第三章:三角恒等变形(学生版汇总)
- 格式:doc
- 大小:2.09 MB
- 文档页数:24
【人教版】高中数学必修4知识点总结:第三章三角恒等变换【编者按】变换是数学的重要工具,在初中,接触过大量的“只变其形不变其质”的代数变换,本章要学习的三角恒等变换也是“只变其形不变其质”的,可以揭示某些外形不同但实质相同的三角函数式之间的内在联系,是解决数学问题的重要手段。
三角恒等变换的学习,注重考察学生思维的灵活性和发散性,以及观察能力、运算及观察能力、运算推理能力和综合分析能力。
教材要求:用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,能运用这些公式进行简单的恒等变换。
1.两角和与差的正弦、余弦、正切公式;;其中两角和与差的正切公式的变形:2.二倍角公式升幂公式降幂公式附注:在学习上述公式时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;(2)善于拆角、拼角如等;(3)注意倍角的相对性(4)要时时注意角的范围3.三角函数式的化简(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
1)降幂公式2)辅助角公式4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”,即利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
1 知识归纳:三角恒等变形一、两角和与差公式及规律 常见变形sin()sin cos cos sin .cos()cos cos sin sin .tan tan tan().1tan tan αβαβαβαβαβαβαβαβαβ±=±±=±±= (1)tan tan :tan tan tan()(1tan tan ).1tan :tan().41tan αβαβαβαβπααα±=±±±=,的和(差)与积互相转化(2)特例二、二倍角公式及规律 常见变形( ※ )三、积化和差与和差化积公式 1sin cos [sin()sin()].2αβαβαβ=++- 1cos sin [sin()sin()].2αβαβαβ=+-- 1cos cos [cos()cos()].2αβαβαβ=++- 1sin sin [cos()cos()].2αβαβαβ=-+--sin sin 2sin cos .22αβαβαβ+-+= 222221cos cos .222cos .1cos 21cos sin .222sin .1cos 2tan .21cos αααααααααα+⎧=⎪⎧⎪⎪-⎪⎪⇒±==⎨⎨⎪⎪⎪-⎪⎩=⎪+⎩222221cos cos .222cos .1cos 21cos sin .222sin .1cos 2tan .21cos αααααααααα+⎧=⎪⎧⎪⎪-⎪⎪⇒±==⎨⎨⎪⎪⎪-⎪⎩=⎪+⎩2sin 2sin 2cos ,sin .1sin (sin cos ).2cos 2cos 22ααααααααα⇒==±=± sin 22sin cos .ααα= 2222cos 2cos sin 2cos 112sin .ααααα=-=-=- 22tan tan 2.1tan ααα=- sin sin 2cos sin .22αβαβαβ+--= cos cos 2cos cos .22αβαβαβ+-+=cos cos 2sin sin .22αβαβαβ+--=-2 四、学习本章应注意的问题1、两角差的余弦公式是本章中其余公式的基础,应记准该公式的形式.2、倍角公式ααα22sin 211cos 22cos -=-=有升、降幂的功能,如果升幂,则角减半,如果降幂,则角加倍,根据条件灵活选用.3、公式的“三用”(顺用、逆用、变用)是熟练进行三角变形的前提.。
第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式⑴;⑵;()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-⑶;⑷;()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+⑸ ();()tan tan tan 1tan tan αβαβαβ--=+⇒()()tan tan tan 1tan tan αβαβαβ-=-+⑹ ().()tan tan tan 1tan tan αβαβαβ++=-⇒()()tan tan tan 1tan tan αβαβαβ+=+-25、二倍角的正弦、余弦和正切公式:⑴.sin 22sin cos ααα=222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos 2cossin 2cos 112sin ααααα=-=-=-升幂公式⇒2sin 2cos 1,2cos 2cos 122αααα=-=+降幂公式,. ⇒2cos 21cos 2αα+=21cos 2sin 2αα-=26、 .22tan tan 21tan ααα=-27、(后两个不用判断符号,更加好用)⇒28、合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的⇒形式。
,其B x A y ++=)sin(ϕϖ()sin cos αααϕA +B =+中.tan ϕB =A29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,αα2tan 2cos ==2tan 12tan 1 cos ;2tan 12tan2sin :222αααααα万能公式+-=+=灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①是的二倍;是的二倍;是的二倍;是的二倍;α2αα4α2α2α2α4α②;问:;2304560304515o ooooo=-=-==12sin π=12cosπ;③;④;ββαα-+=)()4(24αππαπ--=+⑤;等等)4()4()()(2απαπβαβαα--+=-++=(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
)sin(cos sin 22ϕωωω++=+=x x b x a y b a ;的取值范围为;其中22-tan πϕπϕϕ≤≤=a b 一、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=- ⑶22tan tan 21tan ααα=-. 3、辅助角公式:把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 bx a y ++=)sin(ϕω形式。
4、 5、(1)升幂公式 1+cos α=2cos 22α1-cos α=2sin 22α1±sin α=(2cos 2sin αα±)21=sin 2α+ cos 2α sin α=2cos 2sin2αα (2)降幂公式sin 2α22cos 1α-= cos 2α22cos 1α+= sin 2α+ cos 2α=1 sin α·cos α=α2sin 21 7、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的差, 倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍; ②ββαα-+=)(;④)4(24αππαπ--=+; ③)4()4()()(2απαπβαβαα--+=-++=;2tan 12tan 1 cos ;2tan 12tan 2 sin :222αααααα万能公式+-=+=必修4:第三章 三角恒等变换知识点总结⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 26、22tan tan 21tan ααα=-. 27、⇒(后两个不用判断符号,更加好用) 28、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。
)sin αϕA +B ,其中tan ϕB =A. 29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍; ②2304560304515o ooooo=-=-=;问:=12sin π ;=12cos π;③ββαα-+=)(;④)4(24αππαπ--=+;⑤)4()4()()(2απαπβαβαα--+=-++=;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。