第四章-连续时间信号的采样
- 格式:ppt
- 大小:2.00 MB
- 文档页数:51
采样信号的概念采样信号是指连续时间信号在时间轴上以离散形式采样后得到的离散时间信号。
在信号处理中,采样是将连续时间信号转换为离散时间信号的过程。
采样信号常用于数据采集、数字化通信、移动通信、音频处理等领域。
采样信号的概念可以通过以下几个方面进行解释:1. 采样定理:采样定理是离散时间信号处理的基础。
根据采样定理,对于频域限制在一定带宽范围内的连续时间信号,只需以超过其最高频率两倍的采样频率进行采样,就能够完全还原原信号。
2. 采样频率:采样频率是指每秒对连续时间信号进行采样的次数,通常用赫兹(Hz)来表示。
采样频率的选择应满足采样定理的要求,以避免出现混叠现象。
在实际应用中,常用的采样频率为声音的44.1kHz或48kHz。
3. 采样间隔:采样间隔是指连续时间信号在时间轴上两个采样点之间的距离,通常用秒(s)来表示。
采样间隔与采样频率的关系为采样间隔= 1 / 采样频率。
采样间隔越小,对信号的描述就越精确。
4. 量化:量化是将连续时间信号的幅度离散化的过程。
在采样后,信号的幅度需要用有限数量的离散值来表示,这就需要进行量化。
量化过程中,通常将连续幅度值映射到最接近的离散值,常见的量化方式有均匀量化和非均匀量化。
5. 采样误差:采样信号引入了采样误差,即由于采样和量化过程导致的原始信号与重构信号之间的差异。
采样误差可通过增加采样频率和增加量化位数来减小,但不能完全消除。
6. 重构:重构是将采样信号恢复为连续时间信号的过程。
通过采样定理,采样信号可以用原始信号的线性插值方法进行重构。
常用的重构方法有零阶保持插值、一阶保持插值和多项式插值。
采样信号在实际应用中具有重要的意义。
首先,采样信号可以方便进行数据存储和传输。
通过将连续时间信号转换为离散时间信号,可以在数字设备中对信号进行处理、存储和传输,提高信号的处理效率。
其次,采样信号可以方便进行数字信号处理。
采样信号可以利用离散时间信号处理的方法,如滤波、卷积、频域分析等,对信号进行处理和分析。
连续时间信号的抽样及频谱分析-时域抽样信号的频谱__信号与系统课设1 引言随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。
传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。
仪器设备很大部分陈旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。
虚拟仪器正是解决这一矛盾的最佳方案。
基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。
在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。
信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。
将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。
信号的特征值分为幅值特征值、时间特征值和相位特征值。
尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。
信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。
频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。
信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。
信号与系统中抽样的概念抽样是信号与系统中一个重要的概念。
在信号处理中,抽样是指对连续时间信号进行离散化处理,将连续时间信号转换为离散时间信号的过程。
抽样的目的是为了将连续时间信号转换为数字信号,使得信号可以通过数字方式进行存储、传输和处理。
抽样过程可以看作是在连续时间域上对信号进行定时取样。
抽样过程中,我们使用采样定理(奈奎斯特定理)来保证抽样后的信号不失真。
采样定理指出,为了避免信号采样引起的混叠现象,抽样频率必须大于等于原始信号中最高频率的两倍,也就是满足奈奎斯特频率。
在实际应用中,我们通常采用理想脉冲序列作为采样信号。
理想脉冲序列是一个周期为T的序列,每个周期内有一个脉冲,其他时间点上为零。
理想脉冲序列的傅里叶变换是一个周期序列(频率为1/T)的线性组合。
