必修一第四单元检测题
- 格式:doc
- 大小:107.50 KB
- 文档页数:11
第四单元检测(时间:90分钟满分:120分)一、阅读理解(共两节,满分40分)第一节(共12小题;每小题2.5分,满分30分)AAn old man lives with his little grandson.Every day the old man gets up early to read books.One day the grandson asked,“Grandpa,I want to read books as you do.But I always forget what I read.What are the advantages of reading?”The grandfather didn’t answer him,but said,“Take this little basket to the river and bring me back a basket of water.” The boy did as his grandpa said,but all the water leaked out before he got back home.The grandfather laughed and said,“You’ll have to walk faster next time.”The next time the boy ran faster,but the basket was still empty before he returned home.The boysaid,“See,Grandpa,it’s no use!”“Is it no use?” the old man said.“Look at the basket.”The boy looked at the basket and found that the basket was different.It was cleaner,inside and out.“That’s what happens when you read books.You might not understand or remember everything,but when you read them,you will be changed,inside and out.”1What does the old man do every day?A.He carries water.B.He reads books.C.He writes something.D.He does some chores.答案B解析依据第一段其次句,可知这位老人每天看书。
一、选择题1.关于x 的方程2||10x a x ++=有4个不同的解,则实数a 的取值范围是( ) A .()(),22,-∞-+∞B .(],2-∞-C .(),2-∞-D .()2,+∞2.已知1,0()1,0ax x f x x x x +≤⎧⎪=⎨->⎪⎩,则下列关于[()]1y f f x =+的零点的判断正确的是( ) A .当0a >时,有4个零点,当0a <时,有1个零点; B .当0a >时,有3个零点,当0a <时,有2个零点; C .无论a 为何值,均有2个零点; D .无论a 为何值,均有4个零点. 3.已知函数()22020,0,,0,x x f x x x x <⎧=⎨-≥⎩若关于x 的方程()()21610f x kf x ++=有四个不同的实数根,则k 的取值范围为( ) A .(4,)+∞B .(8,)+∞C .(,4)-∞-D .(,8)-∞-4.已知函数,01()11,10(1)x x f x x f x ≤<⎧⎪=⎨--<<⎪+⎩,()()4g x f x mx m =--,其中m 是非零的实数,若函数()g x 在区间(1,1)-内有且仅有两个零点,则实数m 的取值范围是( ) A .1,(0,1)5⎛⎫-∞-⋃ ⎪⎝⎭B .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭D .1,(1,)5⎛⎫-∞-⋃+∞ ⎪⎝⎭5.已知函数()()2log 1,1212,1x x x f x x ⎧-<-⎪=⎨-+≥-⎪⎩,若函数()()F x f x k =- 恰有3个零点,则实数k 的取值范围是( ) A .52,2⎛⎤ ⎥⎝⎦B .()2,3C .(]3,4D .()2,+∞6.对于函数()f x 和()g x ,设(){}0x R f x α∈∈=,(){}0x R g x β∈∈=,若存在α、β,使得1αβ-≤,则称()f x 与()g x 互为“零点关联函数”.若函数()12x f x e x -=+-与()23g x x ax a =--+互为“零点关联函数”,则实数a 的取值范围为( )A .7,33⎡⎤⎢⎥⎣⎦B .72,3⎡⎤⎢⎥⎣⎦C .[]2,3D .[]2,47.设函数3,()log ,x x af x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( )A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞8.已知函数()21,04,0x x f x x x ⎧+≤=⎨>⎩,若函数()y f x a =-有3个不同的零点1x ,2x ,3x (123x x x <<),则123ax x x ++的取值范围是( ) A .()2,0-B .[]2,0-C .[]2,0-D .(]2,0-9.某工厂生产某产品2019年每月生产量基本保持稳定,2020年由于防疫需要2、3、4、5月份停产,6月份恢复生产时月产量仅为去年同期的一半,随着疫情缓解月产量逐步提高.该工厂如果想8月份产量恢复到去年同期水平,那么该工厂从6月开始月产量平均增长率至少需到达多少个百分点?( ) A .25B .35C .42D .5010.用d (A )表示集合A 中的元素个数,若集合A ={0,1},B ={x |(x 2-ax )(x 2-ax +1)=0},且|d (A )-d (B )|=1.设实数a 的所有可能取值构成集合M ,则d (M )=( ) A .3B .2C .1D .411.已知定义在R 上的函数()2ln ,1,1x x f x x x x >⎧⎪=⎨-⎪⎩,若函数()()k x f x ax =-恰有2个零点,则实数a 的取值范围是( ) A .()1,11,0e ⎛-⎫⎪⎝⎭ B .()1,1,1e ⎛⎫-∞- ⎪⎝⎭C .(){}1,1,10e ⎛⎫-∞- ⎪⎝⎭D .(){}11,00,1e ⎛⎫- ⎪⎝⎭12.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞-⎪⎝⎭C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞二、填空题13.已知函数22122,0()2log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则212344x x x x x ++的取值范围是____________. 14.若关于x 的方程24x x m -=+有两个不同实数解,则m 的取值范围是______.15.已知函数()22,36,3x x x f x x x ⎧-≤⎪=⎨->⎪⎩,若a 、b 、c 、d 、e ()a b c d e <<<<满足()()()()()f a f b f c f d f e ====,则()()()()()M af a bf b cf c df d ef e =++++的取值范围为______. 16.函数()11f x x =-,()g x kx = ,若方程()()f x g x =有3个不等的实数根,则实数k 的取值范围为________. 17.已知函数f(x)=若关于x 的方程f(x)=k 有三个不同的实根,则实数k的取值范围是________.18.