板块模型
- 格式:pptx
- 大小:757.28 KB
- 文档页数:8
高中物理板块模型归纳高中物理板块模型归纳是指将高中物理课程中所涉及的知识点进行分类、总结和归纳,形成一种系统化的知识结构。
这种模型可以帮助学生更好地理解和掌握物理知识,提高学习效率。
下面详细介绍高中物理板块模型。
一、力学1. 运动学(1)描述运动的数学工具:位移、速度、加速度、角速度、周期等。
(2)直线运动规律:匀速直线运动、匀加速直线运动、匀减速直线运动、匀速圆周运动。
(3)曲线运动规律:平抛运动、斜抛运动、圆周运动。
2. 动力学(1)牛顿运动定律:惯性定律、动力定律、作用与反作用定律。
(2)动量定理:动量的守恒、动量的变化。
(3)能量守恒定律:动能、势能、机械能、内能。
3. 机械振动与机械波(1)简谐振动:正弦、余弦、螺旋线。
(2)非简谐振动:阻尼振动、受迫振动。
(3)机械波:横波、纵波、波的干涉、波的衍射、波的传播。
二、热学1. 分子动理论(1)分子运动的基本规律:布朗运动、分子碰撞、分子速率分布。
(2)气体的状态方程:理想气体状态方程、范德瓦尔斯方程。
2. 热力学(1)热力学第一定律:内能、热量、功。
(2)热力学第二定律:熵、热力学第二定律的微观解释。
3. 物态变化(1)相变:固态、液态、气态、等离子态。
(2)相变规律:熔化、凝固、汽化、液化、升华、凝华。
三、电学1. 电磁学(1)静电学:库仑定律、电场、电势、电势差、电容、电感。
(2)稳恒电流:欧姆定律、电阻、电流、电功率、电解质。
(3)磁场:毕奥-萨伐尔定律、安培环路定律、洛伦兹力、磁感应强度、磁通量、磁介质。
2. 电路与电器(1)电路:串联电路、并联电路、混联电路、电路图。
(2)电器:电阻、电容、电感、二极管、晶体管、运算放大器。
3. 电磁波(1)电磁波的产生:麦克斯韦方程组、赫兹实验。
(2)电磁波的传播:波动方程、折射、反射、衍射。
四、光学1. 几何光学(1)光线、光的反射、光的折射、光的速度。
(2)透镜:凸透镜、凹透镜、眼镜、相机、投影仪。
板块模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动。
涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长。
3.解题方法整体法、隔离法。
4.解题思路(1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出滑块和滑板的加速度。
(2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程。
特别注意滑块和滑板的位移都是相对地的位移。
5.分析滑块—木板模型问题时应掌握的技巧(1)分析题中滑块、木板的受力情况,求出各自的加速度。
(2)画好运动草图,找出位移、速度、时间等物理量间的关系。
(3)知道每一过程的末速度是下一过程的初速度。
(4)两者发生相对滑动的条件:①摩擦力为滑动摩擦力。
②二者加速度不相等。
1.如图所示,光滑水平面上放置着质量分别为m 、2m 的A 、B两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为A .μmgB .2μmgC .3μmgD .4μmg解析 当A 、B 之间恰好不发生相对滑动时力F 最大,此时,对于A 物体所受的合外力为μmg ,由牛顿第二定律知a A =μmg m =μg ;对于A 、B 整体,加速度a =a A =μg ,由牛顿第二定律得F =3ma =3μmg 。
答案 C2.(2017·广西质检)如图所示,A 、B 两个物体叠放在一起,静止在粗糙水平地面上,物体B 与水平地面间的动摩擦因数μ1=0.1,物体A 与B 之间的动摩擦因数μ2=0.2.已知物体A 的质量m =2 kg ,物体B 的质量M =3 kg ,重力加速度g 取10 m/s 2.现对物体B 施加一个水平向右的恒力F ,为使物体A 与物体B 相对静止,则恒力的最大值是(物体间的最大静摩擦力等于滑动摩擦力)( )A .20 NB .15 NC .10 ND .5 N答案:B 解析:对A 、B 整体,由牛顿第二定律,F max -μ1(m +M )g =(m +M )a ;对物体A ,由牛顿第二定律,μ2mg =ma ;联立解得F max =(m +M )(μ1+μ2)g ,代入相关数据得F max =15 N ,选项B 正确.3.(2017·黄冈质检)如图甲所示,在水平地面上有一长木板B ,其上叠放木块A 。
