【精品】广东省初中数学竞赛初赛试题及答案
- 格式:doc
- 大小:748.00 KB
- 文档页数:9
初中数学竞赛初赛(市级选拔)试题一、选择题(共8小题,每小题5分,共40分)1.要使方程组⎩⎨⎧=+=+23223y x a y x 的解是一对异号的数,则a 的取值范围是( )(A )334<<a (B )34<a (C )3>a (D )343<>a a 或 2.一块含有︒30角的直角三角形(如图),它的斜边AB =8cm, 里面空 心DEF ∆的各边与ABC ∆的对应边平行,且各对应边的距离都是1cm,那么DEF ∆的周长是( )(A)5cm (B)6cm (C) cm )(36- (D) cm )(33+3.将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A)5种 (B) 6种 (C)7种 (D)8种4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是1122-+=)x (y ,则抛物线A 所对应的函数表达式是 ( )(A)2322-+-=)x (y (B) 2322++-=)x (y(C) 2122---=)x (y (D) 2322++-=)x (y5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )(A)32 (B) 31 (C) 21 (D) 61 6.如图,一枚棋子放在七边形ABCDEFG 的顶点处,现顺时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点。
如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 。
依这样的规则,在这10次移动的过程中,棋子不可能分为两停到的顶点是( )(A)C,E,F (B)C,E,G (C)C,E (D)E,F.7.一元二次方程)a (c bx ax 002≠=++中,若b ,a 都是偶数,C 是奇数,则这个方程( )(A)有整数根 (B)没有整数根 (C)没有有理数根 (D)没有实数根8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由54⨯ 个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A)16 (B) 32 (C) 48 (D) 64二、填空题:(共有6个小题,每小题5分,满分30分)9.已知直角三角形的两直角边长分别为3cm,4cm ,那么以两直角边为直径的两圆公共弦的长为 cm.10.将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数,现有一组数据共100个数,其中有15个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是11.ABC ∆中,c ,b ,a 分别是C ,B ,A ∠∠∠的对边,已知232310-=+==C ,b ,a ,则C sin c B sin b +的值是等于 。
七年级数学竞赛试题一.选择题(每小题4分,共32分) 1.x 是随意有理数,则2 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.在-0.1428中用数字3交换其中的一个非0数码后,使所得的数最大,则被交换的数字是( ) A .1 B .4 C .2 D .83.如图,在数轴上1的对应点A 、B , A 是线段的中点,则点C 所表示的数是( )A.2 B2 C1 D.14.桌上放着4张扑克牌,全部正面朝下,其中恰有1张是老K 。
两人做嬉戏,嬉戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜。
则赢的时机大的一方是( )A .红方B .蓝方C .两方时机一样D .不知道 5.假如在正八边形硬纸板上剪下一个三角形(如图①中的阴影局部),那么图②,图③,图④中的阴影局部,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影局部,依次进展的变换不行行...的是( )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转 D.旋转、对称、旋转6.计算:22221111(1)(1)(1)(1)2342007---⋅⋅⋅-等于( ) A .10042007 B .10032007 C .20082007D .200620077.如图,三个天平的托盘中一样的物体质量相等。
图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )(3)(2)(1)A. 3个球B. 4个球C. 5个球D. 6个球8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是( ) A .15 B .16 C .18 D .19 二.填空题(每题4分,共28分)x图①图②图③ 图④9.定义a*,若3*31,则x 的值是。
2020年广东省初中数学竞赛初赛试卷初中数学讲明:考试时刻:60分钟。