对连续时间信号x(t)进行抽样,可以通过将x(t)与理想脉冲序列进行卷积来实现。
即将x(t)乘以理想脉冲序列,然后对乘积信号进行积分。
抽样后得到的信号为离散时间信号x[n],其中n为整数,表示采样时刻。
离散时间信号x[n]可以看作是连续时间信号x(t)在采样时刻的取样值。
为了重构x(t),可以通过将x[n]与插值函数进行卷积来实现。
插值函数可以看作是理想脉冲序列的反变换,即将理想脉冲序列的傅里叶变换除以周期序列的傅里叶变换。
抽样引入了两个重要的参数,即采样间隔和采样频率。
采样间隔为采样时刻之间的时间间隔,采样频率为采样时刻之间的倒数,即采样频率等于1/采样间隔。
采样频率越高,采样精度越高,重构信号的失真越小。
但是,采样频率过高也会导致计算和存储的需求增加。
抽样过程中,还存在一个概念叫做抽样定理。
抽样定理指出,在有限频带B内的连续时间信号,可以通过以准确率误差小于ε的方式进行采样和重构,只需要满足采样频率f_s大于等于2B。
这是由带限信号在频域中没有重叠而导致的。
如果信号的频域存在重叠,则需要进一步提高采样频率以避免混叠现象。
在实际应用中,我们使用的信号不一定是有限频带的信号,因此在抽样过程中,可能会引入混叠现象。
连续时间信号的采样与重构及其实现
信号处理是现代通信系统中至关重要的一环,其中采样与重构是
一种基本的信号处理技术。
在连续时间信号处理中,采样的作用是将
信号从连续时间域转换为离散时间域。
而重构的作用则是将离散时间
域信号重新转换为连续时间信号,以便于信号的处理和传输。
在采样的过程中,需要将连续时间信号按照一定的时间间隔进行
取样,得到一个离散时间序列。
采样过程中最关键的参数是采样频率,也就是每秒采用的样本数,通常用赫兹(Hz)表示。
采样频率越高,
离散时间序列的准确性就越高,但同时也会增加采样处理的复杂度。
重构的过程则是将离散时间信号恢复成连续时间信号。
由于采样
本身会将连续时间信号进行离散化处理,因此需要进行一定的插值和
滤波处理才能够准确地重构信号。
常见的重构算法包括插值算法、直
接复制算法和最小均方误差算法等。
在实现上,采样和重构的算法都需要借助于一定的数学模型和计
算机技术。
在现代通信系统中,基于数字信号处理技术的采样和重构
算法广泛应用于音频信号、视频信号、图像信号等多种信号处理领域。
数学模型包括傅里叶变换、拉普拉斯变换、小波变换等等。
总之,采样和重构是现代通信系统中非常重要的信号处理技术,
对于准确传输和处理信号具有至关重要的作用。
采用数字信号处理技
术可以实现高效的采样和重构,为现代通信系统的发展提供重要的支撑。
信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。
它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。
抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。
一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。
抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。
抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。
具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。
这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。
抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。
它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。
这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。
如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。
抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。
当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。
三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。
