人教版高一数学必修四第一章诱导公式二、三、四
- 格式:doc
- 大小:413.00 KB
- 文档页数:13
第7课时 诱导公式一、二、三、四课时目标1.理解公式的推导过程.2 识记强化诱导公式:公式一:sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α;公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α;公式三:sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α;公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α;课时作业一、选择题1.sin2 015°=( )A .sin35°B .-sin35°C .sin58°D .-sin58°答案:B解析:sin2 015°=sin(5×360°+215°)=sin215°=sin(180°+35°)=-sin35°.故选B.2.化简sin 2(π+α)-cos(π+α)·cos(-α)+1的值为( )A .1B .2sin 2αC .0D .2答案:D解析:原式=(-sin α)2-(-cos α)·cos α+1=sin 2α+cos 2α+1=2.3.计算:cos1°+cos2°+cos3°+…+cos179°+cos180°=( )A .0B .1C .-1D .以上均不对答案:C解析:cos1°+cos179°=0,cos2°+cos178°=0,…,cos89°+cos91°=0,原式=cos90°+cos180°=-1.4.在△ABC 中,cos(A +B )的值等于( )A .cos CB .-cos CC .sin CD .-sin C答案:B解析:cos(A +B )=cos(π-C )=-cos C5.tan(π+α)=-2,则sin (-α)-cos (π+α)sin (π-α)+cos (-α)的值为( ) A .3 B .-3C .2D .-2答案:B解析:sin (-α)-cos (π+α)sin (π-α)+cos (-α)=-sin α+cos αsin α+cos α=-tan α+1tan α+1又tan(π+α)=-2,tan α=-2,∴原式=3-1=-3. 6.已知f (cos x )=cos2x ,则f (sin15°)的值为( )A.12 B .-12C.32 D .-32答案:D解析:f (sin15°)=f (cos75°)=cos150°=-32. 二、填空题7.cos 2600°=________.答案:12解析:cos 2600°=|cos120°|=|-cos60°|=⎪⎪⎪⎪-12=12. 8.化简函数式sin 2500°+sin 2770°-cos 2(1620°-x )的结果是________________.(其中x ∈(π,2π)). 答案:-sin x解析: 原式=sin 2140°+sin 250°-cos 2(1620°-x ) =sin 240°+cos 240°-cos 2x =1-cos 2x =sin 2x =-sin x .9.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是________. 答案:{-2,2} 解析:当k 为偶数时,由诱导公式得A =sin (k π+α)sin α+cos (k π+α)cos α=sin αsin α+cos αcos α=2 当k 为奇数时,则有A =sin (k π+α)sin α+ cos (k π+α)cos α=-sin αsin α+-cos αcos α=-2. 三、解答题10.求下列三角函数值:(1)sin(-1320°);(2)cos ⎝⎛⎭⎫-263π; (3)tan 176π. 解:(1)sin(-1320°)=sin(-1440°+120°)=sin120°=32. (2)cos ⎝⎛⎭⎫-263π=cos ⎝⎛⎭⎫-8π-23π=cos 23π=-cos π3=-12. (3)tan 176π=tan ⎝⎛⎭⎫2π+56π=tan 56π=-tan π6=-33.11.化简下列各式: (1)sin (2π-α)·cos (π+α)cos (π-α)·sin (3π-α)·sin (-π-α); (2)cos (α-π)sin (π-α)·sin(α-2π)·cos(2π-α); (3)cos 2(-α)-tan (360°+α)sin (-α). 解:(1)原式=(-sin α)·(-cos α)(-cos α)·sin α·sin α=-1sin α; (2)原式=-cos αsin α·(sin α)·cos α=-cos 2α; (3)原式=cos 2α+tan αsin α=cos 2α+1cos α.能力提升12.若k ∈Z ,则sin (k π-α)cos (k π+α)sin[(k +1)π+α]cos[(k +1)π-α]=________ 答案:-1解析:若k 为偶数,则左边=sin (-α)cos αsin (π+α)cos (π-α)=-sin αcos α(-sin α)(-cos α)=-1;若k 为奇数,则 左边=sin (π-α)cos (π+α)sin αcos (-α)=sin α(-cos α)sin αcos α=-1. 13.已知1+tan α1-tan α=3+22,求cos 2(π-α)+sin(π+α)cos(π-α)+2sin 2(α-π)的值. 解:∵1+tan α1-tan α=3+2 2,∴tan α=2+2 24+2 2=22. ∴cos 2(π-α)+sin(π+α)cos(π-α)+2sin 2(α-π)=cos 2α+sin αcos α+2sin 2α=cos 2α(1+tan α+2tan 2α)=cos 2αcos 2α+sin 2α(1+tan α+2tan 2α)=1+tan α+2tan 2α1+tan 2α=1+22+11+12=4+23.。