总分120分。
每题4分。
在每题给出的四个选项中,只有 一项为哪一项符合题目要求的,并将答案填在下面的答题卡上。
1.直角坐标平面上将二次函数y=-2〔x -1〕2-2的图象向左平移1个单位,再向上平移1个单位,那么其顶点为〔 〕。
A. 〔0,0〕B. (1,-2)C. (0,-1)D.(-2,1) 2.以下的运算正确的选项是( ).A .(ab 4)4=ab 8; B.(-3pq)2=-6p 2q 2C. x 2-21x +41=( x -21)2;D.3(a 2)3-6a 6=-3a 6 3.如图1.以直角三角形ABC 三边为直径的半圆面积分不是S 1、S 2、S 3,直角三角形ABC 面积是S ,那么它们之间的关系为〔 〕. A. S= S 1+S 2+S 3 B. S 1= S 2+S 3 C. S= S 1+S 2C. S= S 14. 一辆公共汽车从车站开出,加出速行驶一段时刻后匀速行驶,过了一段时刻,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时刻后又开始匀速行驶,下面能够近似地刻画出汽车在这段时刻内的速度变化情形的是〔 〕.(A)时间速度(B)时间速度(C)时间速度(D)时间速度5.如下图,在边长为a 的正方形中挖去一个边长为b 的小正方形〔a >b 〕,再把剩余的部分剪拼成一个矩形,通过运算图形〔阴影部分 的面积,验证了一个等式是〔 〕.A. a 2-b 2=〔a+b 〕〔a-b 〕 B. 〔a+b 〕2= a 2+2ab+ b 2C. 〔a-b 〕2= a 2-2ab+ b 2D.〔a+2b 〕〔a-b 〕= a 2+ab-2b 26.在一个仓库里堆积着正方体的货箱假设干,要搬运这些箱子专门困难,但是仓库治理员要落实A 0xyB 0xyCxyxy一下箱子的数量,因此就想出一个方法:将这堆物资的三种视图画了出来,如图.你能依照三视图,帮他清点一下箱子的数量吗?这些正方体箱的个数是( ). A. 6 B. 7 C. 8 D. 9主视图 左视图 俯视图7.在Rt △ABC 中,∠C=90°,那么以下式子中不一定成立的是( ).A.sinA=sinBB. cosA=cosBC.sinA=cosBD. sin(A+B)=sinC8.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中正号表示成绩大于18秒,负号成表示绩小于18秒,那么这组女生的达标率是( ).A.41 B.2 C.4D.89.函数y=kx 和y=xk〔k ﹤0〕在同一坐标系中的图象是〔 〕.10.将一张正方形纸按图所示的方式二次折叠,折叠后再按图所示沿MN 裁剪,那么可得( ). A.多个等腰直角三角形; B.一个等腰直角三角形和一个正方形;C.四个相同的正方形;D.两个相同的正方形。
2019年全国初中数学竞赛(广东省赛区)选拔赛初赛试卷一、选择题(每小题6分,满分30分)1.已知=0,a2+b2+c2=1,则a+b+c的值等于()A.1B.﹣1C.1或﹣1D.O2.若使函数的自变量x的取值范围是一切实数,则下面的关系中一定满足要求的是A.b>c>0B.b>0>c C.c>0>b D.c>b>03.如图,E、F、G、H、I、J、K、N分别是正方形各边的三等分点,要使中间阴影部分的面积是5,那么大正方形的边长应该是()A.B.C.D.4.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定5.一个盒子里有200只球,从101到300连续编号,甲、乙两人分别从盒子里拿球,直到他们各有100只球为止,其中甲拿到102号,乙拿到280号,则甲拿到的球的编号总和与乙拿到的球的编号总和之差最大是()A.10000B.9822C.377D.9644二、填空题(每小题6分,满分30分)6.已知a2+4a+1=0,且,则m=.7.如图,由12根铅丝焊接成一个正方体框架.现要将每个正方形的4根铅丝分别涂上红、黄、蓝、白4种颜色.如果已将AD涂成红色,BF涂成黄色,GH涂成蓝色,那么该涂成白色的铅丝有.8.某旅游团一行50人到某旅社住宿,该旅社有三人间、双人间和单人间三种客房,其中三人间每人每晚20元,双人间每人每晚30元,单人间每晚50元.已知该旅行团住满了20间客房,且使总的住宿费用最省.那么这笔最省的住宿费用是元,所住的三人间、双人间、单人间的间数依次是.9.△ABC中,BC=a,AC=b,AB=c.若AC、BC上的中线BE、AD垂直相交于点O,则c可用a、b 的代数式表示为.10.如图,AB为半圆O的直径,C为半圆上一点,∠AOC=60°,点P在AB的延长线上,且PB=BO =3cm.连接PC交半圆于点D,过P作PE⊥P A交AD的延长线于点E,求PE长.三、解答题(每小题15分,共60分)11.设等腰三角形的一腰与底边的长分别是方程x2﹣6x+a=0的两根,当这样的三角形只有一个时,求a的取值范围.12.若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?13.(15分)如图,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED =∠A.求证:BD=2CD.14.