MXT-高三函数复习专题
- 格式:doc
- 大小:418.64 KB
- 文档页数:12
高考数学-函数值域、定义域、解析式本专题有四部分:壹, 函数值域的求法 貳, 函数定义域 參, 解析式的求法肆,基础练习题&&高考题第一部分:函数值域的求法1、直接法:例1:求函数y例2:求函数1y =的值域。
2、配方法:例1:求函数242y x x =-++([1,1]x ∈-)的值域。
例2:求 函 数]2,1[x ,5x 2x y 2-∈+-= 的 值域。
例3:求函数2256y x x =-++的值域。
3、分离常数法: 例1:求函数125xy x -=+的值域。
例2:求函数122+--=x x xx y 的值域.例3:求函数132x y x -=-得值域.4、换元法:例1:求函数2y x =+例2: 求 函 数1x x y -+=的 值 域。
5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。
例1:求函数y x =-例2:求函数()x x x f -++=11的值域。
例3:求 函 数1x 1x y --+=的 值 域。
6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。
当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。
例1:求函数|3||5|y x x =++-的值域。
7、非负数法根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。
例1、(1)求函数216x y -=的值域。
(2)求函数1322+-=x x y 的值域。
第二部分:函数定义域例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域. 例3:求下列函数的定义域:① 21)(-=x x f ; ② 23)(+=x x f ;③ xx x f -++=211)( 例4:求下列函数的定义域:④ 14)(2--=x x f⑤ ②2143)(2-+--=x x x x f⑥ 373132+++-=x x y ④xx x x f -+=0)1()(第三部分:解析式的求法1、配凑法例1:已知 :23)1(2+-=+x x x f ,求f(x);例2 :已知221)1(xx xx f +=+ )0(>x ,求 ()f x 的解析式. 2、换元法(注意:使用换元法要注意t 的范围限制,这是一个极易忽略的地方。
高三数学《反函数》专题训练班级 姓名 学号一、选择题:1.函数b ax y +=与它的反函数是同一个函数,则( )A.0,1==b a B.0,1=-=b aC.0,1=±=b a D.0,1==b a 或R b a ∈-=,12.函数31xy =的反函数是)(x g ,则( ) A.)3()1()2(->->g g g B.)1()3()2(->->g g gC.)2()3()1(g g g >->- D.)2()1()3(g g g >->-3.若函数)(x f 的图象上经过点)1,0(-,则函数)4(+x f 的反函数的图象上必经过点( )A.)4,1(- B.)1,4(-- C.)4,1(-- D.)4,1(4.已知函数)(x f y =有反函数,则方程a x f =)((a 为常数)( )A.有且只有一个实根 B.至多有一个实根C.至少有一个实根 D.实根的个数无法确定5.函数)(x f y =存在反函数)(1x fy -=,把)(x f y =的图象在直角坐标系内绕原点顺时针转动ο90后是另一个函数的图象,这个函数是( )A.)(1x f y -=- B.)(1x f y -= C.)(1x f y --= D.)(1x f y --=-二、填空题:6.函数)0)(2(≥+-=x x x y 的反函数的定义域是______________.7.设1)1(+=+x x x f ,则=+-)1(1x f ______________.8.关于反函数有下列命题:①二次函数一定有反函数;②反比例函数一定有反函数;③若函数)(x f y =与其反函数)(1x f y -=有公共点,则该点一定在直线x y =上;④单调函数在其单调区间上一定有反函数.以上命题,正确的命题的序号是______________.三、解答题:9.已知函数)1()(2≤+=x ax x x f ,且函数)(x f 具有反函数,求常数a 的取值范围.设0a是满足上述条件的a 的最大值,当0a a =时,求)(x f 的反函数.10.若x x f 21)(+=,且)(x g y =的图象与)1(1+=-x f y 的图象关于直线x y =对称,求)3(g 的值.11.给定实数)1,0(≠≠a a a ,设函数)1,(11ax R x ax x y ≠∈--=且. (1)求证这个函数的图象关于直线x y =成轴对称图形;(2)若函数图象与直线x y =无公共点,求a 的取值范围.12.已知函数)1(12≥-=x x y 的图象为1C ,)(x g y =的图象为2C ,1C 与2C 关于直线x y =对称.又)(x g y =的定义域为M ,对于M x x ∈21,,且21x x ≠,试比较|)()(|21x g x g -与||21x x -的大小.13.已知函数)(x f y =在其定义域D 内是减函数,且存在反函数,求证:)(x f y =的反函数)(1x fy -=在它的定义域E 内也是减函数(E 是)(x f y =的值域).贵州省晴隆一中09-10学年高三数学《反函数》专题训练答案一、选择题:1-5.DBCBC二、填空题:6.]0,(-∞;7.x 1-;8.②④. 三、解答题:9.解:二次函数ax x x f +=2)(对称轴为2a x -=,∵函数)(x f 具有反函数, ∴12≥-a ,解得常数a 的取值范围为2-≤a .∴20-=a . 令1)1(2)(22--=-==x x x x f y ,∴2)1(1-=+x y ,∵1≤x ,∴11+-=-y x ,11++-=y x .∴)(x f 的反函数为11)(1++-=-x x f .10.解:令x y 21+=,得12-=y x ,∴12)(1-=-x x f ,∴xx f 2)1(1=+-. ∵)(x g y =的图象与)1(1+=-x fy 的图象关于直线x y =对称, ∴令x y 2=,得y x 2=,∴x x g 2)(=,33232)3(==g . 11.(1)由11--=ax x y ,得1-=-x y axy ,∴1)1(-=-y x ay , 11--=ay y x . 即函数11--=ax x y 的反函数就是它本身.∴这个函数的图象关于直线x y =成轴对称图形. (2)由题意知,即求使方程11--=ax x x 无解的a 的取值范围. 方程可化为0122=+-x ax ,∴只需⎩⎨⎧<-=∆≠0440a a ,解得a 的取值范围是1>a .12.解:∵1C 与2C 关于直线x y =对称,故函数)(x g y =是函数)1(12≥-=x x y 反函数.∵)1(12≥-=x x y ,∴12+=y x . ∴1+=y x ,或1+-=y x (舍),故x x g +=1)(. 于是2121212111|||11||)()(|x x x x x x x g x g +++-=+-+=-. ∵当0≥x 时,012≥-=x y ,∴函数)1(12≥-=x x y 的值域为),0[+∞,∴)(x g y =的定义域),0[+∞=M ,∴0,021≥≥x x . ∴||11||11|||)()(|2121212121x x x x x x x x x g x g -<+-≤+++-=-, 即|)()(|21x g x g -<||21x x -.13.证明:∵)(x f y =在其定义域D 内是减函数,∴设D x x ∈21,,且21x x <,有)()(21x f x f >.令)(),(2211x f y x f y ==,有E y y ∈21,,且21y y >.∵函数)(x f y =在上D 存在反函数E x x f y ∈=-),(1,∴)(),(212111y f x y f x --==.由题意,)()(21112121y f y fx x y y --<⇔<⇔>,且E y y ∈21,, ∴)(1x fy -=在定义域E 内是减函数.。
学习有方法,考题有规律,解题有技巧第一节 事件与概率一、选择题1.(2008年广州模拟)下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn 就是事件的概率;③百分率是频率,但不是概率;④频率是不能脱离n 次的试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是概率的稳定值. 其中正确的是( )A .①②③④B .①④⑤C .①②③④⑤D .②③2.某班有3位同学分别做抛硬币试验20次,那么下面判断正确的是( ) A .3位同学都得到10次正面朝上,10次反面朝上 B .3位同学一共得到30次正面朝上,30次反面朝上 C .3位同学得到正面朝上的次数为10次的概率是相同的 D .3位同学中至少有一人得到10次正面朝上,10次反面朝上 3.同时掷3枚硬币,那么互为对立事件的是( ) A .至少有1枚正面和最多有1枚正面 B .最多1枚正面和恰有2枚正面 C .至多1枚正面和至少有2枚正面 D .至少有2枚正面和恰有1枚正面4.从一篮鸡蛋中取1 个,如果其质量小于30克的概率是0.30,重量在[30,40]克的概率是0.50,那么重量不小于30克的概率是( )A .0.30B .0.50C .0.80D .0.705.(2009年福建)已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A.0.35 B.0.25 C.0.20 D.0.15二、填空题6.给出下列事件:①物体在只受重力的作用下会自由下落;②方程x2+2x+8=0有两个实根;③某信息台每天的某段时间收到信息咨询的请求次数超过10次;④下周六会下雨.其中随机事件的是________.(把所有正确的序号填上).7.现有2008年奥运会志愿者7名,其中4名为男性,3名为女性,从中任选2名志愿者为游客做向导,其中下列事件:①恰有1名女性与恰有2名女性;②至少有1名女性与全是女性;③至少有1名男性与至少有1名女性;④至少有1名女性与全是男性.是互斥事件的组数有________.8.(2009年台州第一次调研)一堆除颜色外其他特征都相同的红白两种颜色的球若干个,已知红球的个数比白球多,但比白球的2倍少,若把每一个白球都记作数值2,每一个红球都记作数值3,则所有球的数值的总和等于60.现从中任取一个球,则取到红球的概率等于________.三、解答题9.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;(2)少于7环的概率.10.假设人的某一特征(如眼睛大小)是由他的一对基因所决定的,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人是纯隐性,具有rd基因的人为混合性.纯显性与混合性的人都表露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性.求:(1)一个孩子有显性基因决定的特征的概率是多少?(2)两个孩子中至少有一个有显性基因决定的特征的概率是多少?参考答案1.解析:对于②,频率mn ,只是概率的估计值,②错误;对于③,百分率可以是频率,也可以是概率,③错误.答案:B2.解析:理解频率的随机性和概率的稳定性. 答案:C 3.C4.解析:不小于30克的对立事件是小于30克,其概率为1-0.30=0.70. 答案:D5.解析:20组数中恰有两次命中的共有5组,因此所求概率为520=0.25.答案:B6.解析:①是必然事件,②是不可能事件,③④是随机事件. 答案:③④7.解析:①、④互斥,②、③不互斥. 答案:28.解析:设白球x 个,红球y 个,则2x +3y =60. ∵x<y<2x ,∴3x<3y<6x.∴5x<2x+3y<8x ,即⎩⎪⎨⎪⎧5x<60,8x>60.∴608<x<12. 又x∈N *,∴x=8,9,10,11.又y∈N *,易知,x =9时,y =14,适合. ∴取到红球的概率为1414+9=1423. 答案:14239.