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3/mg mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09/mg mL ,那么这个人至少经过________小时才能开车.(精确到1小时,参考数据:lg30.48,lg 40.60≈≈)19.已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.20.已知函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,若关于x 方程()f x ax =有三个不相等的实数根,则实数a 的取值范围是_______________. 三、解答题21.已知函数()221g x ax x b =-++,函数()g x 有两个零点分别是1-和3.(1)若存在[]01,3x ∈,使不等式()000g x mx ≥-成立,求实数m 的取值范围; (2)记()()32f x g x kx k =-+,若方程()210xf -=有三个不同的实数解,求实数k的取值范围. 22.已知函数()f x x =()2g x x =-.(1)求方程()()f x g x =的解集;(2)定义:{},,,a a bmax a b b a b≥⎧=⎨<⎩.已知定义在[)0,+∞上的函数{}()(),()h x max f x g x =. ①求()h x 的单调区间;②若关于x 的方程()h x m =有两个实数解,求m 的取值范围. 23.已知函数f (x )=a x +21x x -+(a >1). (1)求证:f (x )在(﹣1,+∞)上是增函数; (2)若a =3,求方程f (x )=0的正根(精确到0.1).24.对于函数()f x ,若在定义域内存在实数x ,满足()()f x f x -=-,则称()f x 为“局部奇函数”.(1)二次函数()224f x ax x a =-+(a R ∈且0a ≠).①若[)0,x ∀∈+∞,有()0f x >恒成立,求a 的取值范围; ②判断()f x 是否为“局部奇函数”?并说明理由;(2)若()1423x x g x m m +=-⋅+-为R 上的“局部奇函数”,求实数m 的取值范围.25.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出()*x x N ∈名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫-⎪⎝⎭万元()0a >,剩下的员工平均每人每年创造的利润可以提高0.2%x . (1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?26.已知函数()()()4log 41xf x kx k R =++∈是偶函数.(1)求k 的值;(2)设()44log 23xg x a a ⎛⎫=⋅-⎪⎝⎭,若函数()f x 与()g x 的图象有且只有一个公共点,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】由2||10x a x ++=可得1a x x =--,转化为y a =与()1g x x x=--的图象有4个不同的交点,作出()1g x x x=--,数形结合即可求解. 【详解】由2||10x a x ++=可得22111||||x x a x x x x----===--,令()1g x x x=--, 若关于x 的方程2||10x a x ++=有4个不同的解, 则y a =与()1g x x x=--的图象有4个不同的交点, ()1g x x x=--是偶函数, 当0x <时()()()111x x x x x x g x --=---=+-=, ()1g x x x=+在(),1-∞-单调递增,在()1,0-单调递减, 所以()1g x x x=+的图象如图所示: 当1x =-时()max 1121g x =-+=--,若y a =与()1g x x x=--的图象有4个不同的交点,由图知2a <-, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.A解析:A 【分析】按0a >和0a <分类讨论[()]1y f f x =+的零点个数,即确定[()]10f f x +=的解的个数,可得正确选项. 【详解】0x >时,1()f x x x=-是增函数,()(,)f x ∈-∞+∞,此时()f x m =对任意m R ∈均有一解.0x ≤时,若0a >,()1f x ax =+是增函数,()(,1]f x ∈-∞,此时()f x m =在1m 时有一解,1m 时无解,若0a <,()1f x ax =+是减函数,()[1,)f x ∈+∞,此时()f x m =在m 1≥时有一解,1m <时无解,由[())10f f x +=得[()]1f f x =-,设()1f t =-,则0a >时,()1f t =-的解为2t a =-和12t =,20a-<,1012<<,因此2()f x a =-有两解,()f x =4解.0a <时,()1f t =-只有一解112t =<,()f x = ∴函数[()]1y f f x =+在0a >时,有4个零点,当0a <时,有1个零点. 故选:A . 【点睛】关键点点睛:本题考查函数的零点,解题方法是转化与化归思想,转化为方程[()]10f f x +=的解.通过换元法,先求得()1f t =-的解,若0t 是其解,再求0()f x t =的解,从而得出结论.3.B解析:B设()f x t =,可得方程21610t kt ++=有两个不同的实数根214t <-,1104t -<<,再利用一元二次方程根的分布列不等式求解即可. 【详解】作出()f x 的图象如图所示,设()f x t =, 要使方程()()21610fx kf x ++=有四个不同的实数根,则方程()21610g t t kt =++=有两个不同的实数根1t ,2t . 且()1f x t =有三个根,方程()2f x t =有一个根, 由图可知,214t <-1104t -<<. 设2()161g t t kt =++,则()10,400,g g ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪>⎩,解得8k >. 故选:B.【点睛】函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.4.C【分析】先求得分段函数的解析式,函数()g x 零点等价于函数()y f x =的图象与直线4y mx m =+公共点,做出图像,数形结合,即可求得答案.【详解】当10x -<<时,011x <+<,满足上支范围,所以()11f x x +=+,所以,01()11,101x x f x x x ≤<⎧⎪=⎨--<<⎪+⎩,作函数()y f x =的图象,如图所示.函数()g x 零点的个数等价于函数()y f x =的图象与直线4y mx m =+公共点的个数. 当直线4y mx m =+过点(1,1)时,15m =, 所以当105m <<时, 直线4y mx m =+与函数()y f x =图象有两个公共点.当直线4y mx m =+与曲线111y x =-+(10x -<<)相交时, 联立4111y mx m y x =+⎧⎪⎨=-⎪+⎩消去y 得,24(51)0mx m x m -++=, 因此22(51)160m m ∆=+->且510m +<时,解得1m <-.综上知,实数m 的取值范围是1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭. 故选:C 【点睛】本题的关键是根据x 的范围,先求得函数解析式,做出图像,再将零点问题转化为图像交点问题,易错点为,4y mx m =+可以与函数两支都有交点,也可以与函数111y x =-+单支产生交点,需分别检验和计算,属中档题.5.A解析:A 【分析】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,画两个函数的图象,观察图象即得结果. 