶风道膨胀节和纤维织物膨胀节。
波纹管膨胀节波纹管膨胀节是用金属波纹管制成的一种膨胀节。
它能沿管道轴线方向伸缩,也允许少量弯曲。
例如轴向式波纹管膨胀节,用在管道上进行轴向长度补偿。
为了防止超过允许的补偿量,在波纹管两端设置有保护拉杆或保护环,在与它连接的两端管道上设置导向支架。
另外还有转角式和横向式膨胀节,可用来补偿管道的转角变形和横向变形。
这类膨胀节的优点是节省空间,节约材料,便于标准化和批量生产,缺点是寿命较短。
波纹管膨胀节一般用于温度和压力不很高、长度较短的管道上。
随着波纹管生产技术水平的提高,这类膨胀节的应用范围正在扩大。
目前,波纹管膨胀节可用在最高压力6.0兆帕的管系中。
套筒式膨胀节套管伸缩节由能够作轴向相对运动的内外套管组成,内外套管之间采用填料函密封。
使用时保持两端管子在一条轴线上移动。
主要由套筒(芯管)、外壳、密封材料等组成。
用于补偿管道的轴向伸缩及任意角度的轴向转动,具有体积小补偿量大的特点。
适用于热水、蒸气、油脂类介质,通过滑动套筒对外套筒的滑移运动,达到热膨胀的补偿。
外壳与内套筒之间采用新型合成材料密封,能耐高温、防腐蚀抗老化,适用温度-40至150,特殊情况下可达350。
既能保证轴向滑动,又能保证管内介质不泄漏。
橡胶风道膨胀节风道橡胶补偿器分为FDZ、FVB、FUB、XB四种型号,由橡胶和橡胶一纤维织物复合材料、钢制法兰、套筒、保温隔热材料组成,主要用于各种风机、风管之间的柔性连接,其功能是减震、降噪、密封、耐介质、便于位移和安装,是环境保护领域中一种极为理想的减震、降噪、消烟除尘的最佳配套件。
管道膨胀量及弯管计算管道膨胀量及弯管计算是在工程设计和安装过程中非常重要的计算内容。
管道膨胀量的计算可以帮助工程师确定管道在热胀冷缩过程中的变形程度,从而选取合适的补偿措施。
而弯管计算则是为了确定管道在弯曲处的结构稳定性和弯曲角度。
本文将详细介绍管道膨胀量及弯管计算的基本原理和方法,并给出实际案例进行分析。
一、管道膨胀量计算在工程设备中,管道的温度会因为介质的热传导而发生变化,导致管道的热胀冷缩。
为了保证管道系统的正常运行和结构安全,需要考虑管道在热胀冷缩过程中的膨胀量。
1.管道材料的线膨胀系数:不同材料的管道在不同温度下的线膨胀系数不同,一般可从材料手册中查询得到。
2.管道长度:管道的长度越长,膨胀量也就越大。
3.温度差:管道在设计温度和环境温度之间的温度差越大,膨胀量也就越大。
计算管道的膨胀量可以使用以下公式:膨胀量=管道长度×温度差×线膨胀系数举例说明:二、弯管计算在管道设计中,经常会遇到需要在管道上进行弯曲的情况,如水暖管道、通风管道等。
为了保证弯曲处的结构稳定性和弯曲角度的准确性,需要进行弯管计算。
弯管计算要考虑的主要因素有以下几个:1.弯曲角度:弯曲角度是根据实际工程需求确定的,一般情况下,弯曲角度不应大于180度。
2.管径和壁厚:管道的管径和壁厚对弯曲处的结构稳定性有重要影响。
3.弯管弯曲半径:弯管弯曲半径是指弯曲处的曲线弧形的半径,一般情况下,弯管弯曲半径不应小于管道直径的3倍。
弯管的计算一般可以通过以下步骤进行:1.确定弯曲处的管道长度,根据工程实际情况进行测量或估计。
2.根据已知的管径和壁厚,计算出管道的截面面积。
3.根据已知的弯曲角度和管径,计算出弯管的弯曲半径。
4.根据已知的管道长度、弯曲半径和弯曲角度,计算出弯管的弯曲长度。
5.根据已知的管道长度和弯管的弯曲长度,计算出直管的长度。
举例说明:假设有一段长度为10m的钢管,管径为50mm,壁厚为2.5mm,需要对其进行180度的弯曲。