如图,已知抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?(3)若OC =OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.参考答案一、选择题(每小题6分,满分30分)1.【解答】解:∵==0,∴bc+ac+ab=0,又∵(a+b+c)2,=a2+b2+c2+2(bc+ac+ab),=1+0,=1;∴a+b+c=±1.故选:C.2.【解答】解:∵函数的自变量x取值范围是一切实数,∴分母一定不等于0,∴x2﹣2bx+c2=0无解,即△=4b2﹣4c2=4(b+c)(b﹣c)<0,解得:c<b<﹣c或﹣c<b<c.当c>b>0时,一定满足要求上面要求.故选:D.3.【解答】解:∵△BMI∽△ABI,∴MI=BM,∴AI=3MB+MB=MB,又∵在直角△ABI中,AB:AI=3:,∴AB=×MB,∵MB与小正方形的边长相等,∴AB=×==5.故选:C.4.【解答】解:∵等边三角形各内角为60°,∴∠B=∠C=60°,∵∠BPD=∠CPE=30°,∴在Rt△BDP和Rt△CEP中,∴BP=2BD,CP=2CE,∴BD+CE=BC,∴AD+AE=AB+AC﹣BC=BC,∴BD+CE+BC=BC,L1=BC+DE,L2=BC+DE,即得L1=L2,故选:A.5.【解答】解:甲拿201至300,然后用280换102 则标号之和是:(201+300)×﹣(280﹣102)=24872;乙的编号之和是:(101+200)×+(280﹣102)=15228 24872﹣15228=9644.故选:D.二、填空题(每小题6分,满分30分)6.【解答】解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.7.【解答】解:∵每个正方形的4根铅丝分别涂上红、黄、蓝、白4种颜色.AD涂成红色,BF涂成黄色,GH涂成蓝色.∴涂成红色的铅丝只能有EF、FG、CG,而FG不合题意,则涂成红色的铅丝有EF、CG;同理涂成黄色的铅丝有EH、CD;涂成蓝色的铅丝有AE、BC.则涂成白色的铅丝有:AB、DH、FG.故答案为:AB、DH、FG.8.【解答】解:设该旅行团住三人间x间,双人间y间,单人间z间,总住宿费为a元.则由题意得由②﹣①得2x+y=30,即y=30﹣2x④由②﹣①×2得x﹣z=10,即z=x﹣10 ⑤∵0≤y≤20,即0≤30﹣2x≤20,解得5≤x≤15 ⑥同理0≤z≤20,即0≤x﹣10≤20,解得10≤x≤30 ⑦由⑥⑦知10≤x≤15将④⑤代入③得a=60x+60(30﹣2x)+50(x﹣10)=1300﹣10x⇒x=130﹣∴10≤≤15⇒1200≤a≤1150∴这笔最省的住宿费用是1150元,此时x=15再将x的值代入④⑤得y=0、z=5故答案为1150,15、0、5.9.【解答】解:∵AC、BC上的中线BE、AD垂直相交于点O,于是,中线BE、AD,E和D是AC,BC上的中点由题可知,∴∠BOA=90°,BD=CD=,AE=EC=,∵E,D为中点,故DE为中线=AB=,∴①BO2+DO2=()2,②AO2+EO2=()2,③DO2+EO2=()2,④BO2+AO2=c2,∴①+②=③+④,∴5c2=a2+b2.故c=.故答案为:c=.10.【解答】解:如图,连接BD,BE,∵∠AOC=60°,∴∠ADC=∠PDE=∠AOC=30°,∵AB是⊙O的直径,∴∠ADB=∠BDE=90°,∵PE⊥P A,∴∠BPE=90°,∴∠BDE=∠BPE=90°,∴∠BDE+∠BPE=180°,∴点B,P,E,D四点共圆,∴∠PBE=∠PDE=30°,在Rt△BPE中,tan∠PBE=,∴tan30°==,∴PE=.三、解答题(每小题15分,共60分)11.【解答】解:∵方程x2﹣6x+a=0有实数根,∴△=36﹣4a≥0,(1)当△=0时,即△=36﹣4a=0,解得a=9,此时三角形为等边三角形;(2)当△>0,即△=36﹣4a>0时,解得a<9,设两根为x1,x2(x1<x2)此时存在一个等腰三角形底边为x1,腰为x2,此时不存在一个等腰三角形底边为x2,腰为x1即最短两边(即两腰)之和不大于最大边(即底边)即2x1≤x2,由根与系数的关系可得,3x1≤x1+x2=6,∴x1≤2,∵x1+x2=6,x1•x2=a,∴a=x1•(6﹣x1),=6x1﹣(x1)2=﹣(3﹣x1)2+9∴=﹣(3﹣x1)2+9≤8,∴当0<a≤8,a=9时,三角形只有一个.12.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.13.【解答】证明:作DO∥AB交AC于O.则由AB=AC易知OD=OC,且∠DOC=∠BAC=2∠CED,所以O为△EDC的外心,取F为△EDC的外接圆与AC的交点,连接DF,则OF=OC=OD,∠ACE=∠ADF.所以△ACE∽△ADF,即有=.再由DO∥AB,∠ADO=∠BAE,∠AOD=180﹣∠DOC=180°﹣∠A=180°﹣∠BED=∠AEB,所以△ADO∽△BAE,即得===.故AF=OD=OC=CF,从而AO=2OC.由DO∥AB,得:BD=2CD.14.