三角函数的诱导公式(一)【学问梳理】1.诱导公式二(1)角π+α与角α的终边关于原点对称. 如图所示. (2)公式:sin(π+α)=-sin_α.cos(π+α)=-cos_α.tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x 轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y 轴对称.如图所示.(2)公式:sin(π-α)=sin_α.cos(π-α)=-cos_α.tan(π-α)=-tan_α.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6. [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32; (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1;(3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.【类题通法】利用诱导公式解决给角求值问题的步骤【对点训练】求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos(3×360°+210)+cos 30°sin 210°+tan(180°-45°)=sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45°=sin 45°cos 30°-cos 30°sin 30°-tan 45°=22×32-32×12-1=6-3-44. 题型二、化简求值问题【例2】 (1)化简:cos (-α)tan (7π+α)sin (π-α)=________; (2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). (1)[解析]cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1. [答案] 1(2)[解] 原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1. 【类题通法】利用诱导公式一~四化简应留意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有变更,但肯定要留意函数的符号有没有变更;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采纳切化弦,有时也将弦化切.【对点训练】化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ). 解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ. 题型三、给角(或式)求值问题【例3】 (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( ) A .1 B .-1C.13 D .-13 (2)已知cos(α-55°)=-13,且α为第四象限角,求sin(α+125°)的值. (1)[解析] ∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z ,∴sin(α+2β)=sin[(α+β)+β]=sin(π+β)=-sin β=-13. [答案] D(2)[解] ∵cos(α-55°)=-13<0,且α是第四象限角. ∴α-55°是第三象限角.sin(α-55°)=-1-cos 2(α-55°)=-223. ∵α+125°=180°+(α-55°),∴sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=223. 【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要细致视察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】已知sin(π+α)=-13,求cos(5π+α)的值. 解:由诱导公式得,sin(π+α)=-sin α,所以sin α=13,所以α是第一象限或其次象限角. 当α是第一象限角时,cos α= 1-sin 2α=223, 此时,cos(5π+α)=cos(π+α)=-cos α=-223. 当α是其次象限角时,cos α=-1-sin 2α=-223, 此时,cos(5π+α)=cos(π+α)=-cos α=223. 【练习反馈】1.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C.55D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 2.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( ) A .-35B.35 C .±35 D.45解析:选B sin α=-45,又α是第四象限角, ∴cos(α-2π)=cos α=1-sin 2α=35. 3.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=________. 解析:∵tan(5π+α)=tan α=m ,∴原式=-sin α-cos α-sin α+cos α=-tan α-1-tan α+1=-m -1-m +1=m +1m -1. 答案:m +1m -14.cos (-585°)sin 495°+sin (-570°)的值是________. 解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-25.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫α+5π6的值. 解:cos ⎝⎛⎭⎫π+5π6=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫α+5π6= -cos ⎝⎛⎭⎫π6-α=-33.。