专题十一模型专题(4)板块模型【重点模型解读】一、模型认识类型图示规律分析木板B带动物块A,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B=x A+L物块A带动木板B,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时二者速度相等,则位移关系为x B+L=x A力F作用在物块A上讨论相关的临界情况力F作用在木板B上讨论相关的临界情况二、板块类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
三、注意点:分析“板块”模型时要抓住一个转折和两个关联【典例讲练突破】【例1】如图所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
【点拨】为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B 间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
板块模型高考知识点【正文】板块模型是高考物理中的一个重要知识点,主要用于解决题目中涉及到的平衡、稳定性和力的分析问题。
它是一种简化和抽象的模型,通过将物体分解为多个部分,从而更好地理解和研究物体的运动特性。
一、板块模型的基本原理板块模型的基本思想是将物体分解为若干个小块,每个小块都带有自己的质量、形状和位置等特征。
这些小块之间存在相互作用力,通过分析这些力的平衡和合成,就可以得到整个物体的运动情况。
以平衡为例,我们可以将物体划分为若干个平行小块,每个小块都受到重力和支持力的作用。
通过分析每个小块的受力情况,可以确定物体是否处于平衡状态。
这种分块分析的方法可以大大简化问题,使其更易于处理。
二、板块模型的应用板块模型在解决高考物理题中起到了重要的作用。
例如,在研究斜面上物体的运动时,我们可以将斜面分解为水平和竖直两个方向的小块,从而分析物体受力和速度的关系。
此外,板块模型还可以用于分析各种力的合成和分解问题。
例如,对于一个悬挂在天花板上的物体,我们可以将其划分为水平和竖直方向的两个小块,从而分析其受力的方向和大小。
三、板块模型的特点板块模型具有一定的抽象性和简化性。
它不需要考虑物体的具体形状和内部结构,而只需要关注物体的整体特性和相互作用。
这使得板块模型在解决一些复杂问题时非常有效,并且可以应用于不同的情况和条件。
此外,板块模型还可以灵活应用于不同的题型和考点。
无论是平衡问题、稳定性问题还是力的合成问题,都可以采用板块模型来解决。
这种统一的思维框架能够帮助我们更好地理解物理问题的本质,提高解题的能力。
总结:板块模型是解决高考物理题中的常用工具,它通过将物体分解为若干小块,分析小块之间的相互作用力,从而帮助我们理解和解决复杂的运动问题。
板块模型具有简化、抽象的特点,可以应用于不同的情况和考点,对于提高物理解题的能力具有重要意义。
通过学习板块模型,我们可以更好地理解和掌握高考物理中涉及的平衡、稳定性和力的分析问题。
高中物理必修一·板块模型全文共四篇示例,供您参考第一篇示例:高中物理必修一《板块模型》是学生在学习中的一个重要内容,它主要是用来帮助学生更好地理解物质的构成和运动规律。
在板块模型中,我们将物质分为不可再分的基本粒子和由基本粒子构成的原子、分子、离子和晶体等不同层次。
通过板块模型,我们可以更好地理解物质的性质和各种自然现象。
第一部分,介绍板块模型的基本概念。
板块模型是一种物质结构的模型,它将物质分为不可再分的基本粒子和由基本粒子构成的不同层次的结构。
基本粒子包括电子、质子、中子等,它们构成了原子,而原子又构成了分子、离子和晶体等物质结构。
通过这种层次分解的方式,我们可以更好地理解物质的组成和性质。
第二部分,探讨板块模型在物质结构和性质方面的应用。
板块模型可以帮助我们更好地理解物质的结构和性质。
通过对原子结构的理解,我们可以解释元素的周期表规律和原子的化学性质。
通过对分子结构的理解,我们可以理解不同物质之间的相互关系,比如共价键、离子键和金属键等。
通过对晶体结构的理解,我们可以解释晶体的性质和各种晶体的特点。
第三部分,探讨板块模型在自然现象和技术应用方面的意义。