【解答】解:(1)∵抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),∴0=9a+3,∴a=﹣(1分)∴二次函数的解析式为:y=﹣x2+x+;(3分)(2)①∵D为抛物线的顶点,∴D(1,3),过D作DN⊥OB于N,则DN=3,AN=3,∴AD==6,∴∠DAO=60°.(4分)∵OM∥AD,①当AD=OP时,四边形DAOP是平行四边形,∴OP=6,∴t=6(s).(5分)②当DP⊥OM时,四边形DAOP是直角梯形,过O作OH⊥AD于H,AO=2,则AH=1(如果没求出∠DAO=60°可由Rt△OHA∽Rt△DNA(求AH=1)∴OP=DH=5,t=5(s)(6分)③当PD=OA时,四边形DAOP是等腰梯形,易证:△AOH≌△DPP′,∴AH=CP,∴OP=AD﹣2AH=6﹣2=4,∴t=4(s)综上所述:当t=6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形;(7分)(3)由(2)及已知,∠COB=60°,OC=OB,△OCB是等边三角形则OB=OC=AD=6,OP=t,BQ=2t,∴OQ=6﹣2t(0<t<3)过P作PE⊥OQ于E,则PE=t(8分)∴S BCPQ=×6×3×(6﹣2t)×t=(t﹣)2+(9分)当t=时,四边形BCPQ的面积最小值为.(10分)∴此时OQ=3,OP=,OE=;∴QE=3﹣=,PE=,∴PQ=.(11分)。
DC B A初中数学竞赛试题(含答案)一、选择题(共8小题,每小题5分,满分40分。
以下每小题均给出了代号为A 、B 、C 、 C 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填在题后的括号里,不填、多填或错填均得零分) 1.函数y =1x-图象的大致形状是( )A B C D2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。
如果设老王步行的速度为x 米/分,则老王步行的速度范围是( )A .70≤x ≤87.5B .70≤x 或x ≥87.5C .x ≤70D .x ≥87.53.如图,AB 是半圆的直径,弦AD,BC 相交于P,已知∠DPB =60°,D 是弧BC 的中点,则tan ∠ADC 等于( ) A .12B.2 CD4.抛物线()20y x x p p =++≠的图象与x 轴一个交点的横坐标是P,那么该抛物线的顶点坐标是( )A .(0,-2)B .19,24⎛⎫- ⎪⎝⎭C .19,24⎛⎫- ⎪⎝⎭D .19,24⎛⎫-- ⎪⎝⎭5.如图,△ABC 中,AB =AC,∠A =36°,CD 是角平分线,则△DBC 的面积与△ABC 的面积的比值是( )ABCD 6.直线l :()0y px p =是不等于的整数与直线y =x +10的交点恰好是(横坐标和纵坐标都是整数),那么满足条件的直线l 有() yxOyxOyxOyxOA .6条B .7条C .8条D .无数条7.把三个连续的正整数a,b,c 按任意次序(次序不同视为不同组)填入20x x ++= 的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a,b,c ( )A .不存在B .有一组C .有两组D .多于两组 8.六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数主该点的纵坐标。
2020年广东省初中数学竞赛初赛试卷学校: 班级: 姓名:题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案题号 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 答案1.某校为了解学生的体能情况,随机抽查30名初三学生,测试1分钟内仰卧起坐的次数,并绘制成如图1所示的频数分布直方图,则仰卧起坐次数在25~30次的频率是( ) A 、0.1 B 、0.2 C 、0.3 D 、0.4 2.若26321n n a a =-,则的值为( ) A 、17 B 、35 C 、53 D 、14573.从一副扑克牌中抽出如下四张牌,其中是中心对称图形的有( )A 、1张B 、2张C 、3张D 、4张4.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A 、上午12时B 、上午10时C 、上午9时30分D 、上午8时5.如图2所示的两个圆盘中,指针落在每一个数上的机会均等,则两 个指针同时落在偶数上的概率是( ) A 、525 B 、625 C 、1025 D 、19256.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有( ) A 、2对 B 、3对 C 、4对 D 、6对7.点M (sin 60cos60-o o ,)关于x 轴对称的点的坐标是( ) A 、31(2,) B 、31(2-,-) C 、31(2-,) D 、132--(,) 8.从鱼塘打捞草鱼300尾,从中任选10尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.5,1.8,1.3,1.4(单位:kg ),依此估计这300尾草鱼的总质量大约是( )A 、450kgB 、150kgC 、45kgD 、15kg9.