1.3三角函数的诱导公式第1课时诱导公式二、三、四考点学习目标核心素养诱导公式二、三、四理解诱导公式的推导方法逻辑推理诱导公式的应用能运用公式进行三角函数式的求值、化简以及证明数学运算、逻辑推理问题导学预习教材P23-P26,并思考下列问题:1.π±α,-α的终边与α的终边有怎样的对称关系?2.诱导公式的内容是什么?1.公式二终边关系图示角π+α与角α的终边关于原点对称公式sin(π+α)=-sin__α,cos(π+α)=-cos__α,tan(π+α)=tan__α终边关系图示角-α与角α的终边关于x轴对称公式sin(-α)=-sin__α,cos(-α)=cos__α,tan(-α)=-tan α终边关系图示角π-α与角α的终边关于y 轴对称公式 sin(π-α)=sin__α,cos(π-α)=-cos__α,tan(π-α)=-tan__α■名师点拨诱导公式的记忆诱导公式一~四的记忆口诀是“函数名不变,符号看象限”.其含义是诱导公式两边的函数名称一致,符号则是将α看成锐角时原角所在象限的三角函数值的符号.α看成锐角,只是公式记忆的方便,实际上α可以是任意角.判断(正确的打“√”,错误的打“×”)(1)诱导公式三可以将任意负角的三角函数值转化为正角的三角函数值.( ) (2)对于诱导公式中的角α一定是锐角.( ) (3)由诱导公式三知cos [-(α-β)]=-cos (α-β).( ) (4)在△ABC 中,sin (A +B )=sin C .( ) 答案:(1)√ (2)× (3)× (4)√ 下列式子中正确的是( )A .sin(π-α)=-sin αB .cos(π+α)=cos αC .cos α=sin αD .sin(2π+α)=sin α答案:D已知tan α=6,则tan(π-α)=________. 答案:-6cos 120°=________,sin ⎝⎛⎭⎫-56π=________. 答案:-12 -12给角求值问题利用公式求下列三角函数值: (1)cos476π;(2)tan(-855°).(3)sin(-945°)+cos(-296π).(4)tan 34π+sin 116π.【解】 (1)cos 476π=cos(116π+6π)=cos 116π=cos(2π-π6)=cos π6=32.(2)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°)=-tan(-45°)=tan 45°=1.(3)原式=sin(-2×360°-225°)+cos ⎝⎛⎭⎪⎫-4π-5π6=sin(-225°)+cos ⎝ ⎛⎭⎪⎫-5π6=-sin(180°+45°)+cos ⎝⎛⎭⎪⎫π-π6=sin 45°-cos π6=22-32=2-32.(4)原式=tan(π-π4)+sin(2π-π6)=-tan π4-sin π6=-1-12=-32.利用诱导公式解决给角求值的步骤1.(2019·重庆一中期末检测)tan 5π3=( )A .- 3 B. 3 C .-33D.33解析:选A.tan 5π3=tan(2π-π3)=-tan π3=-3,故选A.2.求下列各三角函数值:(1)cos ⎝⎛⎭⎫-31π6;(2)tan(-765°); (3)sin4π3·cos 25π6·tan 5π4. 解:(1)cos ⎝⎛⎭⎫-31π6=cos 31π6=cos ⎝⎛⎭⎫4π+7π6 =cos ⎝⎛⎭⎫π+π6=-cos π6=-32. (2)tan(-765°)=-tan 765°=-tan(45°+2×360°) =-tan 45°=-1. (3)sin 4π3·cos 25π6·tan 5π4=sin ⎝ ⎛⎭⎪⎫π+π3cos ⎝ ⎛⎭⎪⎫4π+π6tan ⎝ ⎛⎭⎪⎫π+π4=-sin π3cos π6tan π4=-32×32×1=-34.化简求值问题化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). 【解】 (1)原式=sin (2π-α)cos (2π-α)·sin (-α)cos (-α)cos (π-α)sin (π-α)=-sin α(-sin α)cos αcos α(-cos α)sin α=-sin αcos α=-tan α.(2)原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1.三角函数式化简的常用方法(1)利用诱导公式,将任意角的三角函数转化为锐角三角函数. (2)切化弦:一般需将表达式中的切函数转化为弦函数. (3)注意“1”的应用:1=sin 2α+cos 2α=tan π4.化简cos (π+α)·cos (2π+α)sin (-α-π)·cos (-π-α).解:原式=-cos α·cos α-sin (π+α)·cos (π+α)=-cos 2α-sin αcos α=1tan α.给值(式)求值问题(1)若cos(2π-α)=53且α∈⎝⎛⎭⎫-π2,0,则sin(π-α)=( ) A .-53B .-23C .-13D .