解析:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44.(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03.10.解析:孩子的一对基因为dd ,rr ,rd 的概率分别为14,14,12,孩子由显性基因决定的特征是具有dd ,rd ,所以(1)一个孩子由显性基因决定的特征的概率为14+12=34.(2)因为两个孩子如果都不具有显性基因决定的特征,即两个孩子都具有rr 基因的纯隐性特征,其概率为14×14=116,所以两个孩子中至少有一个显性基因决定特征的概率为1-116=1516.第二节 古典概型一、选择题1.(2009年金华模拟)同时抛掷三枚均匀的硬币,出现一枚正面,二枚反面的概率等于( )A.14B.13 C.38 D.122.(2008年重庆)(理)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为( )A.184 B.121 C.25 D.352.(文)盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A.15B.14C.45D.1103.(文)设x ,y 是0,1,2,3,4,5中任意两个不同的数,那么复数x +y i 恰好是纯虚数的概率为( )A.16B.13C.15D.1304.(2009西安第三次统考)(理)从4名男同学,3名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( )A.1235 B.1835 C.67 D.784.(文)设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和45.(2009年重庆)(理)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆至少取到1个的概率为( )A.891 B.2591 C.4891 D.60915.(文)一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A.132B.164C.332 D.364二、填空题6.(2009年上海奉贤区模拟)(理)在1,2,3,4,5这五个数字中任取不重复的3个数字组成一个三位数,则组成的三位数是奇数的概率是________.(用分数表示)6.(文)(2008年江苏卷)一个骰子连续投2次,点数和为4的概率为________. 7.(2009年安徽卷)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.8.(2009年江苏卷)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________. 三、解答题9.(理)(2008年浙江)一个袋中装有大小相同的黑球、白球和红球.已知袋中共有10个球.从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79.求:(1)从中任意摸出2个球,得到的都是黑球的概率; (2)袋中白球的个数.9.(文)(2008年海南宁夏卷)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.10.(2009年滨海新区五校联考)某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.(1)求中三等奖的概率; (2)求中奖的概率.参考答案1.解析:(理)共23=8种情况,符合要求的有C 13=3种,所以概率等于38.(文)同时抛三枚硬币,所有可能出现的结果为:(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反);其中符合要求的只有3种,所以概率为:P =38.答案:C2.解析:本小题主要考查组合的基本知识及古典概型的概率.P =C 35C 410=121,故选B .答案:B2.解析:法一:从盒中任取一个铁钉包含基本事件总数为10,其中抽到合格铁订(记为事件A)包含8个基本事件,所以,所求概率为P(A)=810=45.法二:本题还可以用对立事件的概率公式求解,因为从盒中任取一个铁钉,取到合格品(记为事件A)与取到不合格品(记为事件B)恰为对立事件,因此,P(A)=1-P(B)=1-210=45.答案:C3.解析:从中任取三个数共有C 39=84种取法,没有同行、同列的取法有C 13C 12C 11=6,至少有两个数位于同行或同列的概率是1-684=1314,故选D .答案:D3.解析:x 取到0的概率为1/6. 答案:A4.解析:其对立事件的概率为C 34+C 33C 37=535=535=17,所以P =1-17=67. 答案:C4.解析:事件C n 的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1); 当n =3时,落在直线x +y =3上的点为(1,2)、(2,1); 当n =4时,落在直线x +y =4上的点为(1,3)、(2,2); 当n =5时,落在直线x +y =5上的点为(2,3); 显然当n =3,4时,事件C n 的概率最大为13.答案:D 5.解析:P =C 26C 15C 14+C 16+C 25C 14+C 16C 15C 24C 415=15×20+6×40+18015×13×7=4891,故选C .答案:C5.解析:从中有放回地取2次,所取号码共有8×8=64种,其中和不小于15的有3种,分别是(7,8),(8,7),(8,8),故所求概率为P =364.故选D . 答案:D 6.解析:P =C 13A 24A 35=3660=35. 答案:356.解析:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P =36×6=112. 答案:1127.解析:四条线段中任意取出三条的可能有:2,3,4或2,3,5或2,4,5或3,4,5共4种.能构成三角形的可能情况:2,3,4或2,4,5或3,4,5,∴P=34.答案:348.解析:(理)从5根竹竿中,一次随机抽取2根竹竿的方法数为C 25=10. 而满足它们的长度恰好相差0.3 m 的方法数为2个,即2.5和2.8,2.6和2.9. 由古典概型的求法得P =210=15.解析:(文)从5根竹竿中,一次随机抽取2根竹竿的方法数有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9)共10种.而满足它们的长度恰好相差0.3 m 的方法数为2种,即2.5和2.8,2.6和2.9.由古典概型的求法得P =210=15.答案:159.解析:(1)由题意知,袋中黑球的个数为10×25=4.记“从袋中任意摸出两个球,得到的都是黑球”为事件A ,则P(A)=C 24C 210=215.设袋中白球的个数为x ,则P(B)=1-P(B )=1-C 2n -1C 2n =79,解得x =5.答案:(1)215 (2)59.解析:(1)总体平均数为16()5+6+7+8+9+10=7.5. (2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(5,6), (5,7), (5,8), (5,9), (5,10), (6,7), (6,8), (6,9), (6,10), (7,8), (7,9), (7,10), (8,9), (8,10), (9,10),共15个基本结果.事件A 包含的基本结果有:(5,9), (5,10), (6,8), (6,9), (6,10), (7,8), (7,9),共有7个基本结果; 所以所求的概率为P ()A =715.10.解析:设“中三等奖”的事件为A ,“中奖”的事件为B ,从四个小球中有放回的取两个共有4×4=16种可能.(1)两个小球号码相加之和等于3的取法有4种:0+3,1+2,2+1,3+0,所以P(A)=416=14. (2)法一:①两个小球号码相加之和等于3的取法有4种. ②两个小球相加之和等于4的取法有3种:1+3,2+2,3+1; ③两个小球号码相加之和等于5的取法有2种:2+3,3+2. 所以P(B)=416+316+216=916.法二:考虑问题的对立事件,即不中奖的概率. ①等于6的取法有1种:3+3;②等于2的取法有3种:0+2,1+1,2+0; ③等于1的取法有2种:0+1,1+0; ④等于0的取法有1种:0+0. 所以P(B -)=116+316+216+116=716,于是P(B)=1-P(B -)=1-716=916.第三节 几何概型一、选择题1.有一杯2升的水,其中含有一个细菌,用一个小杯从这杯水中取出0.1升水,则小杯水中含有细菌的概率是( )A .0.5B .0.05C .0.1D .0.012.(2008年佛山一模)如右图所示,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为( )A .7.68B .16.32C .17.32D .8.683.(2009年辽宁)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点.在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8 D .1-π84.(2009年福建上杭)已知函数f(x)=x 2+bx +c ,其中0≤b≤4,0≤c≤4.记函数f(x)满足条件⎩⎪⎨⎪⎧f2≤12,f -2≤4为事件A ,则事件A 发生的概率为( )A.14B.58C.12D.385.(2009年山东卷)在区间[-1,1]在随机取一个数x ,cos πx 2的值介于0到12之间的概率为( )A.13B.2π C.12 D.23 二、填空题6.两根相距8 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率是________.7.(2009年福建卷)点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣孤AB 的长度小于1的概率为________.8.(2009年浙江杭州模拟)在边长为2的正三角形ABC 内任取一点P ,则使点P 到三个顶点的距离至少有一个小于1的概率是________. 三、解答题9.(2009年厦门一中质检)投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面的数字分别作为点P 的横坐标和纵坐标.(1)求点P 落在区域C :x 2+y 2≤10内的概率;(2)若以落在区域C 上的所有点为顶点作面积最大的多边形区域M ,在区域C 上随机散一粒豆子,求豆子落在区域M 上的概率.10.(2009年深圳第二次调研改编)设M 点的坐标为(x ,y).(1)设集合P ={-4,-3,-2,0},Q ={0,1,2},从集合P 中随机取一个数作为x ,从集合Q 中取随机取一个数作为y ,求M 点落在y 轴的概率;(2)设x∈[0,3],y∈[0,4],求点M 落在不等式组: ⎩⎪⎨⎪⎧x +2y -3≤0x≥0y≥0,所表示的平面区域内的概率.参考答案1.解析:P =0.12=120=0.05.答案:B2.解析:∵S 椭S 矩=300-96300,∴S 椭=204300×24=16.32.答案:B3.解析:根据几何概率公式得概率为P =S 阴影部分S 长方形ABCD =2-12π·122=1-π4. 答案:B4.解析:由题意,⎩⎪⎨⎪⎧2b +c -8≤0,2b -c≥0表示的区域的面积为8,所以概率为12,故选C.答案:C5.解析:在区间[-1,1]上随机取一个实数x ,cos πx 2的值位于[0,1]区间,若使cosπx2的值位于⎣⎢⎡⎦⎥⎤0,12区间,取到的实数x 应在区间⎣⎢⎡⎦⎥⎤-1,-23∪⎣⎢⎡⎦⎥⎤23,1内,根据几何概型的计算公式可知P =2×132=13,故选A.答案:A6.解析:P(A)=8-2-28=12.答案:127.解析:如右图,设A 、M 、N 为圆周的三等分点,当B 点取在优孤MAN 上时,对劣弧AB 来说,其长度小于1,故其概率为23.答案:23.8.解析:以A 、B 、C 为圆心,以1为半径作圆,与△ABC 交出三个扇形, 当P 落在其内时符合要求. ∴P=3×12×π31234×22=3π6.答案:3π69.