采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。
例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。
简述采样定理的基本内容一、引言采样定理是数字信号处理中的基础概念,它告诉我们如何将连续时间的信号转换成离散时间的信号,并保证在这个过程中不会丢失任何信息。
采样定理的应用非常广泛,涉及到音频、视频、图像等领域。
本文将从以下几个方面来详细介绍采样定理的基本内容。
二、什么是采样定理?采样定理又称为奈奎斯特-香农采样定理(Nyquist-Shannon Sampling Theorem),它是由美国工程师哈里·尼科拉斯·奈奎斯特和克劳德·香农于20世纪初提出的。
采样定理是指:如果一个连续时间信号在一段时间内没有任何频率成分超过其最高频率的两倍,则可以通过对该信号进行等间隔抽样,得到一个离散时间信号,这个离散时间信号可以完全还原原始连续时间信号。
三、采样频率与最高频率为了满足采样定理,我们需要知道原始连续时间信号中最高频率的大小,并根据最高频率来确定采样频率。
在实际应用中,我们通常将采样频率设置为最高频率的两倍以上,以确保信号可以被完全还原。
如果采样频率低于最高频率的两倍,则会发生混叠现象,导致原始信号无法恢复。
四、采样定理的数学表达式采样定理的数学表达式如下:若x(t)是一个带限信号,其最高频率为fmax,则它可以由在等间隔时间Ts下进行的抽样所确定,当Ts≤1/(2fmax)时,由抽样得到的离散时间序列x(nTs)可以唯一地表示连续时间信号x(t),即:x(t)=Σn=-∞∞x(nTs)sinc((t-nTs)/Ts)其中sinc函数定义为:sinc(x)=sin(πx)/(πx)五、采样定理的应用采样定理在数字信号处理中有着广泛的应用。
例如,在音频领域中,CD音质就是通过对音频信号进行44.1kHz的采样来实现的;在图像领域中,我们通常将图像转换成数字形式,并对其进行离散化处理。
此外,在通信领域中,我们也需要考虑到采样定理对于数字调制和解调过程中误差控制的影响。
六、总结通过本文介绍,我们了解了采样定理的基本内容,包括它的定义、数学表达式以及应用。
实验四 信号的采样及恢复一、实验目的1、加深理解连续时间信号离散化过程中的数学概念和物理概念;2、掌握对连续时间信号进行抽样和恢复的基本方法;3、通过实验验证抽样定理。
二、实验内容1、为了观察连续信号时域抽样时,抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。
(1))102cos()(1t t x ⨯=π(2))502cos()(2t t x ⨯=π (3))1002cos()(3t t x ⨯=π2、产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。
3、对连续信号)4cos()(t t x π=进行抽样以得到离散序列,并进行重建。
(1)生成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。
(2)以10=sam f Hz 对信号进行抽样,画出在10≤≤t 范围内的抽样序列)(k x ;利用抽样内插函数)/1()(sam r f T T t Sa t h =⎪⎭⎫⎝⎛=π恢复连续信号,画出重建信号)(t x r 的波形。
)(t x 与)(t x r 是否相同,为什么? (3)将抽样频率改为3=sam f Hz ,重做(2)。
4、利用MATLAB 编程实现采样函数Sa 的采样与重构。
三、实验仪器及环境计算机1台,MATLAB7.0软件。
四、实验原理对连续时间信号进行抽样可获得离散时间信号,其原理如图8-1。
采样信号)()()(t s t f t f s ∙=,)(t s 是周期为s T 的冲激函数序列,即)()()(∑∞-∞=-==n sT nT t t t s sδδ则该过程为理想冲激抽样。
其中s T 称为采样周期,ss T f 1=称为抽样频率, ss s T f ππω22==称为抽样角频率。
实验六、连续信号得采样与恢复一、实验目得1.加深理解采样对信号得时域与频域特性得影响;2.加深对采样定理得理解与掌握,以及对信号恢复得必要性;3.掌握对连续信号在时域得采样与重构得方法。
二、实验原理(1)信号得采样ﻫ信号得采样原理图如下图所示,其数学模型表示为:=ﻫ其中得f(t)为原始信号,为理想得开关信号(冲激采样信号)δTs(t) =,fs(t)为采样后得到得信号称为采样信号。