±23(2)已知cos ⎝⎛⎭⎫π6-α=33,则cos ⎝⎛⎭⎫α+5π6=________.【解析】 (1)因为cos(2π-α)=cos α=53, α∈⎝ ⎛⎭⎪⎫-π2,0,所以sin α=-1-cos 2α=-23,则sin(π-α)=sin α=-23.(2)cos ⎝ ⎛⎭⎪⎫α+5π6=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-cos ⎝ ⎛⎭⎪⎫π6-α=-33.【答案】 (1)B (2)-331.[变设问]若本例(2)中的条件不变,如何求cos ⎝⎛⎭⎫α-13π6?解:cos ⎝ ⎛⎭⎪⎫α-13π6=cos ⎝⎛⎭⎫136π-α=cos ⎣⎢⎡⎦⎥⎤2π+⎝ ⎛⎭⎪⎫π6-α =cos ⎝ ⎛⎭⎪⎫π6-α=33.2.[变设问]若本例(2)中的条件不变,求cos ⎝⎛⎭⎫56π+α-sin 2⎝⎛⎭⎫α-π6的值. 解:因为cos ⎝⎛⎭⎫56π+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-33,sin 2⎝ ⎛⎭⎪⎫α-π6=sin 2⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π6-α=1-cos 2⎝ ⎛⎭⎪⎫π6-α=1-⎝⎛⎭⎫332=23,所以cos ⎝⎛⎭⎫56π+α-sin 2⎝ ⎛⎭⎪⎫α-π6=-33-23=-2+33.解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.1.若sin(π+α)=12,α∈⎝⎛⎭⎫π,3π2,则tan(π-α)等于( )A .-12B .-32C .- 3D .-33解析:选D.因为sin(π+α)=-sin α, 根据条件得sin α=-12,又α∈⎝ ⎛⎭⎪⎫π,3π2,所以cos α=-1-sin 2α=-32. 所以tan α=sin αcos α=13=33.所以tan(π-α)=-tan α=-33. 2.已知tan(π+α)=3,求2cos (π-α)-3sin (π+α)4cos (-α)+sin (2π-α)的值.解:因为tan(π+α)=3, 所以tan α=3.故2cos (π-α)-3sin (π+α)4cos (-α)+sin (2π-α) =-2cos α+3sin α4cos α-sin α=-2+3tan α4-tan α=-2+3×34-3=7.1.计算cos(-600°)=( ) A.32 B .-32 C.12 D .-12解析:选D.cos(-600°)=cos 600°=cos(360°+240°)=cos 240°=cos(180°+60°)=-cos 60°=-12.2.已知cos(α-π)=-513,且α是第四象限角,则sin(-2π+α)等于( )A .-1213 B.1213 C .±1213D.512解析:选A.由cos(α-π)=-513.得cos α=513.又α为第四象限角,所以sin(-2π+α)=sin α=-1-cos 2α=-1213.3.化简下列各式.(1)sin 2(α+π)cos (π+α)tan (π-α)cos 3(-α-π)tan (-α-2π); (2)sin (540°+α)·cos (-α)tan (α-180°).解:(1)原式=(-sin α)2·(-cos α)(-tan α)·(-cos α)3·(-tan α)=-sin 2αcos α-tan 2α·cos 3α=1.(2)原式=sin (360°+180°+α)·cos α-tan (180°-α)=sin (180°+α)·cos αtan α=-sin α·cos αsin αcos α=-cos 2α.[A 基础达标]1.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A.⎝⎛⎭⎫12,32 B.⎝⎛⎭⎫-12,32 C.⎝⎛⎭⎫-32,12 D.⎝⎛⎭⎫12,-32解析:选B.因为cos 2π3=-12,sin 2π3=32,所以点P 的坐标为⎝⎛⎭⎫-12,32,故选B.2.sin 600°+tan(-300°)的值是( ) A .-32B.32C .-12+ 3D.12+ 3 解析:选B.原式=sin(360°+240°)+tan(-360°+60°)=-sin 60°+tan 60°=32.3.若sin(π+α)+sin(-α)=-m ,则sin(3π+α)+2sin(2π-α)等于( ) A .-23mB .-32mC.23m D.32m 解析:选B.因为sin(π+α)+sin(-α)=-2sin α=-m ,所以sin α=m 2,则sin(3π+α)+2sin(2π-α)=-sin α-2sin α=-3sin α=-32m .故选B.4.设f (α)=2sin (2π-α)cos (2π+α)-cos (-α)1+sin 2α+sin (2π+α)-cos 2(4π-α),则f ⎝⎛⎭⎫-236π的值为( ) A.33B .-33C. 3D .- 3解析:选D.f (α)=2sin (-α)cos α-cos α1+sin 2α+sin α-cos 2α=-cos α(2sin α+1)sin α(2sin α+1)=-1tan α.所以f ⎝⎛⎭⎫-236π=-1tan ⎝⎛⎭⎫-236π=-1tanπ6=- 3. 5.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α=( ) A.13 B .-13C.233D .-233解析:选B.因为tan ⎝⎛⎭⎪⎫2π3+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-α=-tan ⎝ ⎛⎭⎪⎫π3-α,所以tan ⎝ ⎛⎭⎪⎫2π3+α=-13. 