板块模型的理论可以帮助我们更好地理解各种自然现象和技术应用。
通过对电子结构和电子运动的理解,我们可以解释电流、电场和电磁感应等电学现象。
通过对分子结构和分子运动的理解,我们可以解释物质的热性质和热力学定律。
板块模型的理论也可以应用在材料科学、电子工程和能源技术等方面,为各种技术应用提供理论基础。
第四部分,总结板块模型对学生的重要性。
通过学习板块模型,学生不仅可以更好地理解物质的结构和性质,还可以培养科学思维和分析问题的能力。
板块模型的理论也为学生将来从事科学研究和工程技术提供了扎实的理论基础。
学生应该认真学习板块模型,并将其运用到实际的学习和生活中。
高中物理必修一《板块模型》是一个重要的知识点,它可以帮助学生更好地理解物质结构和性质,促进科学思维和分析问题的能力的培养,并在自然现象和技术应用方面发挥着重要的作用。
两类动力学模型:“板块模型”和“传送带模型”模型1 板块模型[模型解读]1.模型特点涉及两个物体,并且物体间存在相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长.设板长为L,滑块位移大小为x1,滑板位移大小为x2同向运动时:L=x1-x2反向运动时:L=x1+x23.解题步骤[典例赏析][典例1] (2017·全国卷Ⅲ)如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.[审题指导] 如何建立物理情景,构建解题路径①首先分别计算出B与板、A与板、板与地面间的滑动摩擦力大小,判断出A、B及木板的运动情况.②把握好几个运动节点.③由各自加速度大小可以判断出B与木板首先达到共速,此后B与木板共同运动.④A与木板存在相对运动,且A运动过程中加速度始终不变.⑤木板先加速后减速,存在两个过程.[解析](1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B与木板间的摩擦力的大小分别为f1、f2,木板与地面间的摩擦力的大小为f3,A、B、木板相对于地面的加速度大小分别是a A、a B和a1.在物块B与木板达到共同速度前有:f1=μ1m A g①f2=μ1m B g②f3=μ2(m A+m B+m)g③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f 2-f 1-f 3=ma 1⑥设在t 1时刻,B 与木板达到共同速度,设大小为v 1.由运动学公式有v 1=v 0-a B t 1⑦v 1=a 1t 1⑧联立①②③④⑤⑥⑦⑧式,代入数据解得:v 1=1 m/s(2)在t 1时间间隔内,B 相对于地面移动的距离为s B =v 0t 1-12a B t 21⑨ 设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2,对于B 与木板组成的体系,由牛顿第二定律有:f 1+f 3=(m B +m )a 2⑩由①②④⑤式知,a A =a B ;再由⑦⑧可知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2.设A 的速度大小从v 1变到v 2所用时间为t 2,根据运动学公式,对木板有v 2=v 1-a 2t 2⑪对A 有v 2=-v 1+a A t 2⑫在t 2时间间隔内,B (以及木板)相对地面移动的距离为 s 1=v 1t 2-12a 2t 22⑬在(t 1+t 2)时间间隔内,A 相对地面移动的距离为s A =v 0(t 1+t 2)-12a A (t 1+t 2)2⑭ A 和B 相遇时,A 与木板的速度也恰好相同,因此A 和B 开始运动时,两者之间的距离为s 0=s A +s 1+s B ⑮联立以上各式,代入数据得s 0=1.9 m(也可以用下图的速度-时间图象做)[答案] (1)1 m/s (2)1.9 m滑块滑板类模型的思维模板[题组巩固]1.(2019·吉林调研)(多选)如图所示,在光滑的水平面上放置质量为m 0的木板,在木板的左端有一质量为m 的木块,在木块上施加一水平向右的恒力F ,木块与木板由静止开始运动,经过时间t 分离.下列说法正确的是( )A .若仅增大木板的质量m 0,则时间t 增大B .若仅增大木块的质量m ,则时间t 增大C .若仅增大恒力F ,则时间t 增大D .