解析:(1)以0,2,4为横、纵坐标的点P 的可能共3×3=9个, 而这些点中,落在区域C 的点有:(0,0)、(0,2)、(2,0)、(2,2)4个 ,∴所求概率为P =49.(2)∵区域M 的面积为4,而区域C 的面积为10π, ∴所求概率P =410π=25π. 10.解析:(1)记“M 点落在y 轴”为事件A.M 点的组成情况共4×3=12种,且每种情况出现的可能性相等,属于古典概型. 其中事件A 包含的基本事件有(0,0),(0,1),(0,2)共3处. ∴P(A)=312=14.(2)依条件可知,点M 均匀地分布在不等式组⎩⎪⎨⎪⎧0≤x≤30≤y≤4所表示的平面区域内,属于几何概型.该平面区域的图形为右图中矩形OABC 围成的区域,面积为S =3×4=12.而所求事件构成的平面区域由不等式组⎩⎪⎨⎪⎧x +2y -3≤0x≤0y≤0表示的区域,其图形如右图中的三角形OAD(阴影部分).又直线x +2y -3=0与x 轴、y 轴的交点分别为A(3,0)、D ⎝ ⎛⎭⎪⎫0,32,∴三角形OAD 的面积为 S 1=12×3×32=94.∴ 所求事件的概率为P =S 1S =9412=316.第四节 条件概率与事件的独立性一、选择题1.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A 表示第一次摸得白球,B 表示第二次摸得白球,则A 与B 是( )A .互斥事件B .不相互独立事件C .对立事件D .相互独立事件解析:第一次摸得白球和第二次摸得白球有可能同时发生,∴A、B 不是互斥事件,自然也不是对立事件;第一次摸得白球与否会影响第二次摸得白球的概率,∴A、B 是不相互独立事件.答案:B2.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .p 1p 2B .p 1(1-p 2)+p 2(1-p 1)C .1-p 1p 2D .1-(1-p 1)(1-p 2)解析:恰有一人解决这个问题包括两种情况:一种是甲解决了问题乙没有解决,概率为p 1(1-p 2),另一种是乙解决了问题甲没有解决,概率为p 2(1-p 1),所以恰有一人解决这个问题的概率是p 1(1-p 2)+p 2(1-p 1).答案:B3.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )A.320 B.15 C.25 D.920解析:考虑对立事件A -没有人去此地,概率为34×45=35,所以P(A)=1-35=25.答案:C4.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A .0.12B .0.88C .0.28D .0.42 解析:P =(1-0.3)(1-0 .4)=0.42. 答案:D5.将三颗骰子各掷一次,设事件A =“三个点数都不相同”,B =“至少出现一个6点”,则概率P(A | B=()A.6091 B.12 C.518 D.91216解析:∵B -为一个6点都没有出现,其概率为P(B -)=56×56×56=125216,∴P(B)=1-125216=91216,而AB 表示“三个点数都不相同且至少出现一个6点”,其概率为16×56×46×3=518,所以P(A|B)=P ABP B =51891216=216×591×18=6091.答案:A 二、填空题6.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,则取出的两球是红球的概率为________(答案用分数表示)解析:46×16=19.答案:197.(2008年湖北卷)明天上午李明要参加义务劳动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是________.解析:法一: 两个闹钟一个也不准时响的概率是(1-0.8)×(1-0.9)=0.02,所以要求的结果是1-0.02=0.98.法二:要求的概率是(1-0.8)×0.9+0.8×(1-0.9)+0.8×0.9=0.98. 答案:0. 988.(2009年冠龙中学月考)甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,则其中恰有一人击中目标的概率是________.解析:0.6×0.4+0.4×0.6=0.48. 答案:0.48 三、解答题9.(2009年金陵模拟改编)某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是13,每次测试时间间隔恰当,每次测试通过与否互相独立.(1)求该学生考上大学的概率;(2)求该学生经过4次测试考上大学的概率.解析:(1)记“该学生考上大学”为事件A ,其对立事件为A -,则P(A -)=C15⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫234+⎝ ⎛⎭⎪⎫235=112243, ∴P(A)=1-[C15·⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫234+⎝ ⎛⎭⎪⎫235]=131243.(2)∵该学生经过4次测试考上大学∴该学生第4次考试通过测试,前3次考试只有一次通过测试,所以概率为 P(B)=13×⎝ ⎛⎭⎪⎫13×23×23+23×13×23+23×23×13=427. 10.(2009年全国卷Ⅰ改编)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求甲获得这次比赛胜利的概率; (2)求经过5局比赛,比赛结束的概率.解析:记A i 表示事件:第i 局甲获胜,i =3,4,5,B j 表示事件:第j 局乙获胜,j =3,4. (1)记B 表示事件:甲获得这次比赛的胜利.因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而B =A 3·A 4+B 3·A 4·A 5+A 3·B 4·A 5, 由于各局比赛结果相互独立,故P(B)=P(A 3·A 4)+P(B 3·A 4·A 5)+P(A 3·B 4·A 5) =P(A 3)P(A 4)+P(B 3)P(A 4)P(A 5)+P(A 3)P(B 4)P(A 5) =0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648. (2)经过5局比赛,甲获胜的概率为P(B 3·A 4·A 5)+P(A 3·B 4·A 5)=0.4×0.6×0.6+0.6×0.4×0.6=0.288; 经过5局比赛,乙获胜的概率为P(A 3·B 4·B 5)+P(B 3·A 4·B 5)=0.6×0.4×0.4+0.4×0.6×0.4=0.192. 所以经过5局比赛,比赛结束的概率为0.288+0.192=0.48.第五节 离散型随机变量的分布列一、选择题1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是( ) A .两颗都是2点B 一颗是3点,一颗是1点C .两颗都是4点D .一颗是3点,一颗是1点或两颗都是2点解析:对A 、B 中表示的随机试验的结果,随机变量均取值4,而D 是 ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键.答案:D2.下列分布列中,是离散型随机变量分布列的是( ) A.B.C.D.解析:只有选项C 答案:C3.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次该项试验的成功次数,则P(ξ=0)等于( )A .0 B.13 C.12 D.23解析:1-P(ξ=0)=2P(ξ=0),即P(ξ=0)=13.答案:B4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是( )A .P(X =2)B .P(X≤2)C .P(X =4)D .P(X≤4)解析:由分子C47C68可知是从7个不方便的村庄中选4个,从8个方便的村庄中选6个,∴X=4,∴是P(X =4)的概率.答案:C5.若离散型随机变量X 的分布列为:则常数q 的值为( ) A .1 B. 1±22 C. 1+22 D. 1-22解析:由12+(1-2q)+q 2=1,解得q =1-22或q =1+22,又∵q 2∈[0,1],∴q=1+22舍去.∴q=1-22. 答案:D 二、填空题6.随机变量X 等可能取值为1,2,3,……,n ,如果P(X <4)=0.3,那么n =________. 解析:∵P(X<4)= P(X =1)+P(X =2)+P(X =3)=3n =0.3,∴n=10. 答案:107.随机变量ξ的分布列为若a +c =2b ,则P(|ξ|=解析:∵a+c =2b ,又∵a+b +c =1,∴b=13,a +c =23,于是P(|ξ|=1)=P(ξ=1)+P(ξ=-1)=a +c =23.答案:238.若离散型随机变量X 的分布列为P(X =k)=c2k ,k =1,2,3,4,5,6.其中c 为常数,则P(X≤2)的值是________.解析:由c 2+c 4+c 8+c 16+c 32+c 64=1,可得c =6463.∴P(X≤2)=P(X =1)+P(X =2)=3263+1663=4863=1621.答案:1621三、解答题9.(2009年广州调研)一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为ξ,求ξ的分布列. 解析:(1)设“这箱产品被用户接收”为事件A ,P(A)=8×7×610×9×8=715,即这箱产品被用户接收的概率为715.(2)ξ的可能取值为1,2,3.P(ξ=1)=210=15,P(ξ=2)=810×29=845,P(ξ=3)=810×79=2845,∴ξ的分布列为10.(2009年广州模拟)50名一线教师参加,使用不同版本教材的教师人数如下表所示:(1)从这(2)若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机变量ξ的分布列.解析:(1)从50名教师中随机选出2名的方法数为C250=1225. 选出2人使用版本相同的方法数为 C 220+C 215+C 25+C 210=350,故2人使用版本相同的概率为:P =3501225=27.(2)∵P(ξ=0)=C215C235=317,P(ξ=1)=C120C115C235=60119,P(ξ=2)=C220C235=38119,∴ξ的分布列为第六节 二项分布、超几何分布、正态分布一、选择题1.设随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.716解析:P (ξ=3)=C36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫1-123=516.答案:A2.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1)=( )A.13B.59C.827D.1927解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =13,∴P (η≥1) =C 13⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫232+C 23⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫23+C 33⎝ ⎛⎭⎪⎫133=1927,故选D.答案:D3.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝ ⎛⎭⎪⎫3810·⎝ ⎛⎭⎪⎫582B .C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582·38C .C 911⎝ ⎛⎭⎪⎫589·⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫582解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582×38. 答案:B4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p , ∴p ≥0.4.