下列实数2221 sin 60 16 3.141597π-o (),,,,,属于无理数有( ) A 、1个 B 、2个 C 、3个 D 、4个 10.在函数 0)ky k x=>(的图像上有三点111222333(,) (,) (,)A x y A x y A x y ,,,已知1230x x x <<<,则下列各式中正确的是( )6123454321E 图3D CBAA 、120y y <<B 、310y y <<C 、213y y y <<D 、312y y y << 11.如果关于1)11x a x a x a +>+<的不等式(的解集为,那么的取值范围是( ) A 、0a > B 、0a < C 、1a >- D 、1a <- 12.如图4,E ,F 分别是正方形ABCD 的边CD ,AD 上的点,且CE=DF ,AE ,BF 相交于点O ,下列结论①AE=BF ;②AE ⊥BF ;③AO=OE ;④DEOF ABC S S =V 四边形中错误的有( ) A 、1个 B 、2个 C 、3个 D 、4个 13.某市在“旧城改造”中计划在市内一块如图5所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价为a 元,则购买这种草皮至少需要( )A 、450a 元B 、300a 元C 、225a 元D 、150a 元14.观察下列算式:12345672=22=42=82=162=322=642=128=2568,,,,,,,2……通过观察,用你所发现的规律写出118的末位数字是( )A 、2B 、4C 、6D 、8 15.已知22125a b a b a b -=+=+,,的值为( ) A 、7 B 、-7 C 、±7 D 、±916.某单位购买甲、乙两种纯净水若干桶,共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水桶数是甲种水桶数的75%。
全国初中数学联赛试题第一试一、选择题1.已知a=355,b=444,c=533,则有[ ]A.a<b<c B.c<b<a C.c<a<b D.a<c<bA.1 B.2 C.3 D.43.如果方程(x-1)(x2-2x-m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是4.如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[ ]A.62πB.63π C.64πD.65π5.设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S △CAB-S△DAB|,N=2S△OAB,则[ ]A.M>N B.M=N C.M<N D.M、N的大小关系不确定6.设实数a、b满足不等式||a|-(a+b)|<|a-|a+b||,则[ ]A.a>0且b>0 B.a<0且b>0C.a>0且b<0 D.a<0且b<0二、填空题1.在12,22,32…,952这95个数中,十位数字为奇数的数共有____个。
4.以线段AB为直径作一个半圆,圆心为O,C是半圆周上的点,且OC2=AC·BC,则∠CAB=______.第二试一、已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、C、D三点的圆交AB于F(如图)求证F为△CDE的内心。
二、在坐标平面上,纵坐标与横坐标都是整数理由。
三、试证:每个大于6的自然数n,都可以表示为两个大于1且互质的自然数之和。
初中数学联赛参考答案第一试一、选择题1.讲解:这类指数幂的比较大小问题,通常是化为同底然后比较指数,或化为同指数然后比较底数,本题是化为同指数,有c=(53)11=12511<24311=(35)11=a<25611=(44)11=b。
选C。
利用lg2=0.3010,lg3=0.4771计算lga、lgb、lgc也可以,但没有优越性。
2.讲解:这类方程是熟知的。
先由第二个方程确定z=1,进而可求出两个解:(2,21,1)、(20,3,1).也可以不解方程组直接判断:因为x≠y(否则不是正整数),故方程组①或无解或有两个解,对照选择支,选B。
2003年广东省初中数学竞赛初赛试卷(考试时间60分钟,满分100分)A 卷一、选择题(每小题2分,满分20分)1、如果0)(=-+a a ,则a 是( )A 、正数B 、负数C 、非正数D 、非负数2、如果2-=a ,那么2-a 的算术平方根( )A 、是a 的相反数B 、是a 的倒数C 、是a 的倒数的相反数D 、没有算术平方根3、某工厂原来平均每天用煤n 吨,注意节约能源后每天少用煤2吨,那么现存的m 吨煤比以前多用的天数是( )A 、)2(-n n mB 、)2(+n n mC 、)2(2-n n mD 、)2(2+n n m 4、不等式11254<-x 的正整数解有( ) A 、2个 B 、3个 C 、4个 D 、5个5、已知点)8,(a 在抛物线2ax y =上,则a 的值是( )A 、2B 、2-C 、2±D 、22±6、如图,已知线段AB=5cm ,C 、D 、E 、F 、把AB 五等分,则小于3cm 的线段有( )A 、4条B 、5条C 