模式识别v试题库.doc
- 格式:doc
- 大小:358.51 KB
- 文档页数:23
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A) (2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。
机器视觉与模式识别试题一、简答题(每题10分,共10题)1. 请简要解释机器视觉的概念,并举例说明其在实际应用中的作用。
2. 什么是图像分割?请简要介绍常用的图像分割方法。
3. 请解释什么是特征提取,并描述至少两种常用的特征提取方法。
4. 什么是机器学习?简要描述监督学习和无监督学习的区别。
5. 请简要介绍常见的分类器,并说明它们的优缺点。
6. 什么是物体检测?请简要介绍常用的物体检测算法。
7. 请解释什么是模式识别,并举例说明其应用领域。
8. 简要介绍支持向量机(SVM)的原理及其应用。
9. 什么是深度学习?简要解释深度学习与传统机器学习的区别。
10. 简要介绍卷积神经网络(CNN)及其在图像分类中的应用。
二、分析题(共20分)1. 请分析图像分割的难点和挑战,并提出解决方案。
2. 请分析特征提取的关键问题,并探讨如何改进现有的特征提取方法。
3. 请分析支持向量机(SVM)的优势和不足,并提出使用SVM解决模式识别问题的注意事项。
4. 以人脸识别为例,分析深度学习模型相较于传统机器学习模型的优势和局限性。
三、应用题(共30分)1. 设计一个图像分类系统,能够将手写数字图像分为0~9十个类别。
请详细描述你的设计思路并给出实现代码。
2. 以目标检测为任务,设计一个基于卷积神经网络(CNN)的物体检测系统。
请详细描述你的设计思路并给出实现代码。
四、论述题(共40分)请综合所学的机器视觉与模式识别相关知识,自选一个课题进行深入探讨,并撰写一篇论文。
论文应包括问题定义、相关工作综述、解决方案设计和实验结果分析等内容。
请确保论文结构合理,逻辑清晰,表达准确。
以上是机器视觉与模式识别试题,根据题目要求,正文不再重复。
请根据试题内容自行判断和格式化撰写。
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A®01, A® 0A1 , A® 1A0 , B®, B® 0}, A)(2)({A}, {0, 1}, {A®0, A® 0A}, A)(3)({S}, {a, b}, {S ® 00S, S ® 11S, S ® 00, S ® 11}, S)(4)({A}, {0, 1}, {A®01, A® 0A1, A® 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分) (1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
大学模式识别考试题及答案详解Document number:PBGCG-0857-BTDO-0089-PTT1998一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A)(2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。
通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。
2.2 请解释监督学习和无监督学习的区别。
监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。
通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。
而无监督学习则没有标签或输出信息。
无监督学习的目标是从未标记的数据中找到模式和结构。
这种学习方法通常用于聚类、降维和异常检测等任务。
3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。
请简要解释逻辑回归模型的原理,并说明它适用的场景。
逻辑回归模型是一种用于解决二分类问题的监督学习算法。
其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。
这个映射的概率可以被解释为某个样本属于正类的概率。
逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。
大学模式识别考试题及答案详解Last revision on 21 December 2020一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A) (2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分) (1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。
大学模式识别考试题及答案详解HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