又∵p <1,∴0.4≤p <1. 答案:A5.(2009年湖南四市联考)已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( )A .0.16B .0.32C .0.68D .0.84 解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0) =P (ξ>4)=1-0.84=0.16.故选A. 答案:A 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.(用数值作答)解析:由题意知所求概率P =C 310⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫127=15128.答案:151287.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02C 25=0.3,分布列如下表:答案:8.1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________.解析:根据3σ原则,在4-3×0.5=2.5——4+3×0.5=5.5之外为异常,所以这批零件不合格.答案:不合格 三、解答题9.(2008年四川延考)一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列. 解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”,i =1,2.B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”, i =1,2.C 表示事件“一次抽检后,设备不需要调整”.则C =A 1·A 2+A 1·B 2+B 1·A 2.由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2)=0.92+2×0.9×0.05=0.9.(2)由(1)知一次抽检后,设备需要调整的概率为p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为10.(2009算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.解析:(1)依题意,甲答对试题数ξ的可能取值为0、1、2、3,则 P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:(2)P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415. 因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P ()A ·P ()B =⎝ ⎛⎭⎪⎫1-23⎝ ⎛⎭⎪⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为P =1-P()A ·B =1-145=4445. 答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为P =P ()A ·B+P ()A ·B +P ()A ·B=23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445。
高中数学--函数的性质二壹、填空题 1、函数1y x x=+在区间[]2,5上的最大值为 2、已知()(),f x g x 分别是定义在R 上的偶函数和奇函数,且()()321f x g x x x -=++,则()()11f g +=3、已知函数()()2231lg 11x x x f x x x ⎧+-≥⎪=⎨⎪+<⎩,()f x 的最小值是4、已知函数()()()21201lg 11x x f x a a x x -≤⎧⎪=>≠⎨+<⎪⎩且的最大值为1,则a 的取值范围是5、已知函数y =M ,最小值为m ,则mM的值是 6、已知函数()()ln 1f x x =+()()21f x f x >-的x 的范围是7、设12,x x 为方程24420x mx m -++=的两个实根,2212x x +的最小值为8、若函数()12f x x x a =++-的最小值为5,则实数a 的取值范围是9、若函数()12log 414x x f x ax x ≥⎧⎪=⎨⎪-<⎩为单调函数,则实数a 的取值范围是10、设()01x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若()0f 是()f x 的最小值,则a 的取值范围为11、设函数()()221sin 1x xf x x ++=+的最大值为M ,最小值为m ,则M m += 12、已知非空集合M R ⊆,定义域为R 的函数()10M x M f x x M∈⎧=⎨∉⎩,若,A B 是R 的两个非空真子集,函数()()()()11A B A B f x F x f x f x ⋃+=++的值域为贰、解答题17、判断函数()211f x x =-在区间()1,0-上的单调性,并用定义加以证明。
18、已知函数()2220x xx f x x mxx ⎧-+≥=⎨+<⎩是奇函数 (1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围19、求函数()()20a x f x a x+=>在[]1,2上的最小值20、设a 为实数,函数()21,f x x x a x R =+-+∈(1)求当a 分别取-1,0,1时()f x 的最小值;(2)求()f x 的最小值()h a 的函数解析式21、设()22f x x a x=-+,其中a R ∈ (1)判断函数()f x 的奇偶性,并说明理由;(2)若不等式()1f x ≥对一切()0,x ∈+∞恒成立,求实数a 的取值范围叁、选择题 13、函数22lg2x y x x -=+的图像( ) A.关于x 轴对称 B.关于原点对称 C.关于直线y x =对称 D.关于y 轴对称14、函数()2log 21f x x x =+-的零点必落在区间( ) A. 11,84⎛⎫ ⎪⎝⎭ B. 11,42⎛⎫ ⎪⎝⎭ C. 1,12⎛⎫⎪⎝⎭D. ()1,215、设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意x R ∈,都有()f x M ≤,则M 是()f x 函数的最大值; (2)若存在0x R ∈,使得对任意x R ∈,都有()()0f x f x ≤,则()0f x 是函数()f x 的最大值;(3)若存在0x R ∈,使得对任意x R ∈,且0x x ≠,都有()()0f x f x <,则()0f x 是函数()f x 的最大值。
高三数学第二轮专题复习系列(6)——不等式一、本章知识结构:二、高考要求(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。
(3)分析法、综合法、比较法证明简单的不等式。
(4)掌握某些简单不等式的解法。
(5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。
三、热点分析1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注.2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点.3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点.4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识.不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。
高考数学专题复习 导数的应用黄冈第二轮复习新思维)(5)(')(.62.1.1.2.))1(,1()(,12)21()1(lim )(.5),(3.),(3.),(.),(.5)(.4)3,.(),3.(),3.[),3.[12)(.3.0.8.4.3)(32lim ,2)3(',2)3(.2)2,0.()0,.()2,.(),2.(13)(.1022233323x f x f R x f D C B A f x f y x x f f x f t s D t s C B A tx sx x x f R t s D C B A a ax x x f D C B A x x f x f f D C B A x x x f x x 所示,则函数的图象如图,导函数的定义域为函数处切线的斜率为上点则过曲线为可导函数,且设单调递减时,在当单调递增时,在当单调递减在单调递增在,则、若的取值范围为)内为增函数,则实数,在(不存在的值为已知是减函数的区间为函数一、选择题--=-=--+∞-∞<+∞-∞<+∞-∞+∞-∞+-+-=∈--∞+∞-+∞-+∞∞+-+=----==-∞-∞+∞+-=→→abb a b a x f xxx x f xk x x f x x f y x x y a ax x x y x y e x f x e x f b bf a af D b af a bf C b af a af B b af a bf A b a b a x f x xf x x f y s cm D s cm C s cm B s cm A cm cm y x D y x C y x B y A M xx x y D C B A cm D C B A x x x ->->>+-+==≠=--==+-===--=<<>>>>>>==-+=-+=+-=-+-=→1ln ln 0,02)(11)1ln()(.1521,1)0)((,()(.14]22[|3|.133.121('lim,2)(.11)()(.)()(.)()(.)()(.0)()('0)(.10/32./21./1./41.10100.9012.022.012.0.0121ln .812.10.8.6.45.7....23230232,求证:)若(的极小值;)求(已知函数三、解答题),则次曲线方程为,此曲线过点(处切线斜率为在一曲线上的最大值是,在闭区间函数的切线,则是曲线直线则设二、填空题的是则下列不等式一定成立满足、恒成立,又知常数上可导,且满足不等式在若函数径增加的速度为时,气球半气球半径为气体压力不变,那么当的常速注入气体,假设设气球以每秒)处的切线方程为,(在点曲线为截去的小正方形的边长盒容积最大,则在四角焊成铁盒,若所做的铁然后把四边折起,就能的小正方形四各截去一个面积相等盖的铁盒时,在铁皮的的正方形铁皮做一个无用边长为小值点有四个极大值点,无极极小值点有两个极大值点,两个极小值点有三个极大值点,两个小值点无极大值点,有四个极ππππ).,2,1(2,,,,)0()()3(1)]([)()2(,sin 2)()2()1()(sin )(.171|)()(|),,[2)()1(21],[)1()1()(.16121240200212122ΛΛΛ=<-<∞++==-+∈=<-∈≤<≤-+-=+n a a a a a x f x x x f x f x k x k x f k x f R x x x x f x f x f n m x x x f n m n m xnm x x f nn n ππππ证明,到大的顺序排列为内的全部极值点按从小,在设的一个极值点,证明为设为整数;其中证明设函数恒成立不等式、)证明:对任意(的单调性讨论且的定义域为已知专题三 导数的应用(答案)一、1.D 2.B 3.B 4.D 5.B 6.C 7.B 8.D 9.A 10.A 二、 31.142.134131.124.11+-=xy 或三、.144)()1(2)1(|)()(|),[,)1()(,)1(2)(],[)(12),[],[)(0)('),[0)('),[,0)('0,0)(,0221))(()(2)(22222)('222)1()1()(1.160,01ln ln 11111,0111)1ln(,0)0()()(0)2(0)0()(00)('01;0)('01)(,)1()(',1)1ln()(1.15222212122232232232243223222222222-+⋅-=---≤-∈-=-=∴>∈<∈==>+∴>+-=+->∴≤<≤≤∴-++-=+--=+--=∴+--+=-+-=>>-≥--=+-=+>=+->+≥+=≥===<<<->>->+=+-+=mn