、9条D 、12条7、下列命题中错误的是( )A 、一组对边平行且相等的四边形是平行四边形B 、一组对边平行,另一组对边相等的四边形是平行四边形C 、两组对边分别相等的四边形是平行四边形D 、两条对角线互相平分的四边形是平行四边形8、在RT △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列关系中错误的是( )A 、b=c.cosB B 、b=a.tanBC 、a=c.sinAD 、Bb a tan = 9、若∠A 是锐角,则sinA+cosA 的值( )A 、大于1B 、等于1C 、小于1D 、可能大于1,也可能小于110、两圆圆心距为3,其半径分别是方程0232=+-x x 的两根,那么两圆的位置关系是( )A 、相离B 、相交C 、内切D 、外切二、填空题(每小题2分,满分20分)11、81= ;12、已知22=+b a ,则)44(4122b ab a ++的值是 ; 13、如果a:b:c=2:3:4,则c b a c b a -++-= ; 14、已知1,2,2三个数,请你再添上一个数,写成比例式 ;15、设甲、乙两人在一次赛跑中,路程S 与时间t 的关系如图,那么从图象可以看到:(1)这是一次 米赛跑;(2)甲、乙两人先到达终点的是 ;16、夏季高山上的温度从山脚起每升高100米降低C 07.0,已知山脚的温度是C 020,山顶的温度是C 04.14,那么山的高度是 米;17、如图,A D ∥BC ,∠D =100°,CA 平分∠BCD ,则∠DAC = 度;18、某同学带50元去购书中心买某种数学辅导书,已知该书每册定价9元4角,该同学买书后余下的钱数y 元和买的册数x 之间的函数关系式是 ;19、点),2(a -在第二象限的角平分线上,则a = ;20、如图,矩形ABCD 中,O 点是两对角线交点,A E ⊥BD 于点E ,OE :OD =1:2,AE =cm 3,则DE = 。
广东省九年级上学期基础学科竞赛数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2021·梁山模拟) 围棋起源于中国,古代称之为“弈”,至今已有多年的历史.年月,世界围棋冠军柯洁与人工智能机器人进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()A .B .C .D .2. (2分)如图,如果可以在三个完全相同的正方形拼成的图案中随意取点,那么这个点取在阴影部分的概率是()A .B .C .D .3. (2分)用一个5倍的放大镜去观察一个三角形,对此,四位同学有如下说法:甲说:三角形的每个内角都扩大到原来的5倍;乙说:三角形的每条边都扩大到原来的5倍;丙说:三角形的面积扩大到原来的5倍;丁说:三角形的周长都扩大到原来的5倍.上述说法中正确的是()A . 甲和乙B . 乙和丙C . 丙和丁D . 乙和丁4. (2分)(2020·菏泽) 如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A . 互相平分B . 相等C . 互相垂直D . 互相垂直平分5. (2分) (2019九上·大冶月考) 已知点A ,B ,C 在二次函数y=-3x2+k的图象上,则y1 , y2 , y3的大小关系是()A .B .C .D .6. (2分)(2017·东光模拟) 若关于x的一元二次方程 x2+ x+tana=0有两个相等的实数根,则锐角a等于()A . 15°B . 30°C . 45°D . 60°7. (2分) (2018九上·新乡期末) 如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()C . 80°D . 100°8. (2分) (2021九上·淮北月考) 下列各点中,不在双曲线上的点是()A .B .C .D .9. (2分)如图所示,数学小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得小桥拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,则小桥所在圆的半径为()米.A .B . 5C .D . 610. (2分)(2013·义乌) 已知圆锥的底面半径为6cm,高为8cm,则这个圆锥的母线长为()A . 12cmB . 10cmC . 8cmD . 6cm11. (2分) (2017九上·青龙期末) 已知两个相似三角形的周长之比为1:3,则它们相应的面积之比是()A . 3:1D . 1:912. (2分)(2020·龙泉驿模拟) 二次函数的图象如图所示,下列结论正确的是()A .B .C .D . 有两个不相等的实数根二、填空题 (共8题;共8分)13. (1分) (2018八上·开封期中) 等腰三角形的周长为13cm ,其中一边长为3cm ,则底边长等于cm.14. (1分)当m= 时,y=(m﹣2)是二次函数.15. (1分) (2020九上·临武月考) 如图,点M是反比例函数y=(a≠0)的图象上一点,过M点作x 轴、y轴的平行线,若S阴影=8,则此反比例函数解析式为16. (1分) (2018九上·花都期末) 将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度。
