第六章-典型相关分析
- 格式:ppt
- 大小:2.38 MB
- 文档页数:64
第四章 向量 4.1 基本内容 4.1.1 n 维向量n 维列向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α与n 维行向量[]n Tb b b 21=β即为n n ⨯⨯11及矩阵,因而它们的运算也即为矩阵运算,列向量与行向量统称为向量。
注 为方便起见,除特别说明外,本书所称向量均指列向量,从而其转置即为行向量。
4.1.2 向量的内积设[]T n a a a 21=α,[]Tn b b b 21=β(1) 定义称∑==+++=ni ii n n b a b a b a b a 12211, βα为向量βα,的内积。
(2) 性质αββααββαT T ===,,γβγαγβα,,,+=+βαβα,,k k =0,≥αα 等号当且仅当0=α时成立(3) 有关概念 向量的范数:αααααT ==,单位向量:若1=α,则称α为单位向量。
向量的标准化(规范化);0≠α称αα1为α的标准化向量。
两向量的正交:若0,=βα,则称βα与正交。
4.1.3 线性组合,线性相关,线性无关的定义设m ααα,,,21 是一组n 维向量(1) 线性组合:设β是一个n 维向量,若存在一组数m t t t ,,,21 ,使m m t t t αααβ+++= 2211则称β为向量组m ααα,,,21 的一个线性组合,或称β可由向量组m ααα,,,21 线性表出。
注 设两组向量(I )m ααα,,,21 ,(II )m βββ,,,21 ,若每一个()m i i ,,2,1 =α都可由m βββ,,,21 线性表出,则称向量组(I )可由向量组(II )线性表出;当向量组(I )与(II )可互相表出时,称向量组(I )与(II )等价。
(2) 线性相关:若存在一组不全为零的数m t t t ,,,21 ,02211=+++m m t t t ααα ,则称向量组m ααα,,,21 线性相关。
(3) 线性无关:若当且仅当021====m t t t 时,02211=+++m m t t t ααα 才成 立,则称m ααα,,,21 线性无关。
本章授课思路(三步走):考试大纲→基础知识点与专项训练→典型题型与应具备的相关知识点第一步:考试大纲1.工程价款结算与支付;2.投资偏差、进度偏差分析;3.竣工决算的编制。
说明:本章主要站在施工阶段基于清单施工合同下的价款结算,主要包括合同价、预付款、进度款、质保金(银行保函)、偏差分析、增值税、实际总造价、竣工结算尾款等的计算。
第二步:基础知识点与专项训练基础知识点一:预付款1.目标:重点掌握工程预付款的类型、额度、支付时间及起扣方式。
说明:本章的费用与价款的区别。
费用只包括人材机管利,价款包括全费用。
2.知识点详解(1)预付款的类别预付款是发包人为解决承包人在施工准备阶段资金周转问题提供的协助。
预付款包括材料(设备)预付款、措施项目预付款、安全文明施工预付款。
需要说明的是:材料(设备)预付款是要全款扣回的,而措施项目预付款、安全文明施工预付款是按工程款发放,不用扣回。
(2)预付款的支付1)材料(设备)预付款(按合同约定计算)常见合同约定情况如下:①材料(设备)预付款=合同价(不含暂列金额)×双方约定材料预付款比例(清单规定)②材料(设备)预付款=合同价×合同中约定的预付款比例③材料(设备)预付款=分部分项工程价款×合同中约定的材料预付款比例=分部分项工程费用×(1+规费费率)×(1+税金税率)×合同约定的预付款比例说明:材料预付款后期应全部扣回,它不属于工程款。
2)安全文明施工预付款按合同约定的方式计算,如:安全文明施工支付预付款=安全文明施工费×(1+规费费率)×(1+税金税率)×合同约定的比例×工程款支付比例说明:安全文明施工价款属于工程款,后期不扣回。
特别说明:本章提及的费用与价款的区别3)措施项目预付款措施项目支付预付款=措施项目费用×(1+规费费率)×(1+税金税率)×合同约定的预付款比例×工程款支付比例说明:预付的措施款是工程款的一部分,后期不扣回。
典型相关分析典型相关分析是一种统计学方法,用于研究两组变量之间的关系。
典型相关分析可以帮助我们了解这两组变量之间的相互关系以及它们是否能够彼此预测。
在本文中,我们将探讨典型相关分析的基本概念、应用场景、计算方法以及结果的解释和解读。
典型相关分析,又称为典型相关系数分析,是一种多变量统计技术,它可以在两组变量之间寻找最具相关性的线性组合,这个线性组合被称为典型变量。
典型相关分析的核心思想是将两组变量转化为一组最具相关性的综合变量,以便探索和解释它们之间的关系。