若仅增大木块与木板间的动摩擦因数μ,则时间t 增大 解析:BD [根据牛顿第二定律得,木块的加速度a 1=F -μmg m =F m -μg ,木板的加速度a 2=μmg m 0,木块与木板分离,则有l =12a 1t 2-12a 2t 2得t =2l a 1-a 2.若仅增大木板的质量m 0,木块的加速度不变,木板的加速度减小,则时间t 减小,故A 错误;若仅增大木块的质量m ,则木块的加速度减小,木板的加速度增大,则t 变大,故B 正确;若仅增大恒力F ,则木块的加速度变大,木板的加速度不变,则t 变小,故C 错误;若仅增大木块与木板间的动摩擦因数,则木块的加速度减小,木板的加速度增大,则t 变大,故D 正确.]2.(2019·黑龙江大庆一模)如图,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m =1 kg ,木板的质量m 0=4 kg ,长l =2.5 m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F =20 N 拉木板,g 取10 m/s 2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间. 解析:(1)木板受到的摩擦力为F f =μ(m 0+m )g =10 N 木板的加速度为a =F -F f m 0=2.5 m/s 2. (2)设拉力F 作用t 时间后撤去,木板的加速度为a ′=-F f m 0木板先做匀加速运动,后做匀减速运动,且有a =-a ′=2.5 m/s 2则有2×12at 2=l 联立并代入数据解得t =1 s ,即F 作用的最短时间是1 s. 答案:(1)2.5 m/s 2 (2)1 s3.(2019·河南中原名校联考)如图所示,质量M =1 kg 的木板静置于倾角θ=37°、足够长的固定光滑斜面底端.质量m =1 kg 的小物块(可视为质点)以初速度v 0=4 m/s 从木板的下端冲上木板,同时在木板上端施加一个沿斜面向上的F =3.2 N 的恒力.若小物块恰好不从木板的上端滑下,求木板的长度l 为多少?已知小物块与木板之间的动摩擦因数μ=0.8,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.解析:由题意,小物块向上做匀减速运动,木板向上做匀加速运动,当小物块运动到木板的上端时,恰好和木板共速.设小物块的加速度为a ,由牛顿第二定律得,mg sin θ+μmg cos θ=ma ,设木板的加速度为a ′,由牛顿第二定律得,F +μmg cos θ-Mg sin θ=Ma ′,设二者共速时的速度为v ,经历的时间为t ,由运动学公式得v =v 0-at ,v =a ′t ;小物块的位移为s ,木板的位移为s ′,由运动学公式得,s =v 0t -12at 2,s ′=12a ′t 2;小物块恰好不从木板上端滑下,有s -s ′=l ,联立解得l =0.5 m.答案:0.5 m模型2 传送带模型[模型解读]对于传送带问题,分析清楚物体在传送带上的运动情况是解题关键,分析思路是:弄清物体与传送带的相对运动——确定所受摩擦力的方向——确定物体的运动情况,具体分析见下表:1.水平传送带问题运动图示滑块可能的运动情况(1)可能一直加速(2)可能先加速后匀速(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端,其中v0>v返回时速度为v,当v0<v返回时速度为v02.倾斜传送带问题运动图示滑块可能的运动情况(1)可能一直加速(2)可能先加速后匀速(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速(1)可能一直加速(2)可能先加速后匀速(3)可能一直匀速(4)可能先以a1加速后以a2加速(1)可能一直加速(2)可能一直匀速[典例2] 如图所示为某工厂的货物传送装置,倾斜运输带AB (与水平面成α=37°)与一斜面BC (与水平面成θ=30°)平滑连接,B 点到C 点的距离为L =0.6 m ,运输带运行速度恒为v 0=5 m/s ,A 点到B 点的距离为x =4.5 m ,现将一质量为m =0.4 kg 的小物体轻轻放于A 点,物体恰好能到达最高点C 点,已知物体与斜面间的动摩擦因数μ1=36,(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,空气阻力不计)求:(1)小物体运动到B 点时的速度v 的大小;(2)小物体与运输带间的动摩擦因数μ;(3)小物体从A 点运动到C 点所经历的时间t .