AI人工智能ppt
- 格式:pptx
- 大小:2.61 MB
- 文档页数:17
2023REPORTING 《人工智能介绍》PPT课件•人工智能概述•机器学习技术•自然语言处理技术•计算机视觉技术•语音识别与合成技术•人工智能伦理、法律与社会影响目录20232023REPORTINGPART01人工智能概述定义第一次浪潮(20世纪60年代-7…第二次浪潮(20世纪80年代-9…第三次浪潮(21世纪初至今)萌芽期(20世纪50年代-60年…发展历程人工智能(AI )是计算机科学的一个分支,旨在研究、开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能的发展大致经历了以下几个阶段人工智能的概念被提出,并出现了一些早期的理论和方法。
基于符号逻辑的专家系统得到广泛应用,但由于技术限制和理论缺陷,人工智能进入低谷期。
机器学习算法的兴起,尤其是神经网络技术的快速发展,为人工智能的复苏奠定了基础。
深度学习技术的突破,以及大数据、云计算等技术的支持,使得人工智能在各个领域取得了显著成果。
定义与发展历程技术原理及核心思想技术原理人工智能的技术原理主要包括感知、认知和行动三个层面。
感知层面通过传感器等设备获取外部环境信息;认知层面通过算法对获取的信息进行处理和分析,实现知识的表示、学习和推理;行动层面则根据认知结果做出相应的决策或行为。
核心思想人工智能的核心思想在于模拟人类的智能行为,包括学习、推理、决策等。
通过不断地学习和优化算法,提高机器的智能化水平,使其能够自主地完成复杂的任务。
应用领域人工智能已经渗透到各个领域,如自然语言处理、计算机视觉、智能机器人、智能制造、智慧城市等。
其中,自然语言处理使得机器能够理解和生成人类语言;计算机视觉使得机器能够识别和理解图像和视频;智能机器人则能够自主完成各种复杂任务。
前景展望随着技术的不断发展和应用场景的不断拓展,人工智能将在未来发挥更加重要的作用。
例如,在医疗领域,人工智能可以协助医生进行疾病诊断和治疗方案制定;在交通领域,自动驾驶技术将改变人们的出行方式;在金融领域,智能投顾和风险管理将提高金融服务的效率和质量。
定义与发展历程定义第一次浪潮发展历程第二次浪潮萌芽期第三次浪潮人工智能应用领域计算机视觉通过图像处理和计算机图形学等技术,将图像转换为机器可理解的信息,应用于安防、医疗、自动驾驶等领域。
自然语言处理研究计算机理解和生成人类自然语言文本的能力,应用于机器翻译、情感分析、智能问答等领域。
语音识别与合成将人类的语音转换为文本或命令,以及将文本转换为自然的语音输出,应用于智能语音助手、无障碍交流等领域。
智能机器人结合机械、电子、计算机等技术,实现机器人的自主导航、语音识别、人脸识别等功能,应用于家庭服务、工业生产等领域。
基础层技术层应用层030201人工智能产业链结构逻辑回归(梯度提升树(Linear Regression )Random Forests )010203040506监督学习算法02030401非监督学习算法K 均值聚类(K-means Clustering )层次聚类(Hierarchical Clustering )主成分分析(Principal Component Analysis )自编码器(Autoencoders )强化学习算法学习(Q-learning)策略梯度(Gradients神经网络基本原理前向传播神经元模型解释神经网络如何通过前向传播算法计算输出值。
反向传播卷积层池化层CNN应用RNN基本原理01长短期记忆网络(LSTM)02RNN应用03词法分析与词性标注词法分析研究单词的内部结构,包括词根、词缀、词干等,以及单词的形态变化规则。
词性标注为每个单词分配一个词性标签,如名词、动词、形容词等,以便理解单词在句子中的角色和含义。
应用在信息检索、机器翻译、智能问答等领域中,词性标注有助于提高文本处理的准确性和效率。
1 2 3句法分析依存关系抽取应用句法分析与依存关系抽取情感分析和意见挖掘情感分析01意见挖掘02应用03图像分类与目标检测图像分类目标检测评估指标图像分割与场景理解图像分割场景理解评估指标三维重建与虚拟现实三维重建虚拟现实评估指标语音信号特性语音信号预处理语音信号特征提取阐述语音信号的物理特性、时域特性、频域特性以及倒谱特性等。