中科院 国科大 黄庆明 模式识别与机器学习 期末考点 复习
- 格式:pptx
- 大小:486.23 KB
- 文档页数:27
模式识别期末试题1.模式识别系统的基本构成单元包括模式采集、特征提取与选择和模式分类。
这些构成单元一起协作,以确定输入模式的类别或特征。
2.统计模式识别中,描述模式的方法一般使用特征向量;而句法模式识别中,模式描述方法一般有串、树、网等。
3.聚类分析算法属于无监督分类;判别域代数界面方程法属于统计模式识别方法。
4.若描述模式的特征量为0-1二值特征量,则一般采用匹配测度进行相似性度量。
5.准则函数可以作为聚类分析中的判别标准,常用的有距离准则、均值准则和连通性准则。
6.Fisher线性判别函数的求解过程是将N维特征向量投影在一维空间中进行。
7.感知器算法只适用于线性可分情况;而积累位势函数法既适用于线性可分,也适用于线性不可分情况。
8.满足文法定义的四元组包括:起始符号、非终结符号集合、终结符号集合和产生式规则集合。
其中,第一、二、四个四元组满足文法定义。
9.影响层次聚类算法结果的主要因素包括计算模式距离的测度、聚类准则、类间距离门限和预定的类别数目。
10.欧式距离具有平移不变性和旋转不变性;马式距离具有平移不变性、旋转不变性、尺度缩放不变性和不受量纲影响的特性。
11.线性判别函数的正负和数值大小的几何意义是正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
12.感知器算法适用于线性可分和线性不可分的情况。
13.积累位势函数法相较于H-K算法的优点是该方法可用于非线性可分情况,也可用于线性可分情况。
位势函数K(x,xk)与积累位势函数K(x)的关系为K(x) = ∑αkK(x,xk),其中xk∈X。
14、XXX判决准则适用于一种判决错误比另一种判决错误更为重要的情况,而最小最大判决准则适用于先验概率未知的情况。
15、特征个数越多并不一定有利于分类。
特征选择的主要目的是从n个特征中选出最有利于分类的m个特征(m<n),以降低特征维数。
在可分性判据对特征个数具有单调性且特征个数远小于样本数的情况下,可以使用分支定界法以减少计算量。
1、贝叶斯分类器贝叶斯分类器的定义:在具有模式的完整统计知识的条件下,按照贝叶斯决策理论进行设计的一种最优分类器。
贝叶斯分类器的分类原理:通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。
贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。
贝叶斯的公式:什么情况下使用贝叶斯分类器:对先验概率和类概率密度有充分的先验知识,或者有足够多的样本,可以较好的进行概率密度估计,如果这些条件不满足,则采用最优方法设计出的分类器往往不具有最优性质。
2、K近邻法kNN算法的核心思想:如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。
假设有N个已知样本分属c个类,考察新样本x在这些样本中的前K个近邻,设其中有个属于类,则类的判别函数就是决策规则:若则∈什么情况下使用K近邻法:kNN只是确定一种决策原则,在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别,并不需要利用已知数据事先训练出一个判别函数,这种方法不需要太多的先验知识。
在样本数量不足时,KNN法通常也可以得到不错的结果。
但是这种决策算法需要始终存储所有的已知样本,并将每一个新样本与所有已知样本进行比较和排序,其计算和存储的成本都很大。
对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。
3、PCA和LDA的区别Principal Components Analysis(PCA):uses a signal representation criterionLinear Discriminant Analysis(LDA):uses a signal classification criterionLDA:线性判别分析,一种分类方法。
它寻找线性分类器最佳的法线向量方向,将高维数据投影到一维空间,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。
模式识别期末考试试题# 模式识别期末考试试题## 一、选择题(每题2分,共20分)1. 模式识别中,特征提取的目的是什么?A. 降低数据维度B. 提高计算效率C. 增强数据的可解释性D. 以上都是2. 在K-近邻算法中,K值的选择对结果的影响是什么?A. 无影响B. 影响分类的准确性C. 影响算法的运行时间D. 影响数据的可读性3. 决策树算法中,信息增益的计算是基于以下哪个概念?A. 熵B. 互信息C. 条件熵D. 联合熵4. 支持向量机(SVM)的主要思想是?A. 寻找数据点之间的最大间隔B. 寻找数据点之间的最小间隔C. 寻找数据点的平均间隔D. 寻找数据点的中心点5. 以下哪个算法属于聚类算法?A. K-近邻B. 决策树C. K-均值D. 支持向量机## 二、简答题(每题10分,共30分)1. 描述主成分分析(PCA)的基本原理及其在模式识别中的应用。