模式识别期末考试试题# 模式识别期末考试试题## 一、选择题(每题2分,共20分)1. 模式识别中,特征提取的目的是什么?A. 降低数据维度B. 提高计算效率C. 增强数据的可解释性D. 以上都是2. 在K-近邻算法中,K值的选择对结果的影响是什么?A. 无影响B. 影响分类的准确性C. 影响算法的运行时间D. 影响数据的可读性3. 决策树算法中,信息增益的计算是基于以下哪个概念?A. 熵B. 互信息C. 条件熵D. 联合熵4. 支持向量机(SVM)的主要思想是?A. 寻找数据点之间的最大间隔B. 寻找数据点之间的最小间隔C. 寻找数据点的平均间隔D. 寻找数据点的中心点5. 以下哪个算法属于聚类算法?A. K-近邻B. 决策树C. K-均值D. 支持向量机## 二、简答题(每题10分,共30分)1. 描述主成分分析(PCA)的基本原理及其在模式识别中的应用。
2. 解释什么是过拟合(Overfitting)现象,并给出避免过拟合的几种常用方法。
3. 给出神经网络在模式识别中的基本工作原理,并说明其优缺点。
## 三、计算题(每题25分,共50分)1. 给定以下数据点,使用K-均值算法将它们分为两个簇,并说明算法的步骤:- 数据点:(1, 2), (2, 3), (5, 6), (8, 7), (9, 8)2. 假设有一个二维数据集,其中包含两类数据点,分别用圆形和三角形表示。
数据点的特征如下表所示:| 特征1 | 特征2 | 类别 || | | - || 1.5 | 2.5 | 圆形 || 2.0 | 3.0 | 圆形 || 3.5 | 4.5 | 三角形 || 4.0 | 5.0 | 三角形 |使用线性判别分析(LDA)方法,找出最佳线性边界,并将数据点分为两类。
## 四、论述题(共30分)1. 论述深度学习在图像识别领域的应用,并讨论其与传统机器学习方法相比的优势和局限性。
## 五、案例分析题(共30分)1. 假设你是一名数据科学家,你的团队正在开发一个用于识别手写数字的系统。
一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。
解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。
(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。
解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A) (2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分) (1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。
第一章绪论1 •什么是模式?具体事物所具有的信息。
模式所指的不是事物本身,而是我们从事物中获得的—信息__。
2. 模式识别的定义? 让计算机来判断事物。
3. 模式识别系统主要由哪些部分组成? 数据获取一预处理一特征提取与选择一分类器设计/分类决策。
第二章贝叶斯决策理论P ( W 2 ) / p ( w 1 ) _,贝V X1. 最小错误率贝叶斯决策过程?答:已知先验概率,类条件概率。
利用贝叶斯公式 得到后验概率。
根据后验概率大小进行决策分析。
2 .最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率P ( W i ), i类条件概率分布p ( x | W i ), i 1 , 2 利用贝叶斯公式得到后验概率P (W i | x)P(X | W j )P(W j )j 1如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
3. 最小错误率贝叶斯决策规则有哪几种常用的表示形式?决策规则的不同形式(董点)C1^ 如vr, | JV ) = max 戶(vr ] WJ A * U vtvEQ 如杲尹a H ; )2^(ir, ) = max |沪0輕』),则x e HpCx |=尸4 "J"匕< 4) 如!4i= — 1IL | /( JV )] = — 111 戸(兀 | w”. ) -+- 11111r a4. 贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了 (平均)错误率最小。
Bayes 决策是最优决策:即,能使决策错误率最小。
5 .贝叶斯决策是 由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这 个概率进行决策。
6.利用乘法法则和全概率公式证明贝叶斯公式p(AB) p(A|B)p(B) p(B|A)p(A)P (A」B )答:m所以推出贝叶斯公式p(B) p(B|Aj)p(Aj)j 17. 朴素贝叶斯方法的条件独立D (1P (x | W i ) P(W i )i i入)2P(x | W j ) P (w j )j 11 ,2P (x | W i )P(W i )如果 I (x)P(B |A i )P(AJ P ( B ) P ( B | A i ) P ( A i ) 7MP ( B | A j ) P ( A j )2假设是( P(x| 3 i) =P(x1, x2, …,xn | co i)19.=P(x1|3 i) P(x2| 3 i)…P(xn| 3 i))8•怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| 3 i) =P(x1, x2, …,xn |3 i) = P(x1| 3 i) P(x2| 3 i)P(xn| 3 i)后验概率:P( 3 i|x) = P( 3 i) P(x1|3 i) P(x2| 3 i)…P(xn| 3 i)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方 差,最后得到类条件概率分布。
