初中几何动点问题
- 格式:ppt
- 大小:686.50 KB
- 文档页数:9
初中动点问题的方法归纳动点问题是初中生学习数学时常遇到的难题之一。
这类问题需要学生掌握一定的解题方法和技巧才能够解决。
本文将从动点问题的基本概念、解题思路和常见解题方法等方面进行详细的归纳和总结,希望能够帮助学生更好地掌握动点问题的解题技巧。
一、动点问题的基本概念动点问题是数学中的一个重要课题,在初中数学中占据着重要的地位。
动点问题通常是指以点的运动规律为基础,通过分析和推理,确定动点在一定条件下的运动轨迹或者位置。
动点问题涉及到数学中的线性代数、平面几何等多个知识领域,对学生的逻辑思维和解决问题的能力提出了较高的要求。
动点问题的基本概念可以概括为以下几个方面:1.动点的定义:动点是指在一定条件下,按照一定的规律进行运动的点。
动点的轨迹、速度等都是动点问题的研究对象。
2.动点的运动规律:动点在其运动过程中会遵循一定的规律,这种规律可以是直线运动、曲线运动、周期性运动等。
了解动点的运动规律是解决动点问题的基础。
3.动点问题的应用:动点问题在生活和工作中有着广泛的应用,如汽车在高速公路上行驶的轨迹、射击运动中子弹的轨迹等,都可以通过动点问题进行模拟和分析。
二、动点问题的解题思路解动点问题需要遵循一定的思维逻辑和解题方法,下面将对解题思路进行详细的介绍:1.熟悉动点的运动规律:在解动点问题之前,首先需要了解动点所遵循的运动规律。
这包括动点的速度、加速度、运动轨迹等相关信息。
只有了解了动点的运动规律,才能够有针对性地解决动点问题。
2.建立数学模型:解动点问题需要建立适当的数学模型,根据动点的运动规律和条件进行建模。
这包括建立坐标系、确定参照物、建立方程等步骤,通过数学模型能够更清晰地描述动点的运动状态。
3.运用数学知识进行推理:在建立数学模型之后,需要通过数学知识进行推理和分析。
这包括运用几何知识、代数知识、函数知识等进行推导和计算,找出动点在不同条件下的位置和轨迹。
4.检验和求解:在进行推理之后,需要对所得的结果进行检验和求解,验证计算结果的正确性,并对结果进行解释和讨论,这样才能够得出准确的结论。
初一下册几何动点问题1、(1)已知AB⊥BD,ED⊥BD,AB=CD,BC=DE,要证明AC⊥CE.2)将CD沿CB方向平移得到图②③的情形,其余条件不变,要判断AC⊥CE是否成立,需要重新证明一遍。
2、(1)已知△ABC为等边三角形,动点D在边CA上,动点P边BC上,要证明当AP=BD时,Q点为定点。
2)已知动点D,P在射线CA和射线BC上运动,要证明∠BQP=60°。
3)已知动点P在AB的延长线上运动,连接PD交BC于E,要证明DE=PE。
3、已知梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,要证明CM=AB和CF=AB+AF。
4、已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D。
1)要证明当三角形绕点P旋转到PC⊥OA时,PC=PD。
2)要说明当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD不相等。
3)要直接给出结论,当三角形绕点P旋转到PC与OA 所在直线相交的位置时,线段PC和PD相等。
5、在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB 边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,要证明△ADF≌△CEF,并试证明△DFE是等腰直角三角形。
6、(1)已知△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形。
2)当把△ADE绕A点旋转到图②的位置时,需要重新判断CD=BE是否成立。
7、已知△ABC中,AB=AC=10厘米,BC=8厘米,点D 为AB的中点。
点P在线段BC上以3厘米/秒的速度由B点向C点运动,点Q在线段CA上由C点向A点运动。
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等。
答:是。
证明:由于AB=AC,所以∠ABC=∠ACB,又因为D是AB的中点,所以AD=BD。
初一几何动点问题的解题技巧(一)创作标题:初一几何动点问题的解题技巧引言•动点问题是初中学习几何的一种常见题型,通过解动点问题,可以培养学生的几何思维和问题解决能力。
本文将介绍初一几何动点问题的解题技巧,帮助学生更好地应对这类题目。
技巧一:图形变换法•利用图形变换法解题是初一几何动点问题的常用方法。
根据题目给出的条件,可以通过平移、旋转、翻转和放缩等图形变换,找到问题的求解路径。
1.平移–如果题目中给出的条件是关于两个点之间的距离不变,可以采用平移来解决。
根据题目中的条件,通过平移图形,使得问题简化为求某个点到原点的距离。
2.旋转–当题目中给出的条件是角度不变时,可以考虑使用旋转来解决。
通过旋转图形,使得问题转化为求某个角度的问题。
3.翻转–如果题目中给出的条件是关于对称的问题,可以选择使用翻转来解题。
通过将图形翻转到易于求解的位置,简化问题。
4.放缩–当题目中给出的条件为依比例或长度成比例时,可以考虑使用放缩来解决。
通过放缩图形,使得问题转化成为求比例或长度的问题。
技巧二:直线方程法•使用直线方程法解决几何动点问题,主要是利用直线的特性和方程求解问题。
1.坐标法–如果题目中给出了几何图形的坐标或点的位置,可以考虑使用坐标法解题。
建立坐标系,根据点的坐标和直线的关系,列方程求解问题。
2.斜率法–当题目需要根据直线的斜率或与直线的关系来求解问题时,可以使用斜率法。
根据直线的斜率和截距或两点间的斜率关系,列方程求解问题。
3.联立方程法–当题目中给出了多个对象的关系时,可以使用联立方程法解决问题。
根据对象之间的关系,列方程联立求解。
技巧三:面积比法•部分几何动点问题可以通过面积比法解决。
通过观察题目,找出几何图形之间的面积关系,建立比例关系解决问题。
结论•初一几何动点问题的解题技巧主要包括图形变换法、直线方程法和面积比法。
运用这些技巧,我们可以更快地解决几何动点问题,提高解题效率和准确性。
希望本文介绍的技巧对初一学生的学习有所帮助。
初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
二、应用比例式建立函数解析式。
初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