初中数学竞赛创新试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -2B. 0C. 1D. 22. 如果一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π3. 一个数的平方是16,这个数可能是:A. 2B. 4C. -2D. C和-24. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长度是:A. 5B. 6C. 7D. 85. 如果一个数的绝对值是5,那么这个数可能是:A. 5C. A和BD. 06. 一个数的立方是-27,这个数是:A. -3B. 3C. -27D. 277. 一个数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 18. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -49. 如果一个数的平方是25,那么这个数的立方是:A. 125B. 250C. 375D. 62510. 一个数的立方根是-2,那么这个数是:A. -8B. 8D. 2二、填空题(每题3分,共15分)11. 一个数的平方是9,这个数是_________。
12. 如果一个数的平方根是2,那么这个数是_________。
13. 一个数的立方是64,这个数是_________。
14. 一个数的倒数是2/3,那么这个数是_________。
15. 如果一个数的立方根是3,那么这个数是_________。
三、解答题(每题5分,共55分)16. 一个直角三角形的斜边长度是13厘米,其中一个直角边是5厘米,求另一个直角边的长度。
17. 一个数列的前三项是1, 1, 2,每一项都是前两项的和,求这个数列的第10项。
18. 一个圆的直径是14厘米,求这个圆的面积。
19. 一个数的平方是25,求这个数的平方根。
20. 一个数的立方是-125,求这个数。
四、证明题(每题10分,共20分)21. 证明:对于任意一个正整数n,n的平方总是大于或等于n。
广东省初中数学竞赛试卷姓名:________ 班级:________ 成绩:________一、单选题 (共40题;共80分)1. (2分) (2016七下·蒙阴期中) 下列选项中能由左图平移得到的是()A .B .C .D .2. (2分)已知抛物线y=ax2﹣2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是()A . 第四象限B . 第三象限C . 第二象限D . 第一象限3. (2分)(2020·嘉兴·舟山) 如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0)。
以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C坐标为()A . (-1,-1).B . (, -1)C . (-1, )D . (-2,-1).4. (2分)如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三个顶点的坐标为()A . (-1,-1),(2,3),(5,1)B . (-1,1),(3,2),(5,1)C . (-1,1),(2,3),(5,1)D . (1,-1),(2,2),(5,1)5. (2分)(2018·泰安) 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A .B .C .D .6. (2分)下列语句错误的是()A . 连接两点的线段的长度叫做两点间的距离B . 两条直线平行,同旁内角互补C . 若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D . 平移变换中,各组对应点连成两线段平行且相等7. (2分) (2019八下·北京房山期末) 如图,是由绕着某点旋转得到的,则这点的坐标是()A . (1,1)B . (2,0)C . (0,1)D . (3,1)8. (2分)(2017·曹县模拟) 如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A . (﹣,1)B . (﹣1,)C . (,1)D . (﹣,﹣1)9. (2分)△DEF(三角形)是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A . (2,2),(3,4)B . (3,4),(1,7)C . (﹣2,2),(1,7)D . (3,4),(2,﹣2)10. (2分)(2016·福州) 如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A . (sinα,sinα)B . (cosα,cosα)C . (cosα,sinα)D . (sinα,cosα)11. (2分) (2017八下·东台期中) 如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q 分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A . y=xB . y=x+1C . y=x+2D . y=x+312. (2分) (2020八下·汉阳期中) 如图,菱形的对角线交于点,,,将沿点到点的方向平移,得到,当点与点重合时,点与点之间的距离为()A . 