典型相关分析通常用于探索两组变量之间的关系,并确定是否存在一个或多个典型相关系数。
在许多实际应用中,这些变量可能代表相互关联的特征或维度,比如市场规模和销售额、学习时间和考试成绩等。
典型相关分析可以用于许多领域的研究。
例如,在市场研究中,我们可以使用典型相关分析来研究不同市场因素之间的关系,并确定市场的发展趋势。
在教育研究中,我们可以使用典型相关分析来研究学生的学习习惯和学术成绩之间的关系,以帮助教育者改进教学方法和学习环境。
接下来,我们将介绍典型相关分析的计算方法。
假设我们有两组变量X和Y,其中X包含p个变量,Y包含q个变量。
首先,我们计算X和Y的样本协方差矩阵SXX和SYY,以及它们之间的协方差矩阵SXY。
然后,我们对SXX和SYY进行特征值分解,得到它们的特征向量和特征值。
接下来,我们选择最大的r个特征值和对应的特征向量。
最后,我们计算典型相关系数以及典型变量。
结果的解释和解读是典型相关分析的最后一步。
典型相关系数的取值范围为-1到1,其中取值为1表示两组变量之间存在完全正相关的关系,取值为-1表示存在完全负相关的关系,取值为0表示两组变量之间不存在相关性。
此外,我们还可以通过检验统计量来判断典型相关系数是否显著。
总结起来,典型相关分析是一种统计学方法,用于研究两组变量之间的关系。
它可以帮助我们了解这两组变量之间的相互关系以及它们是否能够彼此预测。
多元统计分析智慧树知到课后章节答案2023年下浙江工商大学浙江工商大学第一章测试1.在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,可以解决下面哪几方面的问题。
()A:简化系统结构、探讨系统内核 B:进行数值分类,构造分类模型 C:变量之间的相依性分析 D:构造预测模型,进行预报控制答案:简化系统结构、探讨系统内核;进行数值分类,构造分类模型;变量之间的相依性分析;构造预测模型,进行预报控制2.只有调查来的才是数据。
()A:对 B:错答案:错3.以下都属于大数据范畴。
()A:行车轨迹 B:交易记录 C:问卷调查 D:访谈文本答案:行车轨迹;交易记录;问卷调查;访谈文本4.只要是数据,就一定有价值。
()A:对 B:错答案:错5.统计是研究如何搜集数据,如何分析数据的学问,它既是科学,也是艺术.()A:错 B:对答案:对第二章测试1.考虑了量纲影响的距离测度方法有()。
A:欧氏距离 B:Minkowski距离 C:马氏距离 D:切比雪夫距离答案:马氏距离2.不具有单调性的系统聚类方法有()。
A:离差平方和法 B:最短距离法 C:中间距离法 D:重心法 E:类平均距离法答案:中间距离法;重心法3.聚类分析是研究分类问题的一种多元统计分析方法。
()A:对 B:错答案:对4.聚类分析是有监督学习。
()A:错 B:对答案:错5.动态聚类法的凝聚点可以人为主观判别。
()A:对 B:错答案:对第三章测试1.判别分析是通过对已知类别的样本数据的学习、构建判别函数来最大程度区分各类,Fisher判别的准则要求()。
A:各类之间各个类内部变异尽可能大B:各类之间和各类内部变异尽可能小 C:各类之间变异尽可能大、各类内部变异尽可能小D:各类之间变异尽可能小、各类内部变异尽可能大答案:各类之间变异尽可能大、各类内部变异尽可能小2.常用判别分析的方法有()。
A:逐步判别法 B:贝叶斯判别法 C:费舍尔判别法 D:距离判别法答案:逐步判别法;贝叶斯判别法;费舍尔判别法;距离判别法3.较聚类分析,判别分析是根据已知类别的样本信息,对新样品进行分类。
A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间()与考试成绩(y)之x间建立线性回归方程y c=a+b。
经计算,方程为y c=200—0.8x,该方程参数x的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和6值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的B都不是随机的C一个是随机的,一个不是随机的D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系B变量之间的变动关系C变量之间的相互关系的密切程度D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数( )A =0B =lC 0<<1D -1<<0r r r r12.在回归直线yc=a+bx中,b表示( )A当x增加一个单位,,y增加a的数量B当y增加一个单位时,x增加b的数量C当x增加一个单位时,y的均增加量D当y增加一个单位时,x的平均增加量13.