m n m n m n m n x f x f n m x x mnm f mnmn f n m x f n mn mn m x f x f n mn x x f mn m x mn x x f mn x mn m x x mn mx x xm n x m mn x mn x mn mx x xm nx m mx n m x x m x n m x n m x x f x n m x xn m x x n m x x f b a a bb a abx x x b a x x x xx f x f x f x f x f x x f x x f x x x f x xx f x x x x f 对任意最大值为上的最小值为:在)可知)证明:由((内为增函数内为减函数,在在时,②当时,①当得令)解:(时成立在于是则时恒成立,令在从而于是值,取得极小值,而且最小时,证明:在取得极小值,时,因此在时在时,在的定义域为:而求导数得)解:(Θ中的符号可列表如下:在第二象限或第四象限由①式,在第二或第四象限内,即数,使则存在一个非负任意正实根,即是设因此得:由一定满足的极值点有解如图所示,此方程一定上述方程化简为有程的显然,对于满足上述方得令①上可导,在定义域函数有:的定义,对任意整数)证明:由函数解(恒成立不等式故对任意和上是增函数在即令)(tan cos )('),,2(:tan 0)('0)3(1sin )]([,tan 1tan sin ,tan 1tan cos sin sin sin tan )(,,tan ,0cos 0cos sin ,0)('cos sin )(')()2(sin 2sin sin )2(sin )2sin()2()()2()(1.171|)()(|),,[,152412484)2()(]2,1()(,0)215)(215()1(4484)('21,21,21144)(,0000240022020020202222222002121323x x x x f x k k k x x x f x x x x x x f x x x xx x x x x x x x x f x x x x x x x x f x x x x f R x f xk x x x k x x k x k x x f k x f k x f x f x f n m x x h u u h u u u u u u h u mnn m u u u u h mnu +=++∈-==>+==+=+=+=-=-=≠=+=+==-+=-++=-+<-∈<-=-+-=≤∴∴>++---=+-=≤<≤<∴≤<≤∴-+-==πππππππππΘπππππππππππππ<-<<--<->⋅<-<+<<+-+<<-+-⋅+-=--=-=ΛΛ-=ΛΛ=++++++-++++n n n n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n a n n a n a a a a a a a a n a a a x x a a a x f x x f 11111111111212102,0)tan(,0tan tan 232,2,)1()1(2)tan()tan tan 1()tan (tan ,2,1,,,,tan ,,,,.)(0)('综上,即必在第二象限由此可知由②式知由于则由于②,那么对于,的全部正实根且满足为方程由题设条件,的极值点都为的正根所以满足Λ。
难点36 函数方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●难点磁场1.(★★★★★)关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为 .2.(★★★★★)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0)(1)若a =1,b =–2时,求f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx +1212+a 对称,求b 的最小值.●案例探究[例1]已知函数f (x )=log m33+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明;(2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)⇔>+-033x x x <–3或x >3. ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有0)3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数.(2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数.∴⎪⎪⎩⎪⎪⎨⎧-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m即3,0)1(3)12(0)1(3)12(22>>⎪⎩⎪⎨⎧=---+=---+αβααββ又m m m m m m即α,β为方程mx 2+(2m –1)x –3(m –1)=0的大于3的两个根∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-->+-=∆<<0)3(3212011616102mf m m m m m ∴0<m <432-故当0<m <432-时,满足题意条件的m 存在. [例2]已知函数f (x )=x 2–(m +1)x +m (m ∈R ) (1)若tan A ,tan B 是方程f (x )+4=0的两个实根,A 、B 是锐角三角形ABC 的两个内角.求证:m ≥5;(2)对任意实数α,恒有f (2+cos α)≤0,证明m ≥3;(3)在(2)的条件下,若函数f (sin α)的最大值是8,求m .命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属 ★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式. 错解分析:第(1)问中易漏掉Δ≥0和tan(A +B )<0,第(2)问中如何保证f (x )在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏. (1)证明:f (x )+4=0即x 2–(m +1)x +m +4=0.依题意:⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m 又A 、B 锐角为三角形内两内角 ∴2π<A +B <π ∴tan(A +B )<0,即031tan tan 1tan tan )tan(<--+=-+=+m m B A B A B A∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>++>+>+≥--031040101522m m m m m m ∴m ≥5 (2)证明:∵f (x )=(x –1)(x –m )又–1≤cos α≤1,∴1≤2+cos α≤3,恒有f (2+cos α)≤0 即1≤x ≤3时,恒有f (x )≤0即(x –1)(x –m )≤0 ∴m ≥x 但x max =3,∴m ≥x max =3(3)解:∵f (sin α)=sin 2α–(m +1)sin α+m =4)1()21(sin 22+-++-m m m α 且21+m ≥2,∴当sin α=–1时,f (sin α)有最大值8. 即1+(m +1)+m =8,∴m =3 ●锦囊妙计函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:(1)深刻理解一般函数y =f (x )、y =f –1(x )的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭难点训练 一、选择题1.(★★★★★)已知函数f (x )=log a [x –(2a )2]对任意x ∈[21,+∞]都有意义,则实数a 的取值范围是( )A.(0,41] B.(0,41) C.[41,1) D.(41,21) 2.(★★★★★)函数f (x )的定义域为R ,且x ≠1,已知f (x +1)为奇函数,当x <1时,f (x )=2x 2–x +1,那么当x >1时,f (x )的递减区间是( )A.[45,+∞) B.(1,45] C.[47,+∞) D.(1,47]二、填空题3.(★★★★)关于x 的方程lg(ax –1)–lg(x –3)=1有解,则a 的取值范围是 .4.(★★★★★)如果y =1–sin 2x –m cos x 的最小值为–4,则m 的值为 . 三、解答题5.(★★★★)设集合A ={x |4x –2x +2+a =0,x ∈R }. (1)若A 中仅有一个元素,求实数a 的取值集合B ;(2)若对于任意a ∈B ,不等式x 2–6x <a (x –2)恒成立,求x 的取值范围.6.(★★★★)已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x –1)=f (3–x )且方程f (x )=2x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n =,使f (x )定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m 、n 的值;如果不存在,说明理由.7.(★★★★★)已知函数f (x )=6x –6x 2,设函数g 1(x )=f (x ), g 2(x )=f [g 1(x )], g 3(x )=f [g 2(x )], …g n (x )=f [g n –1(x )],…(1)求证:如果存在一个实数x 0,满足g 1(x 0)=x 0,那么对一切n ∈N ,g n (x 0)=x 0都成立; (2)若实数x 0满足g n (x 0)=x 0,则称x 0为稳定不动点,试求出所有这些稳定不动点; (3)设区间A =(–∞,0),对于任意x ∈A ,有g 1(x )=f (x )=a <0, g 2(x )=f [g 1(x )]=f (0)<0, 且n ≥2时,g n (x )<0.试问是否存在区间B (A ∩B ≠∅),对于区间内任意实数x ,只要n ≥2,都有g n (x )<0.8.(★★★★)已知函数f (x )=xa 11- (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )≤2x 在(0,+∞)上恒成立,求a 的取值范围;(3)若f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求a 的取值范围.参 考 答 案●难点磁场1.解析:设t =3x ,则t ∈[1,3],原不等式可化为a 2–a –3>–2t 2+t ,t ∈[1,3]. 等价于a 2–a –3大于f (t )=–2t 2+t 在[1,3]上的最大值. 答案:(–∞,–1)∪(2,+∞)2.解:(1)当a =1,b =–2时,f (x )=x 2–x –3,由题意可知x =x 2–x –3,得x 1=–1,x 2=3. 故当a =1,b =–2时,f (x )的两个不动点为–1,3.(2)∵f (x )=ax 2+(b +1)x +(b –1)(a ≠0)恒有两个不动点,∴x =ax 2+(b +1)x +(b –1),即ax 2+bx +(b –1)=0恒有两相异实根 ∴Δ=b 2–4ab +4a >0(b ∈R )恒成立. 于是Δ′=(4a )2–16a <0解得0<a <1故当b ∈R ,f (x )恒有两个相异的不动点时,0<a <1.(3)由题意A 、B 两点应在直线y =x 上,设A (x 1,x 1),B (x 2,x 2) 又∵A 、B 关于y =kx +1212+a 对称.∴k =–1.