3B . 4C . 5D . 613. (2分) (2020九下·哈尔滨月考) 是⊙O的直径,切⊙O于点A,交⊙ 于点C;连接 ,若 ,则等于()A . 20°B . 25°C . 30°D . 40°14. (2分) (2020七上·龙凤期末) 一列火车由甲市驶往相距600km的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是()A .B .C .D .15. (2分) (2020七下·孟村期末) 若不等式组的解为x<8,则m的取值范围是()A . m≥8B . m<8C . m≤8D . m>816. (2分)如果⊙A的半径是4cm,⊙B的半径是10cm,圆心距AB=8cm,那么这两个圆的位置关系是()A . 外离B . 外切C . 相交D . 内切17. (2分) (2020九下·黄石月考) 已知:二次函数,下列说法错误的是()A . 当时,随的增大而减小B . 若图象与轴有交点,则C . 当时,不等式的解集是 x<1或x>3D . 若将图象向上平移1个单位,再向左平移3个单位后过点,则18. (2分)一个袋子中有4个球,其中2个红球,2个蓝球,除颜色外其余特征均相同,若从这个袋子中任取1个球,是蓝色的概率是()A .B .C .D .19. (2分)如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()A . 6B . 8C . 10D . 1220. (2分) (2019八上·重庆月考) 如图,等腰△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,∠DBC =15°,则∠A的度数是()A . 35°B . 40°C . 50°D . 55°21. (2分)(2020·定兴模拟) 如图,函数(k≠0,x<0)的图像L经过点A(-4,2),直线AB与x轴交于点B(-5,0),经过点C(0,4)作y轴的垂线,分别交L和直线AB于点M,N,则MN=()A . 1B . -5C . -1D . 522. (2分) (2018七下·东莞开学考) 已知a× =b÷62.5%=c× =1(a.b.c均不为0),a.b.c这三个数中最小的是()。
广东省初中数学竞赛初赛试题及答案
______________________________________________ ____
______________________________________________ ____
______________________________________________ ____
______________________________________________ ____
答案
01-10 DACDB CADBB
11-20 CBDAB BAADB
21-30 DDDCB DCDAB
______________________________________________ ____
公共营养师各章节练习
第一章公共营养师职业道德
▪一、名词解释
▪ 1.道德:
▪ 2.职业道德:
▪ 3.社会主义职业道德:
▪ 4. 办事公道:
▪二、简答题
1.简述职业道德的特点?
2.简述职业道德的社会作用?
3.社会主义职业道德基本规范包含哪五个方面的内容?
单项选择
1、下列不属于社会主义职业道德规范的是
A、爱岗敬业
B、服务群众
C、诚实守信
D、开拓创新
答案 D
______________________________________________ ____
2、公共营养师在工作中,应该以()为工作核心,时刻为服务对象着想。
A、集体主义
B、爱国主义
C、为人民服务
D、社会主义
答案 C
3、社会主义职业道德是建立在()为主体的经济基础之上的一种社会意识。
A、公有制
B、私有制
C、市场经济
D、计划经济
答案 A
4、职业道德具有()
A法律的强制性
B从业人员内部与其服务对象间关系的调节职能
C兼有强烈的纪律性 D对从业人员无关紧要
答案 B
5、下列不属于职业道德的特点是()
A行业性 B连续性 C实用性和规范性 D稳定性
答案 D
6、办事公道的说法,您认为不正确的是()
______________________________________________ ____
A要按照一个标准来办事,各打五十大板
B站在公正立场上按同一标准和同一原则办事
C在接待服务对象时不以貌取人
D不因为亲朋好友就给予特别照顾
答案 A
多项选择题
1.在市场经济条件下,职业道德具有( )的社会功能
A.鼓励人们自由选择职业
B.遏制牟利最大化
C.促进人们的行为规范化
D.最大限度的克服人们受利益驱动
______________________________________________ ____。