平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问
预测 题以及平面向量数量积的综合应用仍是考查的热点,会以选择题或填
空题的形式出现.
必备知识·逐点夯实
知识梳理·归纳
1.向量的夹角
∠AOB
已知两个非零向量a和b,作=a,=b,则________叫做a与b的夹角
定义
范围
0≤θ≤π
设θ是a与b的夹角,则θ的取值范围是_______
道夹角和模的不共线向量为基底来表示要求的向量,再结合运算律展开求解;
(2)当已知向量的坐标或可通过建立平面直角坐标系表示向量的坐标时,可利用
坐标法求解;
(3)利用向量数量积的几何意义求解.
对点训练
1.(2022·全国乙卷)已知向量a,b满足|a|=1,|b|= 3,|a-2b|=3,则a·b=(
A.-2
24 1
θ=
=
= ,
|||| 12×8 4
所以向量a在向量b上的投影向量为|a|cos
1 1 3
θ· =12× × b= b.
||
4 8 8
3
b
8
.
2.(2023·衡阳模拟)平面向量a⊥b,已知a=(6,-8), =5,且b与向量(1,0)的夹角是钝
角.则b在向量(1,0)上的投影向量为(
(4)向量a与b夹角为θ,a在b上的投影向量为(|a|cos
θ) .(
||
√
)
2.(必修第二册P36练习T1·
变条件)已知a=(-1,t-1),b=(3,2),且 2 + =3,则t=(
A. 2
B. 3
C.± 2
D.±
2
2