由此可见,采样信号在时域得表示为无穷多冲激函数得线性组合,其权值为原始信号在对应采样时刻得定义值。
ﻫ令原始信号f(t)得傅立叶变换为F(jw)=FT(f(t)),则采样信号fs(t) 得傅立叶变换Fs(jw)=FT(fs(t))=。
由此可见,采样信号fs(t)得频谱就就是将原始信号f(t)得频谱在频率轴上以采样角频率ws为周期进行周期延拓后得结果(幅度为原频谱得1/Ts)。
如果原始信号为有限带宽得信号,即当|w|>|wm|时,有F(jw)=0,则有:如果取样频率ws≥2wm时,频谱不发生混叠;否则会出现频谱混叠。
(2)信号得重构ﻫ设信号f(t)被采样后形成得采样信号为fs(t),信号得重构就是指由fs(t)经过内插处理后,恢复出原来得信号f(t)得过程。
因此又称为信号恢复。
ﻫ由前面得介绍可知,在采样频率w s≥2wm得条件下,采样信号得频谱Fs(jw)就是以w s为周期得谱线。
选择一个理想低通滤波器,使其频率特性H(jw)满足:H(j w)=式中得wc称为滤波器得截止频率,满足wm≤wc≤ws/2。
将采样信号通过该理想低通滤波器,输出信号得频谱将与原信号得频谱相同。
因此,经过理想滤波器还原得到得信号即为原信号本身。
信号重构得原理图见下图。
通过以上分析,得到如下得时域采样定理:一个带宽为w m得带限信号f(t),可唯一地由它得均匀取样信号fs(n Ts)确定,其中,取样间隔Ts<π/wm,该取样间隔又称为奈奎斯特(Nyquist)间隔。
6.2 信号采样与保持采样器与保持器是离散系统的两个基本环节,为了定量研究离散系统,必须用数学方法对信号的采样过程和保持过程加以描述。
6.2.1 信号采样在采样过程中,把连续信号转换成脉冲或数码序列的过程,称为采样过程。
实现采样的装置,称为采样开关或采样器。
如果采样开关以周期T 时间闭合,并且闭合的时间为τ,这样就把一个连续函数变成了一个断续的脉冲序列,如图6-3(b)所示。
()e t *()e t 由于采样开关闭合持续时间很短,即T τ<<,因此在分析时可以近似认为0τ≈。
这样可以看出,当采样器输入为连续信号时,输出采样信号就是一串理想脉冲,采样瞬时的脉冲等于相应瞬时的值,如图6-3(c) 所示。
()e t *()e t ()et图6-3 信号的采样根据图6-3(c)可以写出采样过程的数学描述为*()(0)()()()()()e t e t e T t T e nT t nT δδδ=+−++−+L L )−nT (6-1) 或 (6-2) *()()()()(δδ∞∞=−∞=−∞=−=∑∑n n e t e nT t nT e t t nT 式中,是采样拍数。
由式(6-2)可以看出,采样器相当于一个幅值调制器,理想采样序 n 列可看成是由理想单位脉冲序列对连续量调制而形成的,如图 *()e t ()()δδ∞=−∞=−∑T n t t 6-4所示。
其中,()T t δ是载波,只决定采样周期,而为被调制信号,其采样时刻的值决定调制后输出的幅值。
()e t ()e nT图6-4 信号的采样6.2.2 采样定理一般采样控制系统加到被控对象上的信号都是连续信号,那么,如何将离散信号不失真地恢复到原来的形状,便涉及采样频率如何选择的问题。
采样定理指出了由离散信号完全恢复相应连续信号的必要条件。
由于理想单位脉冲序列()T t δ是周期函数,可以展开为复数形式的傅氏级数()ωδ+∞=−∞=∑s jn t T n n t c e (6-3)式中,T s /2πω=为采样角频率,T 为采样周期,是傅氏级数系数,它由下式确定n c /2/21()d ωδ+−−=∫s T jn t n T T c t e T t (6-4) 在]2,2[T T +−区间中,)(t T δ仅在0=t 时有值,且,所以1|0==−t t jn s e ω0011()d δ+−=∫n c t t T T= (6-5) 将式(6-5)代入式(6-3),得 1()ωδ+∞=−∞=∑s jn t T n t e T (6-6) 再把式(6-6)代入式(6-2),有*11()()()ωω+∞+∞=−∞=−∞==∑∑s s jn t jn t n n e t e t e e nT e T T (6-7) 将式(6-7)两边取拉氏变换,由拉氏变换的复数位移定理,得到∑+∞−∞=+=n sjn s E T s E )(1)(*ω (6-8) 令ωj s =,得到采样信号的傅氏变换 )(*t e *1()[()]ωωω+∞=−∞=+∑s n E j E j n T (6-9)式中,)(ωj E 为相应连续信号的傅氏变换,)(t e (j )E ω为的频谱。