【详解】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,分别画出()y f x =与()h x k =的图象,如图所示,5(1)2f -=,观察图象可得,当522k <≤时,两图象有3个交点,即函数()()F x f x k =-恰有3个零点. 故选:A. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6.C解析:C 【分析】先求得函数()f x 的零点为1x =,进而可得()g x 的零点β满足02β≤≤,由二次函数的图象与性质即可得解. 【详解】由题意,函数()12x f x ex -=+-单调递增,且()10f =,所以函数()f x 的零点为1x =, 设()23g x x ax a =--+的零点为β,则11β-≤,则02β≤≤,由于()23g x x ax a =--+必过点()1,4A -,故要使其零点在区间[]0,2上,则()()020g g ⋅≤或()()00200022g g a ⎧>⎪>⎪⎪⎨∆≥⎪⎪≤≤⎪⎩,即()()3730a a -+-≤或()230370430022a a a a a -+>⎧⎪-+>⎪⎪⎨--+≥⎪⎪≤≤⎪⎩,所以23a ≤≤,故选:C. 【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数()g x 零点的范围,再由二次函数的图象与性质即可得解.7.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x af x x x a⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.8.D解析:D 【分析】作出函数()f x 的图象,由函数()f x 的图象与直线y a =的交点得123,,x x x 的范围与关系,从而可求得123ax x x ++的取值范围. 【详解】函数()y f x a =-的零点就是函数()y f x =的图象与直线y a =的交点的横坐标,作出函数()y f x =的图象,作出直线y a =,如图,由图可知122x x +=-,由241x =得12x =(12x =-舍去),∴3102x <≤,234x a =,∴2 3123334224(2,0]xax x xx x++=-+=-+∈-.故选:D.【点睛】本题考查函数的零点,解题关键是掌握转化与化归思想,函数零点转化为函数图象与直线的交点,由数形结合思想确定零点的性质,得出结论.9.C解析:C【分析】设该工厂从6月开始月产量平均增长率至少需到达x,8月份产量去年同期水平为a,则21(1)2a x a+=.由此能求出该工厂从6月开始月产量平均增长率至少需到达多少个百分点.【详解】设该工厂从6月开始月产量平均增长率至少需到达x,8月份产量去年同期水平为a,则21(1)2a x a+=.解得210.41442%x=≈≈.∴该工厂从6月开始月产量平均增长率至少需到达42个百分点.故选:C.【点睛】本题考查百分点的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.10.A解析:A【分析】根据题设条件,可判断出d(B)的值为1或3,然后研究(x2﹣ax)(x2﹣ax+1)=0的根的情况,分类讨论出a可能的取值.【详解】解:由题意,|d(A)-d(B)|=1,d(A)=2,可得d(B)的值为1或3若d(B)=1,则x2-ax=0仅有一根,必为0,此时a=0,则x2-ax+1=x2+1=0无根,符合题意若d (B )=3,则x 2-ax=0有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,不合题意 故x 2-ax=0有二根,一根是0,另一根是a ,所以x 2-ax+1=0必仅有一根,所以△=a 2-4=0,解得a=±2此时x 2-ax+1=0为1或-1,符合题意综上实数a 的所有可能取值构成集合M={0,-2,2},故d (M )=3. 故选:A . 【点睛】本题考查方程的根的个数的判断以及集合中元素个数,综合性较强,考查了分类讨论的思想及一元二次方程根的个数的研究方法,难度中等.11.C解析:C 【分析】把函数交点有两个零点转化为函数图象与直线有两个交点,作出对应函数图象和直线,利用导数求出相应切线的斜率,由图象观察出a 的范围. 【详解】()0f x ax -=()f x ax ⇒=,所以函数()y f x =的图象与直线y ax =有两个交点,作出函数()2ln ,1,1x x f x x x x >⎧⎪=⎨-≤⎪⎩的图象,如下图,由()ln f x x =得1()f x x'=,设直线y ax =与()ln f x x =图象切点为00(,)P x y ,则00000ln 1y x a x x x ===,0x e =,所以011a x e ==. 由2()f x x x =-得()12f x x '=-,(0)1f '=,y ax =与2yx x 在原点相切时,1a =,由2()f x x x =-得()21f x x '=-,(0)1f '=-,y ax =与2yx x 在原点相切时,1a =-,所以直线y x =,y x =-,1ey x =与曲线()f x 相切, 由直线y ax =与曲线()y f x =的位置关系可得:当(){}1,1,10e a ⎛⎫∈-∞- ⎪⎝⎭时有两个交点,即函数()y k x =恰有两个零点.故选:C .【点睛】本题考查函数零点个数问题,解题方法是把函数零点转化为方程的解的个数,再转化为函数图象与直线交点个数,作出函数图象与直线通过数形结合思想求解.12.D解析:D 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.二、填空题13.【分析】作出函数的图象及直线它们的交点的横坐标即为由图象可得出它们的性质:范围关系然后现求的范围【详解】解:作出函数的图象如图所示(1)由解得或(2)关于直线对称则综上由函数在上单调递增可得故答案为 解析:(3,3]-【分析】作出函数()f x 的图象及直线y a =,它们的交点的横坐标即为1234,,,x x x x ,由图象可得出它们的性质:范围,关系.然后现求212344x x x x x ++的范围. 【详解】解:作出函数22122,0()2log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩的图象如图所示(1)由2|log |2x =解得14x =或4x =,123410144x x x x ∴<≤<≤<<≤,3422|log ||log |x x =,2324log log x x ∴-=,341x x ∴=,(2)12,x x 关于直线2x =-对称,则124x x +=-,综上,2123444444(14)x x x x x x x x ++=-<≤.由函数4y x x-=+在(1,4]上单调递增,可得212344(3,3]x x x x x ++∈-. 故答案为:(3,3]-. 【点睛】方法点睛:本题考查方程根的分布问题,解题关键是作出函数图象与直线,把方程的根转化为函数图象与直线交点横坐标,从图象易得它们的性质.从而求得结论.14.【分析】先由题中条件得到方程在上有两个不同实数解且对任意恒成立分别求出的范围进而可得出结果【详解】由得且即且因为关于的方程有两个不同实数解所以方程在上有两个不同实数解且对任意恒成立令则函数在区间上有解析:2,⎡⎣【分析】先由题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,分别求出m 的范围,进而可得出结果.