设AB 的中点为M (x ′,y ′)∵x 1,x 2是方程ax 2+bx +(b –1)=0的两个根. ∴x ′=y ′=a b x x 2221-=+,又点M 在直线1212++-=a x y 上有 121222++=-a a b a b ,即aa a ab 121122+-=+-= ∵a >0,∴2a +a 1≥22当且仅当2a =a1即a =22∈(0,1)时取等号,故b ≥–221,得b 的最小值–42. ●歼灭难点训练一、1.解析:考查函数y 1=x 和y 2=(2a )x的图象,显然有0<2a <1.由题意21)2(21a =得a =41,再结合指数函数图象性质可得答案. 答案:A 2.解析:由题意可得f (–x +1)=–f (x +1).令t =–x +1,则x =1–t ,故f (t )=–f (2–t ),即f (x )=–f (2–x ).当x >1,2–x <1,于是有f (x )=–f (2–x )=–2(x –47)2–87,其递减区间为[47,+∞). 答案:C3.解析:显然有x >3,原方程可化为1031=--x ax 故有(10–a )·x =29,必有10–a >0得a <10又x =a -1029>3可得a >31. 答案:31<a <104.解析:原式化为4)2(cos 22m m x y --=.当2m<–1,y min =1+m =–4⇒m =–5. 当–1≤2m≤1,y min =42m -=–4⇒m =±4不符.当2m>1,y min =1–m =–4⇒m =5. 答案:±5二、5.解:(1)令2x =t (t >0),设f (t )=t 2–4t +a .由f (t )=0在(0,+∞)有且仅有一根或两相等实根,则有 ①f (t )=0有两等根时,Δ=0⇒16–4a =0⇒a =4 验证:t 2–4t +4=0⇒t =2∈(0,+∞),这时x =1 ②f (t )=0有一正根和一负根时,f (0)<0⇒a <0③若f (0)=0,则a =0,此时4x –4·2x =0⇒2x =0(舍去),或2x =4,∴x =2,即A 中只有一个元素综上所述,a ≤0或a =4,即B ={a |a ≤0或a =4}(2)要使原不等式对任意a ∈(–∞,0]∪{4}恒成立.即g (a )=(x –2)a –(x 2–6x )>0恒成立.只须175081020)4(022-⇒⎩⎨⎧<+-≤⇒⎩⎨⎧>≤-x x x g x <x ≤2 6.解:(1)∵方程ax 2+bx =2x 有等根,∴Δ=(b –2)2=0,得b =2. 由f (x –1)=f (3–x )知此函数图象的对称轴方程为x =–ab2=1得a =–1,故f (x )=–x 2+2x . (2)f (x )=–(x –1)2+1≤1,∴4n ≤1,即n ≤41 而抛物线y =–x 2+2x 的对称轴为x =1 ∴n ≤41时,f (x )在[m ,n ]上为增函数. 若满足题设条件的m ,n 存在,则⎩⎨⎧==nn f mm f 4)(4)(⎩⎨⎧-==-==⇒⎪⎩⎪⎨⎧=+-=+-2020424222n n m m nn n m m m 或或即 又m <n ≤41,∴m =–2,n =0,这时定义域为[–2,0],值域为[–8,0]. 由以上知满足条件的m 、n 存在,m =–2,n =0. 7.(1)证明:当n =1时,g 1(x 0)=x 0显然成立;设n =k 时,有g k (x 0)=x 0(k ∈N )成立, 则g k +1(x 0)=f [g k (x 0)]=f (x 0)=g 1(x 0)=x 0 即n =k +1时,命题成立.∴对一切n ∈N ,若g 1(x 0)=x 0,则g n (x 0)=x 0.(2)解:由(1)知,稳定不动点x 0只需满足f (x 0)=x 0 由f (x 0)=x 0,得6x 0–6x 02=x 0,∴x 0=0或x 0=65 ∴稳定不动点为0和65. (3)解:∵f (x )<0,得6x –6x 2<0⇒x <0或x >1.∴g n (x )<0⇔f [g n –1(x )]<0⇔g n –1(x )<0或g n –1(x )>1要使一切n ∈N ,n ≥2,都有g n (x )<0,必须有g 1(x )<0或g 1(x )>1. 由g 1(x )<0⇔6x –6x 2<0⇔x <0或x >1 由g 1(x )>0⇔6x –6x 2>1⇔633633+<<-x 故对于区间(633,633+-)和(1,+∞)内的任意实数x ,只要n ≥2,n ∈N ,都有g n (x )<0. 8.(1)证明:任取x 1>x 2>0,f (x 1)–f (x 2)=2121122111)11()11(x x xx x x x a x a -=-=--- ∵x 1>x 2>0,∴x 1x 2>0,x 1–x 2>0,∴f (x 1)–f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,+∞)上是增函数. (2)解:∵xa 11-≤2x 在(0,+∞)上恒成立,且a >0, ∴a ≥xx 121+在(0,+∞)上恒成立,令421221121)(=⋅≤+=xx xx x g (当且仅当2x =x1即x =22时取等号),要使a ≥xx 121+在(0,+∞)上恒成立,则a ≥42.故a 的取值范 围是[42,+∞).(3)解:由(1)f (x )在定义域上是增函数. ∴m =f (m ),n =f (n ),即m 2–a 1m +1=0,n 2–a1n +1=0 故方程x 2–a 1x +1=0有两个不相等的正根m ,n ,注意到m ·n =1,故只需要Δ=(a1)2–4>0,由于a >0,则0<a <21.。
116难点33 函数的连续及其应用函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系.●难点磁场(★★★★)已知函数f (x )=⎪⎩⎪⎨⎧≤<-≤≤-+-<)51( )1(log )11( )1()1( 32x x x x x x(1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究[例1]已知函数f (x )=242+-x x ,(1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0;(3)对f (x )补充定义,使其是R 上的连续函数.命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法.知识依托:本题是分式函数,所以解答本题的闪光点是能准确画出它的图象.错解分析:第(3)问是本题的难点,考生通过自己对所学连续函数定义的了解.应明确知道第(3)问是求的分数函数解析式.技巧与方法:对分式化简变形,注意等价性,观察图象进行解答. 解:(1)当x +2≠0时,有x ≠-2因此,函数的定义域是(-∞,-2)∪(-2,+∞)当x ≠-2时,f (x )=242+-x x =x -2,其图象如上图(2)由定义域知,函数f (x )的不连续点是x 0=-2.(3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 22-=-→-→x x f x x =-4.因此,将f (x )的表达式改写为f (x )=⎪⎩⎪⎨⎧-=--≠+-2)( 4)2( 242x x x x则函数f (x )在R 上是连续函数.[例2]求证:方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b .命题意图:要判定方程f (x )=0是否有实根.即判定对应的连续函数y =f (x )的图象是否与x 轴有交点,因此根据连续函数的性质,只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可.本题主要考查这种解题方法.知识依托:解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正.错解分析:因为本题为超越方程,因而考生最易想到画图象观察,而忽视连续性的性质在解这类题目中的简便作用.117证明:设f (x )=a sin x +b -x ,则f (0)=b >0,f (a +b )=a ·sin(a +b )+b -(a +b )=a [sin(a +b )-1]≤0, 又f (x )在(0,a +b ]内是连续函数,所以存在一个x 0∈(0,a +b ],使f (x 0)=0,即x 0是方程f (x )=0的根,也就是方程x =a ·sin x +b 的根.因此,方程x =a sin x +b 至少存在一个正根,且它不大于a +b . ●锦囊妙计1.深刻理解函数f (x )在x 0处连续的概念:等式lim 0x x →f (x )=f (x 0)的涵义是:(1)f (x 0)在x =x 0处有定义,即f (x 0)存在;(2)lim 0x x →f (x )存在,这里隐含着f (x )在点x =x 0附近有定义;(3)f (x )在点x 0处的极限值等于这一点的函数值,即lim 0x x →f (x )=f (x 0).函数f (x )在x 0处连续,反映在图象上是f (x )的图象在点x =x 0处是不间断的. 2.函数f (x )在点x 0不连续,就是f (x )的图象在点x =x 0处是间断的.其情形:(1)lim 0x x →f (x )存在;f (x 0)存在,但lim 0x x →f (x )≠f (x 0);(2)lim 0x x →f (x )存在,但f (x 0)不存在.(3)lim 0x x →f (x )不存在.3.由连续函数的定义,可以得到计算函数极限的一种方法:如果函数f (x )在其定义区间内是连续的,点x 0是定义区间内的一点,那么求x →x 0时函数f (x )的极限,只要求出f (x )在点x 0处的函数值f (x 0)就可以了,即lim 0x x →f (x )=f (x 0).●歼灭难点训练 一、选择题 1.(★★★★)若f (x )=11113-+-+x x 在点x =0处连续,则f (0)等于( )A.23B.32 C.1 D.02.(★★★★)设f (x )=⎪⎪⎩⎪⎪⎨⎧<<=<<21 11 2110 x x x x 则f (x )的连续区间为( )A.(0,2)B.(0,1)C.(0,1)∪(1,2)D.(1,2)二、填空题3.(★★★★)xx x x arctan 4)2ln(lim 21--→ =_________.4.(★★★★)若f (x )=⎪⎩⎪⎨⎧≥+<--0 0 11x bx a x xx处处连续,则a 的值为_________. 三、解答题1185.(★★★★★)已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧=≠+-)0( 1)0( 121211x x xx(1)f (x )在x =0处是否连续?说明理由;(2)讨论f (x )在闭区间[-1,0]和[0,1]上的连续性.6.(★★★★)已知f (x )=⎪⎩⎪⎨⎧≥+<--)0()0(11x bx a x xx(1)求f (-x );(2)求常数a 的值,使f (x )在区间(-∞,+∞)内处处连续.7.(★★★★)求证任何一个实系数一元三次方程a 0x 3+a 1x 2+a 2x +a 3=0(a 0,a 1,a 2,a 3∈R ,a 0≠0)至少有一个实数根.8.(★★★★)求函数f (x )=⎪⎩⎪⎨⎧>-≤)1( )21(log )1( 2x x x x 的不连续点和连续区间.参考答案难点磁场解:(1)lim 1--→x f (x )=3, lim 1+-→x f (x )=-1,所以lim 1-→x f (x )不存在,所以f (x )在x =-1处不连续,但lim 1-→x f (x )=f (-1)=-1, lim 1--→x f (x )≠f (-1),所以f (x )在x =-1处右连续,左不连续lim 1-→x f (x )=3=f (1), lim 1+→x f (x )不存在,所以lim 1→x f (x )不存在,所以f (x )在x =1不连续,但左连续,右不连续.又lim 0→x f (x )=f (0)=0,所以f (x )在x =0处连续.(2)f (x )中,区间(-∞,-1),[-1,1],(1,5]上的三个函数都是初等函数,因此f (x )除不连续点x =±1外,再也无不连续点,所以f (x )的连续区间是(-∞,-1),[-1,1]和(1,5].歼灭难点训练 一、1.