[审题指导][解析] (1)设小物体在斜面上的加速度为a 1,运动到B 点的速度为v ,由牛顿第二定律得mg sin θ+ μ1mg cos θ=ma 1由运动学公式知v 2=2a 1L ,联立解得v =3 m/s.(2)因为v <v 0,所以小物体在运输带上一直做匀加速运动,设加速度为a 2,则由牛顿第二定律知 μmg cos α-mg sin α=ma 2又因为v 2=2a 2x ,联立解得μ=78.(3)小物体从A 点运动到B 点经历的时间t 1=v a 2, 从B 点运动到C 点经历的时间t 2=v 1a 1联立并代入数据得小物体从A 点运动到C 点所经历的时间t =t 1+t 2=3.4 s.[答案] (1)3 m/s (2)78(3)3.4 s 解传送带问题的思维模板[题组巩固]1.(2019·山东临沂高三上学期期中)(多选)如图所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2(v 1<v 2)的小物块从与传送带等高的光滑水平地面上滑上传送带,从小物块滑上传送带开始计时,物块在传送带上运动的v -t 图象可能是( )解析:AC [物块滑上传送带,由于速度大于传送带速度,物块做匀减速直线运动,可能会滑到另一端一直做匀减速直线运动,到达另一端时恰好与传送带速度相等,故C 正确.物块滑上传送带后,物块可能先做匀减速直线运动,当速度达到传送带速度后一起做匀速直线运动,速度的方向保持不变,故B 、D 错误,A 正确.]2.如图所示为粮袋的传送装置,已知A 、B 两端间的距离为L ,传送带与水平方向的夹角为θ,工作时运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是( )A.粮袋到达B端的速度与v比较,可能大,可能小,也可能相等B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动D.不论μ大小如何,粮袋从A到B端一直做匀加速运动,且加速度a≥g sin θ解析:A [若传送带较短,粮袋在传送带上可能一直做匀加速运动,到达B端时的速度小于v;μ≥tan θ,则粮袋先做匀加速运动,当速度与传送带的速度相同后,做匀速运动,到达B 端时速度与v相同;若μ<tan θ,则粮袋先做加速度为g(sin θ+μcos θ)的匀加速运动,当速度与传送带相同后做加速度为g(sin θ-μcos θ)的匀加速运动,到达B端时的速度大于v,选项A正确;粮袋开始时速度小于传送带的速度,相对传送带的运动方向是沿传送带向上,所以受到沿传送带向下的滑动摩擦力,大小为μmg cos θ,根据牛顿第二定律得加速度a=mg sin θ+μmg cos θ=g(sin θ+μcos θ),选项B错误;若mμ≥tan θ,粮袋从A 到B 可能一直是做匀加速运动,也可能先匀加速运动,当速度与传送带的速度相同后,做匀速运动,选项C 、D 均错误.]3.(2019·湖北宜昌高三一模)如图为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距 3 m ,另一台倾斜,传送带与地面的倾角θ=37°,C 、D 两端相距4.45 m ,B 、C 相距很近,水平部分AB 以5 m s 的速率顺时针转动.将质量为10 kg 的一袋大米放在A 端,到达B 端后,速度大小不变地传到倾斜的CD 部分,米袋与传送带间的动摩擦因数均为0.5.试求:(1)若CD 部分传送带不运转,求米袋沿传送带所能上升的最大距离.(2)若要将米袋送到D 端,求CD 部分顺时针运转的速度应满足的条件及米袋从C 端到D 端所用时间的取值范围.解析:(1)米袋在AB 上加速时的加速度a 0=μmg m=μg =5 m/s 2 米袋的速度达到v 0=5 m/s 时,滑行距离:s 0=v 202a 0=2.5 m <AB =3 m 因此米袋在到达B 点之前就有了与传送带相同的速度. 设米袋在CD 上运动的加速度大小为a ,由牛顿第二定律得: mg sin θ+μmg cos θ=ma ,代入数据得:a =10 m/s 2所以能上升的最大距离:s =v 202a=1.25 m. (2)设CD 部分运转速度为v 1时米袋恰能达到D 点,则米袋速度减为v 1之前的加速度为:a 1=-g (sin θ+μcos θ)=-10 m/s 2米袋速度小于v 1至减为0前的加速度为a 2=-g (sin θ-μcos θ)=-2 m/s 2由v 21-v 202a 1+0-v 212a 2=4.45 m. 