6.sin ⎝⎛⎭⎫-7π3=________.解析:sin ⎝ ⎛⎭⎪⎫-7π3=-sin 7π3=-sin ⎝ ⎛⎭⎪⎫π+4π3=sin 4π3=sin ⎝ ⎛⎭⎪⎫π+π3=-sin π3=-32.答案:-327.化简:cos (3π-α)sin (-π+α)·tan(2π-α)=________.解析:原式=cos (π-α)-sin (π-α)·tan(-α)=-cos α-sin α·⎝ ⎛⎭⎪⎫-sin αcos α=-1. 答案:-18.当θ=5π4时,sin[θ+(2k +1)π]-sin[-θ-(2k +1)π]sin (θ+2k π)cos (θ-2k π)(k ∈Z )的值等于________.解析:原式=-sin θ-sin θsin θcos θ=-2cos θ.当θ=5π4时,原式=-2cos5π4=2 2. 答案:2 29.求值:sin(-1 200°)×cos 1 290°+cos(-1 020°)×sin(-1 050°)+tan 855°. 解:原式=-sin(120°+3×360°)×cos(210°+3×360°)+cos(300°+2×360°)×[-sin(330°+2×360°)]+tan(135°+2×360°)=-sin 120°×cos 210°-cos 300°×sin 330°+tan 135°=-sin (180°-60°)×cos (180°+30°)-cos(360°-60°)×sin(360°-30°)+tan(180°-45°)=sin 60°×cos 30°+cos 60°×sin 30°-tan 45° =32×32+12×12-1 =0.10.已知sin(α+π)=45,且sin αcos α<0,求2sin (α-π)+3tan (3π-α)4cos (α-3π)的值.解:因为sin(α+π)=45,所以sin α=-45,又因为sin αcos α<0, 所以cos α>0,cos α=1-sin 2α=35,所以tan α=-43.所以原式=-2sin α-3tan α-4cos α=2×⎝⎛⎭⎫-45+3×⎝⎛⎭⎫-434×35=-73. [B 能力提升]11.有下列三角函数式:①sin ⎝⎛⎭⎫2n π+34π;②cos ⎝⎛⎭⎫2n π-π6;③sin ⎝⎛⎭⎫2n π+π3;④cos ⎣⎡⎦⎤(2n +1)π-π6; ⑤sin ⎣⎡⎦⎤(2n -1)π-π3. 其中n ∈Z ,则函数值与sinπ3的值相同的是( ) A .①②B .②③④C .②③⑤D .③④⑤ 解析:选C.①中sin ⎝ ⎛⎭⎪⎫2n π+3π4=sin 3π4≠sin π3;②中,cos ⎝⎛⎭⎪⎫2n π-π6=cos π6=sin π3;③中,sin ⎝ ⎛⎭⎪⎫2n π+π3=sin π3;④中,cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6=cos ⎝⎛⎭⎪⎫π-π6=-cos π6≠sin π3;⑤中,sin ⎣⎢⎡⎦⎥⎤(2n -1)π-π3=sin ⎝ ⎛⎭⎪⎫-π-π3=-sin ⎝⎛⎭⎪⎫π+π3=sin π3. 12.若f (n )=sin n π3(n ∈Z ),则f (1)+f (2)+f (3)+…+f (2 018)=________. 解析:f (1)=sin π3=32,f (2)=sin 2π3=32,f (3)=sin π=0,f (4)=sin 4π3=-32,f (5)=sin 5π3=-32,f (6)=sin 2π=0,f (7)=sin 7π3=sin π3=f (1),f (8)=f (2),……, 因为f (1)+f (2)+f (3)+…+f (6)=0,所以f (1)+f (2)+f (3)+…+f (2 018)=f (1)+f (2)+336×0= 3.答案: 313.已知sin(4π+α)=2sin β,3cos(6π+α)=2cos(2π+β),且0<α<π,0<β<π,求α和β的值.解:因为sin(4π+α)=2sin β,所以sin α= 2 sin β. ①因为3cos(6π+α)=2cos(2π+β), 所以3cos α=2cos β. ②①2+②2,得sin 2α+3cos 2α=2(sin 2β+cos 2β)=2,所以cos 2α=12,即cos α=±22. 又0<α<π,所以α=π4或α=3π4. 又0<β<π,当α=π4时,由②得β=π6; 当α=3π4时,由②得β=5π6. 所以α=π4,β=π6或α=3π4,β=5π6. 14.(选做题)化简下列各式.(1)sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)(k ∈Z ); (2)1+2sin 290°cos 430°sin 250°+cos 790°. 解:(1)当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α·(-cos α)-sin α·cos α=-1; 当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α] =sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α·(-cos α)=-1. 综上,原式=-1.(2)原式=1+2sin(360°-70°)cos(360°+70°)sin(180°+70°)+cos(720°+70°)=1-2sin 70°cos 70°-sin 70°+cos 70°=|cos 70°-sin 70°| cos 70°-sin 70°=sin 70°-cos 70°cos 70°-sin 70°=-1.。