中考数学压轴题型研究(一)——动点几何问题例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积;(2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。
如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC 的面积的一半(3)在第(2)问题前提下,P,Q 两点之间的距离是多少例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B → C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,(1)写出y 与x 的关系式 (2)求当y =13时,x 的值等于多少例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( )A .32B .18C .16D .10例4:直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向ACBxA OQP By以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.例6:如图(3),在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t 秒. (1)求边BC 的长;(2)当t 为何值时,PC 与BQ 相互平分;(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值最大值是多少二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
1、(1)如图①,已知AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE ,求证:AC ⊥CE .(2)若将CD 沿CB 方向平移得到图②③的情形,其余条件不变,结论1AC ⊥E C 2还成立吗?请说明理由.2、(1)如图1△ABC 为等边三角形,动点D 在边CA 上,动点P 边BC 上,若这两点分别从C 、B 点同时出发,以相同的速度由C 向A 和由B 向C 运动,连接AP ,BD 交于点Q ,两点运动过程中AP=BD 成立吗?请证明你的结论;(2)如果把原题中“动点D 在边CA 上,动点P 边BC 上,”改为“动点D ,P 在射线CA 和射线BC 上运动”,其他条件不变,如图2所示,两点运动过程中∠BQP 的大小保持不变.请你利用图2的情形,求证:∠BQP=60°;(3)如果把原题中“动点P 在边BC 上”改为“动点P 在AB 的延长线上运动,连接PD 交BC 于E ”,其他条件不变,如图3,则动点D ,P 在运动过程中,DE 始终等于PE 吗?写出证明过程.图1 图2 图3图① 图② 图③3、如图,梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,连接AF,G为BC中点,连接DG交CF于M.证明:(1)CM=AB;(2)CF=AB+AF.4、如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC 和PD相等吗?直接写出你的结论,不需证明。
5、在等腰Rt △ABC 中,∠ACB=90°,AC=CB ,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD=CE .连接DE 、DF 、EF .(1)求证:△ADF ≌△CEF(2)试证明△DFE 是等腰直角三角形6、(1)如图①,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.(2)当把△ADE 绕A 点旋转到图②的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(3)当△ADE 绕A 点旋转到图③的位置时,△AMN 是否还是等边三角形?若是,请给出证明;若不是,请说明理由.7、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是图1 图2 图3否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?8.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠=_______度;(2)设BAC α∠=,BCE β∠=.①如图2当点D 在线段BC 上移动,则βα,之间有怎样的数量关系?请说明理由; ②当点D 在BC 边的延长线上时有怎样的数量关系?请直接写出你的结论.AEEAC CD B B 图1图2 A A 备用图 BC B C 备用图。
初中数学中关于动点问题的试题探究1. 引言1.1 初中数学中关于动点问题的试题探究在初中数学中,动点问题是一个重要的主题,涉及到点在平面或空间中的运动轨迹和位置变化。
动点问题不仅要求我们了解点的位置随时间的变化规律,还需要我们掌握如何利用几何知识和代数知识解决问题。
在动点问题中,我们需要了解动点的基本概念。
动点通常用字母表示,表示点的位置在平面或空间中的坐标。
动点的运动轨迹可以是直线、曲线或其他形状,我们需要通过分析问题的条件,确定动点的运动规律。
为了解决动点问题,我们需要掌握一些解题方法。
我们需要建立合适的坐标系,确定动点的起始位置和运动方向;我们可以利用方程或几何方法推导出动点的运动规律;我们需要根据问题的需求,求解动点在某一时刻的位置或运动轨迹。
常见的动点问题类型包括直线运动、圆周运动、相遇问题等。
在解决这些问题时,我们需要灵活运用几何和代数知识,将问题转化为方程求解,从而得到问题的答案。
通过实例分析,我们可以更好地理解动点问题的解题思路和方法。
在解决动点问题时,我们需要注意问题的条件,合理利用已知信息,通过推理和计算得出结论。
动点问题的解题技巧包括灵活运用几何知识、代数知识和逻辑推理能力。
通过练习和探究,我们可以提升动点问题的解题能力,提高数学思维水平。
初中数学中关于动点问题的探究不仅有助于提高我们的数学解题能力,还可以锻炼我们的逻辑思维和推理能力。
动点问题在数学学习中具有重要的意义,也具有广泛的拓展应用和思维训练价值。
2. 正文2.1 动点问题的基本概念动点问题是初中数学中的重要内容,通过研究动点问题,可以帮助学生理解数学知识,并培养他们的数学思维能力和解决问题的能力。
动点问题是指空间中某个点或物体在一定条件下随着时间或其他因素的变化而进行运动的问题。
1. 动点:动点是指在空间中可以移动的点,通常用字母表示,如点A、B、C等。
动点的运动可以是直线运动、曲线运动或者混合运动。
2. 运动轨迹:动点在运动过程中所经过的路径称为运动轨迹。