【详解】x m =+得()224x x m -=+且240x -≥, 即222240x mx m ++-=且22x -≤≤,因为关于xx m =+有两个不同实数解,所以方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,令()22224f x x mx m =++-,[]2,2x ∈-,则函数()f x 在区间[]22-,上有两不同零点, 因为函数()22224f x x mx m =++-是开口向上,对称轴为x m =-的二次函数,因此只需()()()2220204840f f m m ⎧-≥⎪⎪≥⎨⎪∆=-->⎪⎩,解得m -<<又0x m +≥对任意[]2,2x ∈-恒成立,所以m x ≥-对任意[]2,2x ∈-恒成立,因此只需2m ≥ 综上,222m ≤<, 故答案为:)2,22⎡⎣. 【点睛】 关键点点睛:求解本题的关键在于根据题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,(一定要注意0x m +≥),转化为一元二次方程根的分布问题求解即可.15.【分析】设作出函数的图象可得利用对称性可得由可求得进而可得出利用二次函数的基本性质可求得的取值范围【详解】作出函数的图象如下图所示:设当时由图象可知当时直线与函数的图象有五个交点且点关于直线对称可得 解析:()0,9【分析】设()()()()()f a f b f c f d f e t =====,作出函数()f x 的图象,可得01t <<,利用对称性可得2a d b c +=+=,由()()0,1f e ∈可求得56e <<,进而可得出2224M e e =-++,利用二次函数的基本性质可求得M 的取值范围. 【详解】作出函数()f x 的图象如下图所示:设()()()()()f a f b f c f d f e t =====, 当02x <<时,()()222111f x x x x =-=--+≤,由图象可知,当01t <<时,直线y t =与函数()y f x =的图象有五个交点, 且点(),a t 、(),d t 关于直线1x =对称,可得2a d +=,同理可得2b c +=, 由()()60,1f e e t =-=∈,可求得56e <<, 所以,()()()()()()()()()46M af a bf b cf c df d ef e a b c d e f e e e =++++=++++=+-()()222241250,9e e e =-++=--+∈.因此,M 的取值范围是()0,9. 故答案为:()0,9. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.16.【分析】作出函数的图象及与函数的图象求出相切时的值即可得答案;【详解】分别作出函数的图象即当与相切时方程有3个不等的实数根两函数图象有3个交点由图可知时符合题意故答案为:【点睛】利用数形结合思想作出 解析:4k >【分析】 作出函数()11f x x =-的图象及与函数()g x kx =的图象,求出相切时k 的值即可得答案; 【详解】分别作出函数的图象, 即21101kx kx kx x -=⇒-+=- 当()g x kx =与()11f x x =-相切时, 24040k k k k ⎧∆=-=⇒=⎨≠⎩,, 方程()()f x g x =有3个不等的实数根,∴两函数图象有3个交点,由图可知4k >时符合题意, 故答案为:4k >.【点睛】利用数形结合思想,作出两函数的图象,首先找到临界位置,即相切位置.17.【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点画出函数的图象然后结合图象求解即可【详解】关于x 的方程f(x)=k 有三个不同的实根等价于函数y=f(x)的图象与函数y =k 的图象有三个 解析:()1,0-【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点,画出函数()y f x =的图象,然后结合图象求解即可. 【详解】关于x 的方程f(x)=k 有三个不同的实根,等价于函数y=f(x)的图象与函数y =k 的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0). 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.18.5【分析】先根据题意设小时后才能开车再结合题中条件:血液中的酒精含量不超过009mg/mL 得到一个关于的不等关系再根据指对数不等式的求解即可【详解】设小时后才能开车则有即两边取对数有因为故代入可得故解析:5 【分析】先根据题意设x 小时后才能开车.再结合题中条件:“血液中的酒精含量不超过0.09mg/mL,”得到一个关于x 的不等关系,再根据指对数不等式的求解即可. 【详解】设x 小时后才能开车,则有()0.310.250.09x⋅-≤,即30.34x⎛⎫≤ ⎪⎝⎭,两边取对数有3lg lg 0.34x ≤,因为3lg 04<故lg 0.3lg313lg3lg 4lg 4x -≥=-.代入lg30.48,lg 40.60≈≈可得0.481130.480.603x -≥=-.故x 最小为5.故答案为:5. 【点睛】 本题主要考查了指对数运算在实际情景中的运用,需要根据题意建立联系,再根据对数运算法则代入近似值计算.属于基础题.19.4【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查了分段函数解析:4 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得2x =-±0x >时,()31xf x =>,1x =,做出函数()f x,1,22y y y ==-=--.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=,解得2x =-±120,423,-<-+<-<--0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.20.【分析】作出函数图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点数形结合即可得解【详解】作出函数的图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点由图可得:【点睛】此题考解析:1[,1)2.【分析】作出函数图象,关于x 方程()f x ax =有三个不相等的实数根,即()f x 图象与直线y ax =有三个不同的公共点,数形结合即可得解. 【详解】作出函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,,的图象,关于x 方程()f x ax =有三个不相等的实数根,即()f x 图象与直线y ax =有三个不同的公共点由图可得:1[,1)2a ∈ 【点睛】此题考查方程的根的问题,根据函数图象,数形结合求解,需要熟练掌握常见基本初等函数的图象和性质,准确作出函数图象求解.三、解答题21.(1)(],0-∞;(2)3,2⎛⎫+∞ ⎪⎝⎭. 【分析】(1)首先根据函数()g x 的零点得到()223g x x x =--,由题意知存在[]01,3x ∈,使不等式()00g x mx ≥成立,等价于32x m x--≥在[]01,3x ∈上有解,再根据()32u x x x=--的单调性即可得到答案; (2)令21xt =-,分析得出关于t 的方程()()232230t k t k -++-=有两解1t 、2t ,且101t <<,21t ≥或者10t =,201t <<,利用二次函数的零点分布可得出关于k 的不等式组,由此可解得实数k 的取值范围. 【详解】 (1)()10g -=,()03g =,所以,1x =-,3x =是方程2210ax x b -++=的两个根.所以12122213x x a b x x a ⎧+==⎪⎪⎨+⎪⋅==-⎪⎩,解得14a b =⎧⎨=-⎩,()223g x x x ∴=--.∵存在[]01,3x ∈,使不等式()00g x mx ≥成立,等价于32x m x--≥在[]1,3x ∈上有解, 记()32u x x x =--,由于函数2y x =-、3y x=-在[]1,3上均为增函数, 所以,函数()u x 在[]1,3x ∈时单调递增,则()()max 30u x u ==,0m ∴≤, 因此,实数m 的取值范围为(],0-∞; (2)()()()2323223f x g x kx k x k x k =-+=-++-,原方程可化为()()2213221230x x k k --+-+-=.