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A)(2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。
科目模式识别班级姓名学号得分:1、简答题(40分)1. 什么是模式?人们通常是如何表示模式的?对分类识别的对象进行科学的抽象,建立它的数学模型,用以描述和代替识别对象,称这种对象的描述为模式。
从它的定义可看出,模式是通过数学模型来表示的。
2. 什么是聚类分析?聚类分析是有监督分类还是无监督分类?为什么?聚类分析是基于数据集客观存在着若干个自然类、每个自然类中的数据某些属性都具有较强的相似性而建立的一种数据描述方法。
是无监督的分类。
因为在分类中不需要用训练样本进行学习和训练。
3. 什么是模式识别?模式识别系统通常包括哪些主要的环节?模式识别是根据研究对象的特征或属性,利用以计算机为中心的机器系统,运用一定的分析算法认定它的类别,系统应使分类识别的结果尽可能地符合真实。
主要环节包括:(1)特征提取(2)特征选择(3)学习和训练(4)分类识别4. 什么是最大后验概率准则?5. 什么是总体推断?6. 什么是梯度下降法?就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减少。
7. 什么是无偏估计?无偏估计是参数的样本估计值的期望值等于参数的真实值。
估计量的数学期望等于估计参数。
8. 什么是最小损失准则判决?其基本表达形式是什么?当对一待识模式进行分类识别决策时,算出判属它为各类的条件期望损失之后,判决属于条件期望损失最小的那一类。
基本表达式如下:如果,则判9. 有教师学习和无教师学习在算法上有何区别?10. 线性判别函数的几何意义是什么?11. 一次准则函数的基本形式是什么?简要说明这种形式的特点。
12. 在统计判决中,什么是损失、损失函数和平均损失?13. 利用特征矢量和特征空间如何表达模式和模式类?14. 聚类分析在选取特征时需要注意哪些问题?为什么?15. 判别域界面方程分类的基本思想是什么?16. Fisher判别规则的基本思想是什么?17. 特征空间在模式识别的研究起什么作用?请简要论述。
《模式识别》试卷( A)一、填空与选择填空(本题答案写在此试卷上,30 分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1 二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher 线性判别函数的求解过程是将N 维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A 01, A0A1 ,A1A0 , B BA , B0}, A)(2)({A}, {0, 1}, {A 0, A0A}, A)(3)({S}, {a, b}, {S 00S, S11S, S00, S11},S)(4)({A}, {0, 1}, {A 01, A0A1, A1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有(1、 2);马式距离具有(1、2、3、 4)。
(1)平移不变性( 2)旋转不变性( 3)尺度缩放不变性( 4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
模式识别练习题模式识别练习题模式识别是一种认知能力,是人类大脑的重要功能之一。
通过模式识别,我们能够从复杂的信息中抽取出有用的模式,并进行分类、归纳和推理。
模式识别在日常生活中无处不在,无论是辨认人脸、理解语言还是解读图像,都离不开模式识别的帮助。
在这里,我将给大家提供一些模式识别练习题,帮助大家锻炼和提高自己的模式识别能力。
这些题目涵盖了不同的领域,包括数字、形状和图案等,旨在让大家在娱乐中提升自己的认知水平。
1. 数字序列请观察以下数字序列:2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...请问下一个数字是多少?答案:2048解析:观察数字序列,可以发现每个数字都是前一个数字的2倍。
因此,下一个数字是1024的2倍,即2048。
2. 形状序列请观察以下形状序列:▲, □, ○, △, ▢, ◇, ...请问下一个形状是什么?答案:□解析:观察形状序列,可以发现每个形状都是按照一定的规律交替出现。
▲和○是封闭的形状,□和▢是开放的形状,△和◇是封闭的形状。
因此,下一个形状应该是开放的形状,即□。
3. 图案序列请观察以下图案序列:A, AB, ABA, ABAC, ABACA, ...请问下一个图案是什么?答案:ABACABAC解析:观察图案序列,可以发现每个图案都是在前一个图案的基础上添加一个新的元素。
第一个图案是A,第二个图案是在A的基础上添加B,第三个图案是在ABA的基础上添加C,依此类推。
因此,下一个图案是在ABACABAC的基础上添加ABAC,即ABACABAC。
通过这些练习题,我们可以锻炼自己的观察力和逻辑思维能力。