解得:v 1=4 m/s.即要把米袋送到D 点,CD 部分的速度v CD ≥v 1=4 m/s米袋恰能运动到D 点所用时间最长为:t max =v 1-v 0a 1+0-v 1a 2=2.1 s 若CD 部分传送带的速度较大,使米袋沿CD 上滑时所受摩擦力一直沿皮带向上,则所用时间最短,此种情况米袋加速度一直为a 2,由s CD =v 0t min +12a 2t 2min 得:t min =1.16 s所以,所求的时间t 的范围为1.16 s≤t ≤2.1 s答案:(1)1.25 m (2)v CD ≥4 m/s 1.16 s≤t ≤2.1 s。
高中物理模型法解题———板块模型【模型概述】板块模型是多个物体的多个过程问题,是一个最经典、最基本的模型之一。
木板和物块组成的相互作用的系统称为板块模型,该模型涉及到静摩擦力、滑动摩擦力的转化、方向判断等静力学知识,还涉及到牛顿运动定律、运动学规律、动能定理和能量的转化和守恒等方面的知识。
板块类问题的一般解题方法(1)受力分析.(2)物体相对运动过程的分析.(3)参考系的选择(通常选取地面).(4)做v-t图像(5)摩擦力做功与动能之间的关系.(6)能量守恒定律的运用.一、含作用力的板块模型问题:【例题1】如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg,木板的质量M=4kg,长L=2.5m,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N拉木板,g取10m/s2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为0.3,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力是多大?(设最大静摩擦力等于滑动摩擦力)(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木块与地面间的动摩擦因数都不变,只将水平恒力增加为30N,则木块滑离木板需要多长时间?【解题思路】(1)根据牛顿第二定律求出木板的加速度.(2)让木板先做匀加速直线运动,然后做匀减速直线运动,根据牛顿第二定律,结合位移之和等于板长求出恒力F作用的最短时间.(3)根据牛顿第二定律求出木块的最大加速度,隔离对木板分析求出木板的加速度,抓住木板的加速度大于木块的加速度,求出施加的最小水平拉力.(4)应用运动学公式,根据相对加速度求所需时间.【答案】(1)木板的加速度2.5m/s2;(2)要使木块能滑离木板,水平恒力F作用的最短时间1s;(3)对木板施加的最小水平拉力是25N;(4)木块滑离木板需要2s【解析】解:(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度=2.5m/s2(2)设拉力F作用t时间后撤去,木板的加速度为木板先做匀加速运动,后做匀减速运动,且a=﹣a′有at2=L解得:t=1s,即F作用的最短时间是1s.(3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则对木板:F1﹣μ1mg﹣μ(M+m)g=Ma木板木板能从木块的下方抽出的条件:a木板>a木块解得:F>25N(4)木块的加速度木板的加速度=4.25m/s2木块滑离木板时,两者的位移关系为x木板﹣x木块=L即带入数据解得:t=2s【变式练习】如图所示,质量M=1kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木块长L=1m,用F=5N的水平恒力作用在铁块上,g取10m/s2.(1)若水平地面光滑,计算说明两木块间是否会发生相对滑动.(2)若木块与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木块右端的时间.【解题思路】(1)假设不发生相对滑动,通过整体隔离法求出A、B之间的摩擦力,与最大静摩擦力比较,判断是否发生相对滑动.(2)根据牛顿第二定律分别求出A、B的加速度,结合位移之差等于木块的长度求出运动的时间.