函数21xy =-的图象如下图,当0x <时,()20,1x∈,则()210,1xy =-∈,令21x t =-,当01t <<时,关于x 的方程21xt =-有两个根, 当1t ≥或0t =时,关于x 的方程21xt =-只有一个根. 要使()210xf-=有3个实数解,所以,关于t 的方程()()232230t k t k -++-=有两解1t 、2t ,且101t <<,21t ≥或者10t =,201t <<.则()()0230140f k f k ⎧=->⎪⎨=--<⎪⎩①,解得32k >. 或()()023014032012f k f k k ⎧=->⎪⎪=--=⎨+⎪<<⎪⎩②,不等式组②无实数解. 或()()023********2f k f k k ⎧⎪=-=⎪=-->⎨⎪+⎪<<⎩③,不等式组③无实数解. 综上所述,实数k 的取值范围为3,2⎛⎫+∞⎪⎝⎭.【点睛】方法点睛:本题考查利用二次函数的零点分布求参数,一般要分析以下几个要素: (1)二次项系数的符号; (2)判别式; (3)对称轴的位置; (4)区间端点函数值的符号. 结合图象得出关于参数的不等式组求解.22.(1){}1,4;(2)①单调递减区间[)0,1,单调递增区间[)1,+∞;②(]1,2. 【分析】(1)分2x ≥,02x ≤<两种情况讨论,分别解方程)210-=与)210=即可;(2)①将{}()(),()h x max f x g x =写成分段函数形式,从而可得单调期间;②结合单调性可得函数的最值,从而可求()h x m =有两个实数解的实数m 的取值范围. 【详解】(1)当2x ≥时,方程()()f x g x =2x =-,即)210=,解得4x =,当02x ≤<时,方程()()f x g x =2x =-,即)210=,解得1x =,综上,方程()()f x g x =的解集为{}1,4.(2)①()()14f x g x x ≥⇒≤≤,()()01f x g x x <⇒≤<或4x >所以{}2,01()max (),()42,4x x h x f x g x x x x -≤<⎧==≤≤->⎩,所以,()h x 的单调递增区间为[)1,+∞,单调递减区间为[)0,1.②由①知min ()(1)1h x h ==,(0)2h =,当12m <≤时,方程()h x m =有两个实数解, 综上,实数m 的取值范围为(]1,2. 【点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.23.(1)证明见解析;(2)0.312 5. 【分析】(1)根据定义法证明函数在所给区间的单调性,依次按取值,设定大小,作差,判断符号,可得出结果.(2)把a =3代入可得()231x x fx x -=++,根据(1)的结论可知正根在区间(0,1)内,然后利用二分法近似求解步骤计算即可. 【详解】证明:(1)设121x x -<<∴()()()()()121212121212123221111x xx x x x x x f x f x a a a a x x x x ----=-+-=-+++++, ∵121x x -<<,∴1210,10,x x +>+>120x x -< ∴()()()1212311x x x x -++<0;∵121x x -<<,且a >1,∴12x x a a <,∴120-<x x a a , ∴()()120f x f x -<,即()()12f x f x <,∴函数()f x 在()1+-∞,上为增函数; (2)由(1)知,当a =3时,()231x x fx x -=++在()1+-∞,上为增函数, 故在()0+∞,上也单调递增,由于()()5010,102f f =-<=>,因此()0f x =的正根仅有一个,以下用二分法求这一正根,由于()()5010,102f f =-<=> , ∴取(0,1)为初始区间,用二分法逐次计算,列出下表:∴原方程的近似解可取为0.312 5. 【点睛】思路点睛:本题考查利用函数的奇偶性求参数,证明函数的单调性和利用单调性解不等式.证明函数的单调性的基本步骤为:(1)在给定的区间内任取变量12,x x ,且设12x x <.(2)作差()()12f x f x -变形,注意变形要彻底,变形的手段通常有通分、因式分解、配方、有理化等.(3)判断符号,得出()()12f x f x ,的大小. (4)得出结论. 24.(1)①1,2⎛⎫+∞ ⎪⎝⎭;②()f x 不是“局部奇函数”,答案见解析;(2)[)2,-+∞. 【分析】(1)①由()00f >可得0a >;由0x >且()0f x >结合参变量分离法可得出24a x x>+,利用基本不等式求得24x x +的最大值,由此可得出实数a 的取值范围; ②利用“局部奇函数”的定义得出240ax a +=,判断该方程是否有解即可得出结论;(2)利用“局部奇函数”的定义可得出4462221x x x xm --+-=+-,换元222x x t -=+≥,求得函数281t y t -=-在区间[)2,+∞上的值域,由此可解得实数m 的取值范围. 【详解】(1)①由题意可得()040f a =>,解得0a >; 当0x >时,由()0f x >,可得()242axx +>,则22244x a x x x>=++,由基本不等式可得2142x x≤=+,当且仅当2x =时,等号成立,12a ∴>.综上所述,实数a 的取值范围是1,2⎛⎫+∞⎪⎝⎭; ②若函数()224f x ax x a =-+为局部奇函数,则存在x ∈R 使得()()f x f x -=-,即()()222424a x x a ax x a ⋅-++=--+,可得出240ax a +=,0a ≠,240x +>,则等式240ax a +=不成立.因此,函数()f x 不是“局部奇函数”; (2)()14234223x x x x g x m m m m +=-⋅+-=-⋅+-为“局部奇函数”,则存在x ∈R 使得()()g x g x -=-,即()()0g x g x -+=, 可得()()44222260xx x x m m --+-++-=,可得出()2221446x x x x m --+-=+-,4462221x x x xm --+-∴=+-,令222x x t -=+≥=,当且仅当0x =时,等号成立,则()2222442xx xxt --=+=++,()22178721111t t m t t t t ---∴===+----, 由于函数1y t =+和71y t =--在[)2,t ∈+∞上都为增函数,所以,函数711y t t =+--在[)2,t ∈+∞上为增函数,713741t t ∴+-≥-=--, 24m ∴≥-,解得2m ≥-. 因此,实数m 的取值范围是[)2,-+∞. 【点睛】求解二次方程在区间上有解的问题,一般利用分类讨论法与参变量分离法求解,利用分类讨论法求解时要分析二次函数的对称轴与定义域的位置关系,结合端点函数值符号以及判别式求解,本题利用参变量分离法得出2m 的取值范围即为函数711y t t =+--在区间[)2,+∞上值域问题,极大地简化了分析步骤.25.(1)500名;(2)(0,5]. 【分析】(1)求出剩下1000x -名员工创造的利润列不等式求解; (2)求出从事第三产业的员工创造的年总利润为310500⎛⎫- ⎪⎝⎭x a x 万元,从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+ ⎪⎝⎭x x 万元,列出不等关系,在(1)的条件下求出a 的范围. 【详解】解:(1)由题意,得()()10100010.2%101000x x -+≥⨯, 即25000x x -≤,又0x >,所以0500x <≤. 即最多调整500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为310500⎛⎫- ⎪⎝⎭x a x 万元, 从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+ ⎪⎝⎭x x 万元, 则311010(1000)1500500x a x x x ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭, 所以223110002500500x ax x x x -+--.所以221000500++x ax x,即210001500++x a x 在(0,500]x ∈时恒成立.。