2. 解释什么是过拟合(Overfitting)现象,并给出避免过拟合的几种常用方法。
3. 给出神经网络在模式识别中的基本工作原理,并说明其优缺点。
## 三、计算题(每题25分,共50分)1. 给定以下数据点,使用K-均值算法将它们分为两个簇,并说明算法的步骤:- 数据点:(1, 2), (2, 3), (5, 6), (8, 7), (9, 8)2. 假设有一个二维数据集,其中包含两类数据点,分别用圆形和三角形表示。
数据点的特征如下表所示:| 特征1 | 特征2 | 类别 || | | - || 1.5 | 2.5 | 圆形 || 2.0 | 3.0 | 圆形 || 3.5 | 4.5 | 三角形 || 4.0 | 5.0 | 三角形 |使用线性判别分析(LDA)方法,找出最佳线性边界,并将数据点分为两类。
## 四、论述题(共30分)1. 论述深度学习在图像识别领域的应用,并讨论其与传统机器学习方法相比的优势和局限性。
## 五、案例分析题(共30分)1. 假设你是一名数据科学家,你的团队正在开发一个用于识别手写数字的系统。
1.模式是值得具体的摸一个物体,比如,李论是学生,李论是模式,学生是模式类。
2P134页5.23在图像识别中,假定有灌木丛和坦克两种类型,分别用ω1和ω2表示,它们的先验概率分别为0.7和0.3,损失函数如表所示。
现在做了四次试验,获得四个样本的类概率密度如下::0.1,0.15,0.3, 0.6:0.8,0.7,0.55, 0.3(1)试用贝叶斯最小误判概率准则判决四个样本各属于哪个类型;(2)假定只考虑前两种判决,试用贝叶斯最小风险准则判决四个样本各属于哪个类型;(3)将拒绝判决考虑在内,重新考核四次试验的结果。
表类型损失判决ω1 ω2a1 (判为ω1) 0.5 2.0a2 (判为ω2) 4.0 1.0a3 (拒绝判决) 1.5 1.5解:(1)两类问题的Bayes最小误判概率准则为如果,则判,否则判。
由已知数据,q12=0.3/0.7=3/7,样本x1:∵ l12(x1)=0.1/0.8<q12=3/7 \ x1Îω2样本x2:∵ l12(x2)=0.15/0.7<q12=3/7 \ x2Îω2样本x3:∵ l12(x3)=0.3/0.55>q12=3/7 \ x3Îω1样本x4:∵ l12(x4)=0.6/0.3>q12=3/7 \ x4Îω1(2)不含拒绝判决的两类问题的Bayes最小风险判决准则为如果,则判,否则判。
由已知数据,q12=0.3´(2 - 1)/[0.7´(4 - 0.5)]=3/24.5,样本x1:∵ l12(x1)=1/8>q12=6/49 \ x1Îω1样本x2:∵ l12(x2)=3/14>q12=6/49 \ x2Îω1样本x3:∵ l12(x3)=6/11>q12=6/49 \ x3Îω1样本x4:∵ l12(x4)=6/3>q12=6/49 \ x4Îω1(3)含拒绝判决的两类问题的Bayes最小风险判决准则为其中条件风险:后验概率:记 (4.7-1)则,含拒绝判决的两类问题的Bayes最小风险判决准则为对四个样本逐一列写下表,用(4.7-1)式计算r(aj|x)。
模式识别期末复习笔记模式识别ch2 贝叶斯决策1.贝叶斯公式2.贝叶斯决策的特例a)先验概率相同(均匀先验概率):决策仅依赖于类条件概率密度b)类条件概率密度相同:决策仅依赖于先验概率3.计算题(医学测试⽅法)4.计算题(车⾝⾼低)5.贝叶斯决策的最优性a)最⼩化误差概率的⾓度i.每次均选择概率⼤的类做判断结果,因此错误概率永远是最⼩的b)最⼩化风险的⾓度i.每次均选择条件风险最⼩的结果,因此总风险最⼩6.对于两类分类问题,最⼩风险贝叶斯决策a)可以基于似然⽐进⾏决策b)p(x|ω1)p(x|ω2)≥λ12?λ22λ21?λ11p(ω2)p(ω1)则判断为1类,否则为2类c)似然⽐超过某个阈值(θ),那么可判决为ω1类7.0-1损失(误判是等价的):最⼩化风险就是最⼤化后验,也就是选择后验最⼤的a)最⼩化误差概率与最⼩化风险等价,即选择最⼤后验的分类,即满⾜最⼩误差概率,也满⾜最⼩风险8.先验概率未知时如何设计风险最⼩的分类器?a)使先验概率取任意值时的总风险的最坏情况尽可能⼩b)极⼩化极⼤准则:i.极⼩化指的是贝叶斯风险,因为它是总风险的最⼩值ii.极⼤化指的是使贝叶斯风险达到最⼤iii.贝叶斯风险是和先验有关的,其最⼤也就是其极值,就是导数等于0 的时候c)极⼩化极⼤风险是最坏的贝叶斯风险9.从最⼩化误差概率的意义上讲,贝叶斯是最优的;贝叶斯决策得到的总风险也是最⼩的10.判别函数a)对于两类分类,根据判别函数的正负进⾏类的判断;对于多类问题,两两组成两类问题b)两类问题下:g(x)=g1(x)?g2(x)i.若g(x)≥0,即g1(x)≥g2(x),则判断为1类,否则为2类c)g1(x),g2(x)的设计i.最⼩总风险贝叶斯分类器1.g1(x)=?R(α1|x),风险的相反数ii.最⼩误差概率贝叶斯分类器1. g 1(x )=p (ω1|x )2. g 1(x )=p (x|ω1)p (ω1)3. g 1(x )=log(p (x|ω1))+log(p (ω1))11.12. 计算题(决策边界为何下偏)ch3 参数估计1. 模式分类的途径(截图)2. 当可⽤数据很多以⾄于减轻了先验知识的作⽤时,贝叶斯估计可退化为最⼤似然估计。