当相关系数r=0时,表明( )A现象之间完全无关B相关程度较小C现象之间完全相关D无直线相关关系14.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关关系为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8115.估计标准误差是反映( )A平均数代表性的指标B相关关系的指标C回归直线的代表性指标D序时平均数代表性指标三、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )A线性关系B因果关系C变异程度D相关方向E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E 确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。
第六章其他长期性资产及负债评估第一部分重要考点第二部分次要考点一、长期待摊费用二、长期应收款三、生产性生物资产的评估方法负债的评估一、要求掌握长期待摊费用、长期应收款、生产性生物资产的评估方法。
二、出题模式:选择题(一)单选题【例题1·单选题】甲企业拟进行股权转让,需对其股东全部权益价值进行评估。
采用资产基础法评估时,其长期待摊费用余额500万元。
其中,办公楼装修摊余费用200万元;租入固定资产改良支出费用发生总额600万元,摊余300万元。
租赁协议约定固定资产租入期10年,已租入4年。
由于办公楼装修费已在房屋建筑物评估中包含,则甲企业此项长期待摊费用评估值为()万元。
A.360B.300C.200D.500『正确答案』A『答案解析』甲企业长期待摊费用的评估值=600/10×6=360(万元)。
【例题2·单选题】对于尚存资产或者权利的价值难以准确计算的费用,可按其()计算评估值。
A.公允价值B.历史成本C.重置成本D.账面余额『正确答案』D『答案解析』参考教材。
【例题3·单选题】成本法下,生产性生物资产的评估价值为()。
A.评估价值=基准日重置价值(相关成本)-有形损耗B.评估价值=基准日重置价值(相关成本)-无形损耗C.评估价值=基准日重置价值(相关成本)-有形损耗-无形损耗D.评估价值=基准日重置价值(相关成本)『正确答案』C『答案解析』成本法估算生产性生物资产价值是以按现时工价及生产水平,重新种植或饲养与被评估生物资产相类似的资产所需的成本费用减去各种损耗,作为被评估生物资产价值的方法。
【例题4·单选题】运用市场法估算生产性生物资产的价值,下列说法中不正确的是()。
A.关键在于参照物的选择及调整系数的设置B.生产性生物资产参照物的选择,较一般非生物资产更加困难C.设置恰当的调整系数比较容易D.在选择好参照物以后,综合权衡参照物与待评生产性生物资产在各方面的差异,进而确定相应的调整系数『正确答案』C『答案解析』生产性生物资产绝大部分是非标准的,这增加了参照物选择的难度。
第六章_典型相关分析典型相关分析是一种多元统计分析方法,用于研究两组变量之间的关系。
它可以用来探索两组变量之间的线性关系,并找到最能代表两组变量之间关系的线性组合。
典型相关分析基于两个原始变量集合,每个集合中的变量可能有不同的数量。
它的目标是找到两个线性组合,使得这两个组合之间的相关性最大。
换句话说,典型相关分析试图找到两个最相关的综合变量,以最大程度地描述两组变量之间的关系。
在典型相关分析中,有两个步骤:计算典型变量和计算典型相关系数。
首先,通过将每一组变量进行线性组合,得到两组典型变量。
然后,计算这两组典型变量之间的相关系数,这个相关系数称为典型相关系数。
为了更好地理解典型相关分析,我们可以考虑一个具体的例子。
假设我们想要研究身高、体重和年龄之间的关系。
我们收集了100个人的数据,其中包括身高、体重和年龄这三个变量。
我们可以将身高和体重看作是第一组变量,年龄是第二组变量。
首先,我们通过将身高和体重进行线性组合,得到第一组典型变量。
然后,我们对年龄进行线性组合,得到第二组典型变量。
接下来,我们计算这两组典型变量之间的相关系数,以确定身高、体重和年龄之间的关系强度。
典型相关分析在很多领域都有应用,比如心理学、社会学、经济学等。
例如,在心理学研究中,研究人员可能希望了解个体的性格特征和行为习惯之间的关系。
他们可以使用典型相关分析来找到最能代表这两组变量之间关系的线性组合。
总之,典型相关分析是一种用于研究两组变量之间关系的多元统计方法。
它可以帮助我们找到最相关的综合变量,以最大程度地描述两组变量之间的关系。
典型相关分析在实践中有广泛的应用,可以帮助研究人员深入了解变量之间的复杂关系。