第四章牛顿运动定律一、选择题1.下列说法中,正确的是()A.某人推原来静止的小车没有推动是因为这辆车的惯性太大B.运动得越快的汽车越不简单停下来,是因为汽车运动得越快,惯性越大C.竖直上抛的物体抛出后能接着上升,是因为物体受到一个向上的推力D.物体的惯性与物体的质量有关,质量大的惯性大,质量小的惯性小2.关于牛顿其次定律,正确的说法是()A.合外力跟物体的质量成正比,跟加速度成正比B.加速度的方向不肯定与合外力的方向一样C.加速度跟物体所受合外力成正比,跟物体的质量成反比;加速度方向与合外力方向相同D.由于加速度跟合外力成正比,整块砖自由下落时加速度肯定是半块砖自由下落时加速度的2倍3.关于力和物体运动的关系,下列说法正确的是()A.一个物体受到的合外力越大,它的速度就越大B.一个物体受到的合外力越大,它的速度的变更量就越大C.一个物体受到的合外力越大,它的速度的变更就越快D.一个物体受到的外力越大,它的加速度就越大4.在水平地面上做匀加速直线运动的物体,在水平方向上受到拉力和阻力的作用,假如要使物体的加速度变为原来的2倍,下列方法中可以实现的是()A.将拉力增大到原来的2倍1B.阻力减小到原来的2C.将物体的质量增大到原来的2倍D.将物体的拉力和阻力都增大原来的2倍5.竖直起飞的火箭在推力F的作用下产生10 m/s2 的加速度,若推动力增大到2F,则火箭的加速度将达到(g取10 m/s2,不计空气阻力)()A.20 m/s2B.25 m/s2C.30 m/s2D.40 m/s26.向东的力F1单独作用在物体上,产生的加速度为a1;向北的力F2 单独作用在同一个物体上,产生的加速度为a2。
则F1和F2同时作用在该物体上,产生的加速度()A .大小为a 1-a 2B .大小为2221+a a C .方向为东偏北arctan 12a aD .方向为与较大的力同向7.物体从某一高处自由落下,落到直立于地面的轻弹簧上,如图所示。
鲁科版高中化学必修一第4章《材料家族中的元素》单元测试题(解析版)第4章《材料家族中的元素》单元测试题一、单选题(每小题只有一个正确答案)1.下列说法不正胸.的是()A.Al 2。
、SiC等是耐高温材料8.将C12通入冷的消石灰中可制得漂白粉C.浓硫酸可用于干燥NH、SO、NO等气体D.硅酸钠的水溶液是制备硅胶和木材防火剂的原料9.硅及其化合物的应用范围很广。
下列说法正确的是()A.晶体硅熔点高硬度大,故可用于制作半导体材料B.SiO2是酸性氧化物,可溶于强碱,不溶于任何酸C.石英是制取水泥的原料D.水玻璃可用作木材防火剂3.熔化烧碱应选用的器皿是()A .石英增期B .普通玻璃塔蜗C .生铁塔蜗D .陶瓷塔竭4.下列关于各金属及其化合物的说法正确的是()A.已知CCl 4不可燃,故少量的Na可保存在CC14液体中B.金属铝既可与酸反应也可与碱反应,故铝是两性金属C.明矶为金属铝的化合物,可用作净水剂D.生铁和钢都属于铁合金,两者抗腐蚀性都很强5.下列有关金属及金属材料的说法不正确的是()A.合金的性能一般优于纯金属B.碳素钢是目前用量最大的合金,碳素钢在空气中比纯铁耐腐蚀C.酒精灯加热铝箔至熔化,铝并不滴落,说明铝表面生成一层致密的氧化膜D.用金属铝与V2O5反应冶炼钮,主要是因为铝的还原能力比锐强6.下列说法正确的是()。
A.过氧化钠、烧碱、纯碱分别属于碱性氧化物、碱、盐B. Cu、Al、Na可以分别用热还原法、热分解法和电解冶炼C.在稀硫酸中加入铜粉,铜粉不溶解;再加入KNO固体,铜粉可以溶解D.除去FeCl2溶液中少量的FeCl3,可加入Cu7.中国的瓷器驰名世界,英文的“中国” (China)一词又指“瓷器”,下列有关“陶瓷”叙述正确是()1 / 17A、陶瓷现在才进入人类生活 B 、陶瓷、玻璃、水泥等属于硅酸盐产品C、陶瓷是纯净物 D 、陶瓷不含硅元素8.以下有关物质用途的叙述错误的是( )A.明矶:净水剂 B .四氯化碳:灭火剂C.四氧化三铁:红色颜料 D .小苏打:治胃酸过多9.下列有关金属的说法错误( )A .氧化膜使得性质活波的金属铝成为一种应用广泛的金属材料8.钛被称为继铁、铝之后的第三金属,也有人说“21 世纪将是钛的世纪”C.在合金中加入适量稀土金属,能大大改善合金的性能。
高中英语学习资料madeofjingetieji英语·必修 1(人教版 )第四单元过关检测卷第一部分词汇短语与句型一、依照首字母或中文意思完成以下句子(共 10 小题;每题0.5 分,满分 5 分)1.Let me write it down while it is still f__________in my mind.答案: fresh2 . Without__________ our life would be quite different today.(电)答案: electricity3.He got i__________in the right leg while playing football last week.答案: injured4 . When an earthquake comes people can feel the houses__________.答案: shaking5 . At Jerry's party , Mr Smith delivered anamusing__________.演(讲 )答案: speech6 . If a nuclear war should break out , it would bring a great__________ to man.灾(难 )答案: disaster7.Most of the buildings__________ in the earthquake毁.(坏 )答案: were destroyed8.From yesterday on the temperature began to r__________.答案: rise9.Never j__________ a person only by his clothes.答案: judge10.Our class went on an __________ trip last Monday.(有组织的)答案: organized二、依照句子的语境选择合适的短语填入空白处(注意所填短语的形式变化 )(共 10 小题;每题 0.5 分,满分 5 分)right away at an end dig out suffer from in ruins come into being thousands of give out be trapped in as if / though1.After a long walk we all__________.答案: gave out2 . River pollution has____________one of the global environment problems.答案: come into being3.Just wait for me on the spot; I will come__________.答案: right away4.More than a dozen people__________ of the avalanche(雪崩 ) alive.答案: were dug out5 . When we arrived at the cinema , the film wasnearly__________.答案: at an end6. __________ people gathered on the square watching the fireworks.答案: Thousands of7.All the students__________the heavy rain yesterday.答案: were trapped in8.Do you often__________ the headache after you have a cold?答案: suffer from9.It seemed__________ he had known the bad news.答案: as if/though10.A big fire left the house __________ when I was very young.答案: in ruins三、依照提示翻译句子(共 5 小题;每题 1 分,满分 5 分)1.昨年我们素来用蜡烛没适用电。