【答案】(1)A、B之间不发生相对滑动;(2)铁块运动到木块右端的时间为.【解析】(1)A、B之间的最大静摩擦力为:f m>μmg=0.3×10N=3N.假设A、B之间不发生相对滑动,则对AB整体分析得:F=(M+m)a对A,f AB=Ma代入数据解得:f AB=2.5N.因为f AB<f m,故A、B之间不发生相对滑动.(2)对B,根据牛顿第二定律得:F﹣μ1mg=ma B,对A,根据牛顿第二定律得:μ1mg﹣μ2(m+M)g=Ma A根据题意有:x B﹣x A=L,,联立解得:.二、不含作用力的板块模型问题:【例题2】一长木板在水平地面上运动,在t =0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度—时间图像如图所示。
高中物理板块模型知识点总结一、板块模型的基本概念。
1. 板块模型组成。
- 板块模型通常由一个或多个滑块(可视为质点)和木板组成。
滑块和木板之间存在着摩擦力等相互作用,并且它们在一个平面上运动,这个平面可能是光滑的,也可能存在摩擦力。
2. 研究对象的选取。
- 在板块模型中,我们既可以单独选取滑块或木板作为研究对象,也可以将滑块和木板整体作为研究对象。
当研究它们之间的相对运动时,往往需要分别分析滑块和木板的受力情况;当整体的外力情况比较明确,且不涉及它们之间的内部摩擦力做功等问题时,可以采用整体法。
二、受力分析。
1. 滑块的受力。
- 滑块受到重力G = mg(其中m为滑块质量,g为重力加速度)。
- 如果滑块在木板上滑动,它受到木板对它的摩擦力。
当滑块相对木板滑动时,摩擦力为滑动摩擦力f=μ N,其中μ为动摩擦因数,N为滑块与木板间的正压力(在水平面上N = mg)。
如果滑块有相对木板运动的趋势但未滑动,则受到静摩擦力,静摩擦力的大小根据牛顿第二定律结合物体的运动状态求解,其方向与相对运动趋势方向相反。
2. 木板的受力。
- 木板同样受到重力G'=M g(M为木板质量)。
- 它受到滑块对它的摩擦力,大小与滑块受到的摩擦力相等,方向相反(根据牛顿第三定律)。
如果木板放在水平面上,还受到水平面的支持力F_N=(m + M)g(整体法分析时),若水平面不光滑,木板还受到水平面的摩擦力。
三、运动分析。
1. 加速度的计算。
- 根据牛顿第二定律F = ma计算滑块和木板的加速度。
- 对于滑块,例如受到水平拉力F和摩擦力f时,其加速度a_1=(F - f)/(m)(假设拉力方向与摩擦力方向相反)。
- 对于木板,若受到滑块的摩擦力f和其他外力F'(如水平面的摩擦力等),其加速度a_2=(f+F')/(M)。
2. 相对运动情况。
- 当滑块和木板的加速度不同时,它们之间就会产生相对运动。
判断相对运动的方向可以通过比较它们加速度的大小和方向。
第四部分重点模型与核心问题深究专题4.3 板块模型目录模型一动力学中水平面上的板块模型 (1)类型1水平面上受外力作用的板块模型 (2)类型2水平面上具有初速度的板块模型 (5)模型二斜面上的板块模型 (9)模型三板块模型与动量、能量的综合问题 (13)类型1无外力作用的板块模型 (15)类型2有外力作用的板块模型 (15)专题提升训练 (17)模型一动力学中水平面上的板块模型水平面上的板块模型是指滑块和滑板都在水平面上运动的情形,滑块和滑板之间存在摩擦力,发生相对运动,常伴有临界问题和多过程问题,对学生的综合能力要求较高。
【例1】如图所示,质量为M=4 kg的木板长L=1.4 m,静止放在光滑的水平地面上,其右端静置一质量为m=1 kg的小滑块(可视为质点),小滑块与木板间的动摩擦因数μ=0.4,今用水平力F=28 N向右拉木板。
要使小滑块从木板上掉下来,力F作用的时间至少要多长?(不计空气阻力,取g=10 m/s2)【答案】 1 s【解析】设t1时刻撤掉力F,此时滑块的速度为v2,木板的速度为v1,t2时刻木板与滑块达到最终速度v3,如图所示阴影部分的面积为板长L,则在0~t1的过程中,由牛顿第二定律有对滑块:μmg =ma 2,v 2=a 2t 1对木板:F -μmg =Ma 1,v 1=a 1t 1撤去力F 后,木板的加速度变为a 3,则μmg =Ma 3由v t 图像知L =12(v 1-v 2)t 1+12(v 1-v 2)(t 2-t 1)=12(v 1-v 2)t 2 t 2时刻木板与滑块速度相等,即v 1-a 3(t 2-t 1)=v 2+a 2(t 2-t 1)联立可得t 1=1 s 。