模式识别不仅仅是一种认知能力,也是一种解决问题的思维方式。
通过不断地练习和思考,我们可以提高自己的模式识别能力,更好地应对各种复杂的情境和挑战。
除了以上的练习题,我们还可以通过观察自然界、阅读文学作品和解决日常问题等方式来锻炼模式识别能力。
《模式识别》试题库一、基本概念题1.1 模式识别的三大核心问题是:、、。
1.2、模式分布为团状时,选用聚类算法较好。
1.3 欧式距离具有。
马式距离具有。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性1.4 描述模式相似的测度有:。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度1.5 利用两类方法处理多类问题的技术途径有:(1);(2);(3)。
其中最常用的是第个技术途径。
1.6 判别函数的正负和数值大小在分类中的意义是:,。
1.7 感知器算法。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
1.8 积累位势函数法的判别界面一般为。
(1)线性界面;(2)非线性界面。
1.9 基于距离的类别可分性判据有:。
(1)1[]w BTr S S-(2)BWSS(3)BW BSS S+1.10 作为统计判别问题的模式分类,在()情况下,可使用聂曼-皮尔逊判决准则。
1.11 确定性模式非线形分类的势函数法中,位势函数K(x,x k)与积累位势函数K(x)的关系为()。
1.12 用作确定性模式非线形分类的势函数法,通常,两个n维向量x和x k的函数K(x,x k)若同时满足下列三个条件,都可作为势函数。
①();②( ); ③ K(x,x k )是光滑函数,且是x 和x k 之间距离的单调下降函数。
1.13 散度J ij 越大,说明ωi 类模式与ωj 类模式的分布( )。
当ωi 类模式与ωj 类模式的分布相同时,J ij =( )。
1.14 若用Parzen 窗法估计模式的类概率密度函数,窗口尺寸h1过小可能产生的问题是( ),h1过大可能产生的问题是( )。
1.15 信息熵可以作为一种可分性判据的原因是: 。
1.16作为统计判别问题的模式分类,在( )条件下,最小损失判决规则与最小错误判决规则是等价的。
1.17 随机变量l(x ρ)=p( x ρ|ω1)/p( x ρ|ω2),l( x ρ)又称似然比,则E {l( x ρ)|ω2}=( )。
在最小误判概率准则下,对数似然比Bayes 判决规则为( )。
1.18 影响类概率密度估计质量的最重要因素是( )。
1.19 基于熵的可分性判据定义为)]|(log )|([1x P x P E J i ci i x H ρρωω∑=-=,J H 越( ),说明模式的可分性越强。
当P(ωi | x ρ) =( )(i=1,2,…,c)时,J H 取极大值。
1.20 Kn 近邻元法较之于Parzen 窗法的优势在于( )。
上述两种算法的共同弱点主要是( )。
1.21 已知有限状态自动机Af=(∑,Q ,δ,q0,F),∑={0,1};Q={q0,q1};δ:δ(q0,0)= q1,δ(q0,1)= q1,δ(q1,0)=q0,δ(q1,1)=q0;q0=q0;F={q0}。
现有输入字符串:(a) 00011101011,(b) 1100110011,(c) 101100111000,(d)0010011,试问,用Af 对上述字符串进行分类的结果为( )。
1.22 句法模式识别中模式描述方法有: 。
(1)符号串 (2)树 (3)图 (4)特征向量1.23设集合X={a,b,c,d }上的关系,R={(a,a),(a,b),(a,d),(b,b),(b,a),(b,d),(c,c),(d,d),(d,a),(d,b)},则a,b,c,d 生成的R 等价类分别为 ( [a]R= ,[b]R= ,[c]R= ,[d]R= )。
1.24 如果集合X 上的关系R 是传递的、( )和( )的,则称R 是一个等价关系。
1.25一个模式识别系统由那几部分组成?画出其原理框图。
1.26 统计模式识别中,模式是如何描述的。
1.27 简述随机矢量之间的统计关系:不相关,正交,独立的定义及它们之间的关系。
1.28 试证明,对于正态分布,不相关与独立是等价的。
1.29 试证明,多元正态随机矢量的线性变换仍为多元正态随机矢量。
1.30 试证明,多元正态随机矢量X ρ的分量的线性组合是一正态随机变量。
第二部分 分析、证明、计算题 第二章 聚类分析2.1 影响聚类结果的主要因素有那些? 2.2 马氏距离有那些优点?2.3 如果各模式类呈现链状分布,衡量其类间距离用最小距离还是用最大距离?为什么?2.4 动态聚类算法较之于简单聚类算法的改进之处何在?层次聚类算法是动态聚类算法吗?比较层次聚类算法与c-均值算法的优劣。
2.5 ISODATA 算法较之于c-均值算法的优势何在? 2.6 简述最小张树算法的优点。
2.7 证明马氏距离是平移不变的、非奇异线性变换不变的。
2.8 设,类pω、qω的重心分别为px ρ、qx ρ,它们分别有样本pn 、qn 个。
将和qω合并为l ω,则 lω有qp l n n n +=个样本。
另一类 k ω的重心为 k x ρ。