高中语文必修一第四单元检测题时量:60分钟总分:100分一、语言知识和运用(30分)1.根据拼音写汉字。
(每空1分,共5分)è()梦九xiāo() xī()笑 chǎn()媚执niù( ) 2.给下列加点汉字注音。
(每空1分,共5分)停泊.()横亘.()游说.()弄.()堂酝酿.()3.解释下列句子中加点词语的含义。
(每小题2分,共6分)(1)一百五十多年的英国管治..即将告终。
()(2)她似乎是为着一个美好而又隐秘..的梦想而微笑。
()(3)中国科学家们提出一鼓作气....载人飞天的目标。
()4.修改病句。
(每小题3分,共6分)(1)当他们在想象中把人同牢房、毒气室、地下室和鞭刑柱联系起来的时候,不由得慢了下来。
修改:(2)这种文明的惩罚,有时候会叫你继续到近两个小时以上。
修改:5.下文横线处的语序已被打乱,请调整后将序号写在横线处。
(4分)__ ______。
波兰人说,共有400万人死在那里。
①从那时起,奥斯维辛的惨状被人们讲过了很多次。
②一些幸存者撰写的回忆录中谈到的情况,是任何心智健全的人所无法想象的。
③十四年前,最后一批囚徒被剥光衣服,在军犬和武装士兵的押送下走进毒气室。
④奥斯维辛集中营司令官罗道夫·弗兰斯·费尔南德·霍斯在被处决前也写了回忆录,详细介绍了这里进行的集体屠杀和用人体做的各种实验。
6.用一句话概括下面这条新闻的主要信息。
(不超过20字)(4分)本报雅典8月17日讯在昨晚进行的雅典奥运会女子100米蛙泳的决赛中,两届世锦赛冠军罗雪娟没有让人失望,最终以1分06秒64战胜了老对手澳大利亚的琼斯,获得冠军,并且打破了奥运会纪录。
由于半决赛名列第七和第八,所以在决赛中罗雪娟分在第一泳道,齐晖在第八泳道,而琼斯成绩最好排在第四泳道。
比赛开始后,在第一泳道的罗雪娟充分显示出“猛兽”的本性,一路领先,最终以半个身位的优势战胜了其他选手。
新人教版高中英语必修一Unit 4 Natural Disasters 单元测试一、根据汉语提示写出正确的单词1.It was the second air ________ (灾难)in the region in less than two months.2.I will not stay behind. I will fight with you to ________ (营救)him.3.We should only buy and use things that do not ________ (损害)the environment.4.They go on talking about it, but it does not ________ (影响)their life.5.The number of families seeking ________ (避难处)rose by 17 percent.6.The locals were encouraged to ________ (使陷入圈套)and kill the birds.7.The brain requires a constant ________ (供给)of oxygen.8.I want to know how to ________ (生存)out there without any money.9.What to do in case of an ________(突发事件)?10.The Canadians plan to ________ (递送)more food to southern Somalia.二、用所给单词的正确形式填空1.He told his boss his mother’s ________ (die).2. The crops died during the ________ (dry).3. With knowledge and __________(wise), you can achieve great success.4. An animal’s sense of smell is still important to its __________ (survive).5.I was __________ (shock) at the news.6. The more __________ (power) you are, the greater responsibility you need to take.7. Measure the __________ (long) and the width of the gap.8. Always __________ (breath) through your nose.9. The signs of an economic __________ (revive) are only just beginning.10.This medicine is __________ (effect) if used within three years.三、选择合适的短语, 并用其正确形式, 完成句子in shock, as if , in ruins , sweep away, in the open air1.After the earthquake, the whole village was _______________ .2.Before Chinese New Year, we usually clean our house and _______________ bad luck.3.I looked at my friend _______________ ,waiting for him to tell me the truth.4.It is warm today. W hy don’t we have a picnic _______________?5.He talked _________________he had known everything about the accident.四、阅读理解阅读下列短文, 从每题所给的A、B、C和D四个选项中, 选出最佳选项。
第4单元一、现代文阅读( 36 分)3小题,9分)(一)阐述类文本阅读(此题共阅读下边的文字,达成1~3 题。
若想要表达整个世界的历史,不偏不倚地叙述整个人类的故事,便不可以不过依赖文字。
因为世界上只有部分地域拥有文字,大多半地域在历史上的大多半期间都没有发展出文字。
书写是人类在发展后期才获得的成就,直至近代,即便一些文化程度较高的社会,在记录自己的忧愁与盼望时,使用的载体依旧不单有文字,也包含物件。
一部理想的历史记录应当把文字和物件联合起来,但在好多状况下这是没法达成的。
最能清楚地表现文字历史与非文字历史不对称的例子或许是库克船长的探险队与澳大利亚土著在植物学湾的第一次相遇。
在英国方面,我们对这一特别的日子有科学记录及船长日记为证,而在澳大利亚方面,他们仅有一面木制盾牌。
假如我们想要重构那一天的真切情境,就需要像对待那些文字记录相同,深入而谨慎地对这面盾牌进行研究和解读。
除了双向误会以外,还有由成功带来的存心或无心的歪曲。
历史往常是由成功者书写的,特别在只有成功者知道怎样书写的时候。
至于失败者,那些被征服或毁坏的社会,往常只好经过物件来叙述事件。
当我们研究有文字的社会与无文字的社会之间的接触时,需要参照的则不单是文字,也应包含物件。
这些所有知易行难。