【方法总结】求解水平面上的板块模型的三个关键(1)两个分析:仔细审题,清楚题目的物理过程,对每一个物体进行受力分析和运动过程分析。
(2)求加速度:准确求出各个物体在各个运动过程的加速度,注意两个运动过程的连接处的加速度可能突变。
板块模型板块模型至少涉及两个物体,一般包括多个运动过程,并且物体间还存在相对运动,可见此类问题一般具有一定的难度。
解决这类问题要注重过程分析,明确临界条件。
对于涉及板块模型类问题,根据初始运动状态和受力条件的不同,可以分为多种类型,常见的有两大类型:一、木板或木块受到水平力如果木块与木板没有相对滑动,那就是普通的动力学问题;若两者间存在相对滑动,这才是板块模型问题的特色。
解决此类问题要把握两个关键,一是两者存在相对滑动的临界条件是两者之间的摩擦力为最大静摩擦力;二是两者滑离的条件是位移差等于木板的长度。
例:如图所示,水平地面上质量M=10kg 的长木板从静止开始受水平向右的F=90N 的恒力作用时,质量m=1kg 的小木块以v 0=4m/s 的初速度向左滑上长木板的右端。
已知木板与地面和木板与木块间的动摩擦因数均为μ=0.5,取g=10m/s 2。
问:为使木块不滑离木板,木板的长度L 至少为多少?解析:木块滑上模板后,在与木板发生相对滑动的过程中,木板的加速度大小1()F mg M m ga Mμμ--+=,解得 213a m s =小木块的加速度大小 225a g m s μ==在该过程中,木板一直向右做加速运动,而木块先向左做减速运动,速度减小到零后又开始向右做加速运动,两者最终相对静止,一起以共同速度向右做加速运动。
这期间两者的相对位移一直增大。
设经过时间t 两者以共同速度运动,有 102at v a t =-+ 解得 2t s = 这段时间里,木板向右运动的位移 211162s at m == 木块向右运动的位移 2202122s v t at m =-+= 所以min 124L s s m =-=,此即木板长度L 的最小值。
木板或木块受到水平拉力的情况存在很多变化,但不管其怎样变化,只要做好两物体受力分析和运动情况分析,都可以顺利解题。
二、木块或木板具有一个初速度滑块滑上模板时,首先应对滑块进行受力分析,根据牛顿第二定律判断出滑块的加速度,其次分析清楚滑块开始运动时的运动特征,然后再对木板进行受力分析,由牛顿第二定律求出滑板的加速度,明确其运动特征。
高中物理板块模型分析大家好!我是牧马人!很高兴和童鞋们一起分享高中阶段有关板块模型的相关知识内容。
(ps:最近在学计算机,更新有些慢,敬请见谅,“码字”不易,记得三连啊!支持一下呗!)话不多说,我们开始吧!一、首先,要学好板块模型。
个人觉得吧!跟学习传送带模型一样,要掌握好以下概念。
静摩擦力:一个物体在另一个物体表面上具有相对运动趋势时,但并没有发生相对运动时,所受到的阻碍物体相对运动趋势的力叫静摩擦力。
(ps:这是正规说法)(但在个人看来,在板块模型这这里,如果物体在木板上所受的力是静摩擦,那么这个物体和传送带一定是共速的,即速度相同)。
滑动摩擦力:当两物体产生相对滑动(或有相对滑动趋势)时,则在接触间将产生阻碍物体滑动的力,这种力称为滑动摩擦力。
(跟上面一样的道理,这个物体和木板一定是不共速的,即他们的速度不相同)通过我在这里说的方法,就可以简单的通过速度判断,在木板上物块所受的摩擦力为静摩擦还是动摩擦。
这很重要!这很重要!这很重要!这将关系到你板块模型的学习深度!二、正式进入板块的解题模型板块模型➟拉力型类型【1】物理情景:A,B两物块的质量分别为Ma和Mb,静止叠放在水平面上。
A,B间动摩擦因数为μ1;B与水平面间动摩擦因数为μ2。
最大静摩擦等于滑动摩擦力,重力加速度为g。
现对B施加一变力F。
①:当0<F≤μ2(Ma+Mb)g时➟此时A,B均静止,A,B间无相互作用力(这个时候的力F可以记为F1,主要看自己)解释说明:1、为什么此时这个临界状态的力F为μ2(Ma+M b)g呢?➟答:这是通过对A或者B受力分析得出的。
受力分析A可知,此时物块A受重力Mag、支持力N、(这个时候A没有静摩擦力)。
受力分析B可知,B物块受重力(Ma+Mb)g、支持力N、A对B的压力N'、地面对B水平向左的摩檫力f地➟b、外力F。
ps:下面配有A,B的受力分析图。
(∵这个时候是个临界状态,这个临界状态是A要“动”,但是还没有"动“的那一个时刻。