解析:]11][11)1()[11(]11)1()[11)(11()(3332332-+++++++++++-+++=x x x x x x x x x f2311111)0(1111)1(323=+++=++++++=f x x x答案:A2.解析:11lim )(lim 11==++→→x x x f11921)1(1)(lim ,1lim )(lim 111=≠===→→→--f x f x x f x x x即f (x )在x =1点不连续,显知f (x )在(0,1)和(1,2)连续. 答案:C二、3.解析:利用函数的连续性,即)()(lim 00x f x f x x =→,π=--=--∴→11arctan 4)12sin(11arctan 4)2sin(lim 221x x x 答案:π121,0)(lim )(lim 21111lim 11lim)(lim :.400000=∴=+==-+=--=++---→→→→→a bx a x f x x x x f x x x x x 解析答案:21三、5.解:f (x )=⎪⎩⎪⎨⎧=≠+-)0( 1)0(12111x x x(1) lim 10-→x f (x )=-1, lim 0+→x f (x )=1,所以lim 0→x f (x )不存在,故f (x )在x =0处不连续.(2)f (x )在(-∞,+∞)上除x =0外,再无间断点,由(1)知f (x )在x =0处右连续,所以f (x )在[-1,0]上是不连续函数,在[0,1]上是连续函数.6.解:(1)f (-x )=⎪⎩⎪⎨⎧≥-<-+)0( )0( 11x bx a x xx (2)要使f (x )在(-∞,+∞)内处处连续,只要f (x )在x =0连续,lim 0-→x f (x )= lim-→x x x--11=21111lim )11(lim00=-+=-+--→→xx x x x x lim 0+→x f (x )=lim 0+→x (a +bx )=a ,因为要f (x )在x =0处连续,只要lim 0+→x f (x )= lim 0+→x f (x )= lim 0+→x f (x )=f (0),所以a =217.证明:设f (x )=a 0x 3+a 1x 2+a 2x +a 3,函数f (x )在(-∞,+∞)连续,且x →+∞时,f (x )→+∞;x →-∞时,f (x )→-∞,所以必存在a ∈(-∞,+∞),b ∈(-∞,+∞),使f (a )·f (b )<0,所以f (x )的图象至少在(a ,b )上穿过x 轴一次,即f (x )=0至少有一实根.8.解:不连续点是x =1,连续区间是(-∞,1),(1,+∞)120。
高考数学总复习资料高三数学第三轮总复习分类讨论押题针对训练复习目标:1.掌握分类讨论必须遵循的原则 2.能够合理,正确地求解有关问题 命题分析:分类讨论是一种重要的逻辑方法,也是一种常用的数学方法,这可以培养学生思维的条理性和概括性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.这次的一模考试中,尤其是西城与海淀都设置了解答题来考察学生对分类讨论问题的掌握情况.重点题型分析: 例1.解关于x 的不等式:)()(232R a x a a a x ∈+<+解:原不等式可分解因式为:(x-a)(x-a 2)<0 (下面按两个根的大小关系分类)(1)当a>a 2⇒a 2-a<0即 0<a<1时,不等式的解为 x ∈(a 2, a).(2)当a<a 2⇒a 2-a>0即a<0或a>1时,不等式的解为:x ∈(a, a 2)(3)当a=a 2⇒a 2-a=0 即 a=0或 a=1时,不等式为x 2<0或(x-1)2<0 不等式的解为 x ∈∅.综上,当 0<a<1时,x ∈(a 2, a)当a<0或a>1时,x ∈(a,a 2) 当a=0或a=1时,x ∈∅.评述:抓住分类的转折点,此题分解因式后,之所以不能马上写出解集,主要是不知两根谁大谁小,那么就按两个根之间的大小关系来分类.例2.解关于x 的不等式 ax 2+2ax+1>0(a ∈R) 解:此题应按a 是否为0来分类.(1)当a=0时,不等式为1>0, 解集为R. (2)a ≠0时分为a>0 与a<0两类①10)1(00440002>⇒⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->⇒⎩⎨⎧>>a a a a a a a a ∆时,方程ax 2+2ax+1=0有两根aa a a aa a a a a a x )1(12442222,1-±-=-±-=-±-=.则原不等式的解为),)1(1())1(1,(+∞-+-----∞aa a a a a Y . ②101000440002<<⇒⎩⎨⎧<<>⇒⎪⎩⎪⎨⎧<->⇒⎩⎨⎧<>a a a a a a a ∆时, 方程ax 2+2ax+1=0没有实根,此时为开口向上的抛物线,则不等式的解为(-∞,+∞).③ 11000440002=⇒⎩⎨⎧==>⇒⎪⎩⎪⎨⎧=->⇒⎩⎨⎧=>a a a a a a a a 或∆时, 方程ax 2+2ax+1=0只有一根为x=-1,则原不等式的解为(-∞,-1)∪(-1,+∞).④01000440002<⇒⎩⎨⎧><<⇒⎪⎩⎪⎨⎧>-<⇒⎩⎨⎧><a a a a a a a a 或∆时,方程ax 2+2ax+1=0有两根,aa a a a a a x )1(12)1(22,1-±-=-±-=此时,抛物线的开口向下的抛物线,故原不等式的解为:))1(1,)1(1(aa a a a a ----+-. ⑤φ∈⇒⎩⎨⎧≤≤<⇒⎪⎩⎪⎨⎧≤-<⇒⎩⎨⎧≤<a a a a a a a 1000440002∆综上:当0≤a<1时,解集为(-∞,+∞).当a>1时,解集为),)1(1())1(1,(+∞-+-----∞aa a a a a Y . 当a=1时,解集为(-∞,-1)∪(-1,+∞). 当a<0时,解集为))1(1,)1(1(aa a a a a ----+-. 例3.解关于x 的不等式ax 2-2≥2x-ax(a ∈R)(西城2003’一模 理科)解:原不等式可化为⇔ ax 2+(a-2)x-2≥0, (1)a=0时,x ≤-1,即x ∈(-∞,-1]. (2)a ≠0时,不等式即为(ax-2)(x+1)≥0. ① a>0时, 不等式化为0)1)(2(≥+-x ax , 当⎪⎩⎪⎨⎧->>120a a ,即a>0时,不等式解为),2[]1,(+∞--∞a Y .当⎪⎩⎪⎨⎧-≤>120aa ,此时a 不存在.② a<0时,不等式化为0)1)(2(≤+-x ax ,当⎪⎩⎪⎨⎧-<<120a a ,即-2<a<0时,不等式解为]1,2[-a当⎪⎩⎪⎨⎧-><120a a ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞aY .-2<a<0时,x ∈]1,2[-a .a<-2时,x ∈]2,1[a-.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为: 10:能不分则不分; 20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值. 解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x 令sinx=t, t ∈[-1,1]. 则6243)2()(22++---=a a a t t f (t ∈[-1,1]). (1)当12>a即a>2时,t=1,2533max =++-=a a y 解方程得:22132213-=+=a a 或(舍). (2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432max =++-=a a y ,解方程为:34-=a 或a=4(舍).(3)当12-<a 即a<-2时, t=-1时,y max =-a 2+a+5=2即 a 2-a-3=0 ∴ 2131±=a , ∵ a<-2, ∴ 2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2. 例5.设{a n }是由正数组成的等比数列,S n 是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S .证明:(1)当q=1时,S n =na 1从而0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n(2)当q ≠1时,qq a S n n --=1)1(1, 从而.0)1()1()1)(1(2122121221212<-=-----=-⋅++++nn n n n n n q a q q a q q a S S S由(1)(2)得:212++<⋅n n n S S S . ∵ 函数xy 5.0log =为单调递减函数.∴15.025.05.0log 2log log ++>+n n n S S S .例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率. 分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---b y a x ,一条渐近线的斜率为2=ab, ∴ b=2.∴ 555222==+==a a a b a c e . (2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=ba,此时25=e . 综上(1)(2)可知,双曲线的离心率等于255或. 评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a .解:原不等式 012)1(55<⇔+--x x a0)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或 由(1) a=1时,x-2>0, 即 x ∈(2,+∞). 由(2)a<1时,012>--aa,下面分为三种情况. ①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a aa a 即a<1时,解为)12,2(a a --. ②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a a a a 时,解为∅.③ ⎪⎩⎪⎨⎧<--<2121aa a ⇒ ⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(a a --.由(3)a>1时,aa--12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a aa a ⇒ a 不存在.② ⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a aa a 当a>1时,原不等式的解为:),2()12,(+∞---∞Y a a .综上:a=1时,x ∈(2,+∞). a<1时,x ∈)12,2(aa-- a=0时,x ∈∅.0<a<1时,x ∈)2,12(a a-- a>1时,x ∈),2()12,(+∞---∞Y aa.评述:对于分类讨论的解题程序可大致分为以下几个步骤: 10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记. 课后练习:1.解不等式2)385(log 2>+-x x x2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M. (1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+235321Y 2.]4943[,3. (1) M 为),(),(2452Y ∞- (2)),9()35,(+∞-∞∈Y a 4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2006年高三数学第三轮总复习函数押题针对训练复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。
第一讲---函数的定义域
一、解析式型
当函数关系可用解析式表示时,其定义域的确定只需保证这个解析式在实数范围内有意义即可.求解时要由解析式有意义列出关于自变量的不等式或不等式组,此不等式(或组)的解集就是所求函数的定义域.