试证明 k ω与 l ω的距离平方是2222pqlk q p kq lk q kp lk p kl D n n n n D n n n D n n n D +-+++=2.9 (1)设有M 类模式ωi ,i=1,2,...,M ,试证明总体散布矩阵S T 是总类内散布矩阵S W 与类间散布矩阵S B 之和,即S T =S W +S B 。
(2)设有二维样本:x1=(-1,0)T,x2=(0,-1)T,x3=(0,0)T,x4=(2,0)T和x5=(0,2)T。
试选用一种合适的方法进行一维特征特征提取y i= W T x i。
要求求出变换矩阵W,并求出变换结果y i,(i=1,2,3,4,5)。
(3)根据(2)特征提取后的一维特征,选用一种合适的聚类算法将这些样本分为两类,要求每类样本个数不少于两个,并写出聚类过程。
2.10 (1)试给出c-均值算法的算法流程图;(2)试证明c-均值算法可使误差平方和准则∑∑∈=--=)()()()()(1)(kjixkjiTkjicjk zxzxJωρρρρρ最小。
其中,k是迭代次数;)(kjzρ是)(kjω的样本均值。
2.11 现有2k+1个一维样本,其中k个样本在x=-2处重合,另k个样本在x=0处重合,只有1个在x=a>0处。
若a=2(k+1),证明,使误差平方和准则Jc最小的两类划分是x=0处的k个样本与x=a处的1个样本为一类,其余为另一类。
这里,c N jJc = ∑∑(x i-m j)2j=1 i=1其中,c为类别数,Nj是第j类的样本个数,xi∈ωj,i=1,2,...,Nj,mj是第j类的样本均值。
2.12 有样本集}1,55,45,54,44,1,{⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛,试用谱系聚类算法对其分类。
2.13 设有样本集S=},...,,{21nxxxρρρ,证明类心zρ到S中各样本点距离平方和∑=--niiTizxzx1)()(ρρρρ为最小时,有∑==niixnz11ρρ。
2.14 假设s为模式矢量集X上的距离相似侧度,有,0,(,)0x y s x y∀>>且当0a>时,(,)/(,)d x y a s x y=。
证明d是距离差异性测度。
2.15 证明欧氏距离满足旋转不变性。
提示:运用Minkowski不等式,对于两矢量T1[,,]lx x x=L和min min max max m m (),(),(),()()ss ss ss ss ss ss ss ssavg avg ean ean d s d s d s d s d s ,满足1/1/1/111()()()ppplllpppi i i i i i i y y x x ≤+===+∑∑∑2.16证明:(a )如果s 是类X 上的距离相似侧度,,0,(,)0x y s x y ∀>>,那么对于 0a ∀>,(,)s x y a +也是类X 上的距离测度。
(b )如果d 是类X 上的距离差异性测度,那么对于0a ∀>, d a +也是类X 上的距离差异性测度2.17 假设:f R R ++→是连续单调递增函数,满足()()(),,f x f y f x y x y R ++≥+∀∈d 是类X 上的距离差异性测度且00d ≥。
证明()f d 也是类X 上的距离差异性测度。
2.18 假设s 为类X 上的距离相似侧度,有,0,(,)0x y s x y ∀>>, :f R R ++→是连续单调递增函数,满足111()()(),,x yf x f y f x y R ++≥∀∈+证明()f x 是X 上的距离相似侧度。
2.19 证明:对于模式矢量集X 上任意两个矢量x r 和 y r 有21(,)(,)(,)x y x y x y d d d ∞≤≤r r r r r r2.20 (a )证明公式1/(,)1(,)()qF l q q x y i i i s x y s ==∑r rr r 中 (,)F s x y r r的最大最小值分别是和 1/0.5q l 。
(b )证明当q →+∞时,公式1/(,)1(,)()qqFlq x y i i i s x y s ==∑r rr r 中1(,)max (,)i l i i Fx y s x y s ≤≤=r r r r2.21 假设d 是模式矢量集X 上的差异性测度,max s d d =-是相应相似测度。
证明max (,)(,),,pspsavg avg x C x C x X C Xs d d =-∀∈⊂其中ps avgs和ps avgd是分别根据s 和d 所定义的。
ps avgψ的定义来自于下面公式,其中第一个集合只含有一个矢量。
提示:平均亲近函数1(,)(,)i ji jps avg i j x D y D D D D D x y n n ∈∈ψ=ψ∑∑,其中iD n 和jD n 分别是集合i D 和j D 的势。
即使 ψ是测度,显然ps avgψ不是测度。
在公式中,i D 和j D 中的所有矢量都参与计算。
2.22 假设,{0,1}l x y ∈。
证明2(,)x y d =。
2.23 考虑一维空间的两矢量,T 1[,,]l x x x =L 和T1[,,]l y y y =L ,1max {}j l ij ijyy x x =-=-K K ,定义距离(,)nx y d为1,1(,)[(2)/2]lniiiij j ix y l l yydx x =≠=-+---∑这个距离曾被提议作为欧氏距离的近似值。
(a )证明nd 是距离。
(b )比较nd和2d的计算复杂度。