例1 、求下列函数的定义域.
(1)
y =
(2)y =;
(3)2
lg(31)
y x =++;
(4)x y cos =
例2、求函数()lg()lg(1)f x x k x =-+-的定义域.
二、抽象函数型
抽象函数就是指没有给出具体对应关系的函数,求抽象函数的定义域一般有两种情况:一种情况是已知函数()f x 的定义域,求复合函数[()]f g x 的定义域;另一种情况是已知函数[()]f g x 的定义域,求函数()f x 的定义域.
例3、已知函数)(x f 的定义域是(12]-,,求函数)]3([log 2
1x f -的定义域.
三、实际问题型
四、学过的函数
第二讲---函数的值域
求函数的值域没有通性解法,只能依据函数解析式的结构特征来确定相应的解法,下面给出常见方法。
一、分析观察法:结构不复杂,可以通过基本函数的值域及不等式的性质观察出
函数的值域。
例1、求函数()1y x =≥的值域。
例2、求函数y
例3、求函数32
y x =
-的值域。
三、换元法
求值域;
注意:(1)新元的取值范围,(2)三角换元法中,角的取值范围要尽量小。
例4、求函数y x =-
例5、求函数4y x =+的值域
四、配方法:二次函数或可转化为二次函数的复合函数常用此方法来还求解
例6、求函数y =
五、判别式法
程,由于方程有实根,即0≥∆从而求得y 的范围,即值域。
注意:①定义域为R ,②要对方程的二次项系数进行讨论。
例7、求函数22122
x y x x +=
-+的值域。
例8、求函数3cos 2
y x =
-的值域。
例9、求函数2sin 2sin x y x -=
+的值域。
例10、求函数sin 2cos x y x
=
-的值域
七、基本不等式法:
得最值。
注意“一正、二定、三等”
例11、求函数1y x x
=+
的值域。
例12、求函数2
12y x x =+
(0)x >的值域
八、利用函数单调性:
结合函数的定义域,可求得值域。
例13、求函数x y 2=,[]2,2-∈x 的值域。
例14、求函数y =
例15、求函数y x =-
例16、求函数21()(2)x f x x x
+=≥的值域。
九、数形结合法
若函数的解析式的几何意义较明显,如距离、斜率等,可用数形结合法。
例17、求函数()()2282++-=
x x y 的值域
十、导数法
例18、求函数5224+-=x x y 在区间[]2,2-上的值域
第三讲---函数的单调性
一、主要方法:
1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;
2.判断函数的单调性的方法有:
()1定义;()2已知函数的单调性;()3函数的导数;()4如果()f x 在区间D 上是增(减)函数,那么()f x 在D 的任一非空子区间上也是增(减)函数;()5图像法;()6复合函数的单调性结论:“同增异减”; ()7奇函数在对称的单调区间内单调性相同,偶函数在对称的单调区间内单调性相反;()8 互为反函数的两个函数具有相同的单调性;(9)在公共定义域内,增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增
函数;减函数-)(x f 增函数)(x g 是减函数;()10函数)0,0(>>+=b a x
b ax y 在
,⎛⎫-∞+∞ ⎪ ⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝
或上是单调递减。
3.证明函数单调性的方法:利用单调性定义
二、典型例题
例1、求下列函数的单调区间:
()
120.7log (32)y x x =-+ ()2y
例2、若函数()y f x =在R 上单调递增,2()()f m f m >-,求m 的取值范围
例3、函数()()2212-+-+=a x a x x f 在(]3,∞-上是减函数,求a 的取值范围。
例4、函数()()14322-+-+-=a x a x x f 在[)+∞,1上是减函数,求a 的取值范围。
例5、函数()b ax x x f +-=2在()1,∞-上是减函数,在()+∞,1上是增函数,求a
例6、求函数()8log 2log 2
12
21++-=x x x f 的的单调区间.
例7、求函数⎪⎭
⎫ ⎝⎛-=x y 24sin log 2π的单调区间.
例8、若函数()x f 的图象与函数()x x g ⎪⎭
⎫ ⎝⎛=31的图象关于直线x y =对称,求()
22x x f -的单调递减区间.
例9、函数()()1132++-=x m mx x f 在[-1,2]上是增函数,求m 的取值范围。
例10、已知函数21)(++=
x ax x f 在区间),2(+∞-上是增函数,试求a 的取值范围
例11、已知函数()()a ax x x f +-=221log 在区间()
2,∞-上是单调增函数,求a 的
取值范围。
第四讲---函数的奇偶性
一、主要知识及方法
(一)主要知识:
1.函数的奇偶性的定义;
2.奇偶函数的性质:
(1)定义域关于原点对称;
(2)偶函数的图像关于y 轴对称,奇函数的图像关于原点对称; 3.()f x 为偶函数()(||)f x f x ⇔=.
4.若奇函数()f x 的定义域包含0,则(0)0f =.
(二)主要方法:
1、判断函数的奇偶性,首先要研究函数的定义域,其次要考虑()x f 与()x f -的关系。
2、牢记奇偶函数的图像特征,有助于判断函数的奇偶性;
3、判断函数的奇偶性有时可以用定义的等价形式:
()()0f x f x ±-=,()1()
f x f x =±-. 4.设()f x ,()
g x 的定义域分别是12,D D ,那么在它们的公共定义域上:
奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇.
二、例题讲解
例1、已知函数()1,21
x f x a =-
+,若()f x 为奇函数,则a =________。
例2、()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设⎪⎭⎫ ⎝⎛=56f a ,⎪⎭
⎫ ⎝⎛=23f b ,⎪⎭⎫ ⎝⎛=25f c 则( ) (A )a b c << (B )b a c << (C )c b a << (D )c a b <<
例3、已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a = ( )
(A )0 (B )1 (C )-1 (D )±1 例4、判断下列各函数的奇偶性:
(1)()(f x x =-(2)22lg(1)()|2|2x f x x -=--;(3)22(0)()(0)x x x f x x x
x ⎧+<⎪=⎨-+>⎪⎩.
例5、设a 为实数,函数2()||1f x x x a =+-+,x R ∈.
(1)讨论()f x 的奇偶性; (2)求 ()f x 的最小值.
例6、(1)已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,()(1f x x =,
则()f x 的解析式为 .
(2)已知()f x 是偶函数,x R ∈,当0x >时,()f x 为增函数,若120,0x x <>,
且12||||x x <,则( )
A .12()()f x f x ->-
B .12()()f x f x -<-
C .12()()f x f x ->-
D . 12()()f x f x -<- 例7、 已知()f x 是定义在实数集R 上的函数,满足(2)()f x f x +=-,且[0,2]x ∈
时,2()2f x x x =-,
(1)求[2,0]x ∈-时,()f x 的表达式;(2)证明()f x 是R 上的奇函数.。