经过文件解读历史是人们熟知的程式,数百年来我们已经学会该怎样判断文字资料的坦率、失真与诡计。
而对于物件来说,自然也有考古学、科学和人类学的专业知识构造来帮助我们提出重点性的问题,但我们还一定加上必定程度的想象,才能建立出这些物件的前生此生。
我们需要借助尽可能丰富和诗意的想象,才能真切理解它们所传达的深刻内涵。
这是我们认识很多文化的独一门路。
这是一个复杂而又充满不确立因素的过程,这些历经层层文化转译的物件需要再次被严格审察,从头想象。
这些充满想象力的解读和赏识是“经过文物看历史”的重点,对过往文化的重修是理解人类共性的基石。
启发时代的珍藏家与学者们在达成这一任务的过程中,既仰赖对史实的科学排序,也发挥了诗意地进行重修的稀有能力。
一、选择题1.已知1,0()1,0ax x f x x x x +≤⎧⎪=⎨->⎪⎩,则下列关于[()]1y f f x =+的零点的判断正确的是( ) A .当0a >时,有4个零点,当0a <时,有1个零点; B .当0a >时,有3个零点,当0a <时,有2个零点; C .无论a 为何值,均有2个零点; D .无论a 为何值,均有4个零点.2.渔民出海打鱼,为了保证获得的鱼新鲜,鱼被打上船后,要在最短的时间内将其分拣、冷藏,若不及时处理,打上来的鱼会很快失去新鲜度.已知某种鱼失去的新鲜度h 与其出水后时间t (分)满足的函数关系式为t h m a =⋅.若出水后10分钟,这种鱼失去的新鲜度为10%,出水后20分钟,这种鱼失去的新鲜度为20%.那么若不及时处理,打上来的这种鱼在多长时间后开始失去全部新鲜度(已知lg 20.3≈,结果取整数)( ) A .33分钟B .43分钟C .50分钟D .56分钟3.设函数()243,023,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x 、2x 、3x ,满足()()()123f x f x f x ==,则123x x x ++的取值范围是( )A .5,62⎛⎫ ⎪⎝⎭B .5,42⎛⎤⎥⎝⎦C .()2,4D .()2,64.流行病学基本参数:基本再生数0R 指一个感染者传染的平均人数,世代间隔T 指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可用模型:0()rtI t N e =(其中0N 是开始确诊病例数)描述累计感染病例()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 满足01R rT =+,有学者估计出0 3.4,6R T ==.据此,在新冠肺炎疫情初始阶段,当0()2I t N =时,t 的值为(ln 20.69≈)( ) A .1.2B .1.7C .2.0D .2.55.已知函数1,0(),0x x mf x e x -⎧=⎪=⎨⎪≠⎩,关于x 的方程23()(23)()20mf x m f x -++=有以下结论:①存在实数m ,使方程有2个解;②当方程有3个解时,这3个解的和为0;③不存在实数m ,使方程有4个解;④当方程有5个解时,实数m 的取值范围是331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为( ) A .1B .2C .3D .46.激光多普勒测速仪(LaserDopplerVelocimetry ,LDV )的工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚后反射,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同;当横向速度不为零时,反射光相对探测光发生频移,频移()2sin 1/h p v f ϕλ=,其中v 为被测物体的横向速度,ϕ为两束探测光线夹角的一半,λ为激光波长.如图,用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,激光测速仪安装在距离高铁1m 处,发出的激光波长为()91560nm 1nm 10m -=,测得这时刻的频移为()98.72101/h ⨯,则该时刻高铁的速度约为( )A .320km/hB .330km/hC .340km/hD .350km/h7.设函数()f x 是定义在R 上的偶函数,对任意x ∈R ,都有()()4f x f x +=,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则a的取值范围是( )A .312⎡⎣B .()2,+∞C .()1,2D .(3128.若函数2()x f x x e a =-恰有3个零点,则实数a 的取值范围是( ) A .24(,)e+∞ B .24(0,)eC .2(0,4)eD .(0,)+∞9.若()f x 为奇函数,且0x 是()x y f x e =- 的一个零点,则0x -一定是下列哪个函数的零点 ( )A .()1x y f x e =+B .()1x y f x e -=--C .()1x y f x e =-D .()1x y f x e =-+10.若函数()f x 的图象是连续不断的,且(0)0f >,(1)(2)(4)0f f f <,则下列命题正确的是( ).A .函数()f x 在区间(0 , 1)内有零点B .函数()f x 在区间(1 , 2)内有零点C .函数()f x 在区间(0 , 2)内有零点D .函数()f x 在区间(0 , 4)内有零点11.某工厂生产某产品2019年每月生产量基本保持稳定,2020年由于防疫需要2、3、4、5月份停产,6月份恢复生产时月产量仅为去年同期的一半,随着疫情缓解月产量逐步提高.该工厂如果想8月份产量恢复到去年同期水平,那么该工厂从6月开始月产量平均增长率至少需到达多少个百分点?( ) A .25B .35C .42D .5012.已知定义在R .上的偶函数f (x ), 对任意x ∈R ,都有f (2-x ) =f (x +2),且当[2,0]x ∈-时()21x f x -=-.若在a > 1时,关于x 的方程()()log 20a f x x -+=恰有三个不同的实数根,则实数a 的取值范围是( ) A .(1,2)B .(232,2)C .23(,2)-∞(2, +∞) D .(2,+∞)二、填空题13.对于函数()f x ,若在定义域存在实数x ,满足()()f x f x -=-,则称()f x 为“局部奇函数”.若函数()423xxf x m =-⋅-是定义在R 上的“局部奇函数”,则实数m 的取值范围为______. 14.函数()11f x x =-,()g x kx = ,若方程()()f x g x =有3个不等的实数根,则实数k 的取值范围为________.15.某汽车厂商生产销售一款电动汽车,每辆车的成本为4万元,销售价格为6万元,平均每月销量为800辆,今年该厂商对这款汽车进行升级换代,成本维持不变,但为了提高利润,准备提高销售价格,经过市场分析后发现,如果每辆车价格上涨0.1万元,月销量就会减少20辆,为了获取最大利润,每辆车的销售价格应定为__________万元. 16.已知方程24(2)60x a x +--=的两实根为1 x ,2x ,方程2220x x a --=的两实根为3x ,4x ,且3124x x x x <<<,则实数a 的取值范围为________.17.已知函数()21f x x =-+,().g x kx =若方程()()f x g x =有两个不等实数根,则实数k 的取值范围是______.18.已知定义域为R 的奇函数()f x 满足()()2f x f x -=+,且当01x ≤≤时,()3f x x x =+.若函数()()th x f x x=-在[)(]4,00,4-⋃上有4个不同的零点,则实数t 的取值范围是_____________.19.已知函数()3cos f x x x =-,若不等式()12f x kx b kx b +≤≤+对一切实数x 恒成立,则21b b -的最小值为__________. 20.已知当0,4x π⎡⎤∈⎢⎥⎣⎦时,函数()2sin 16f x x πω⎛⎫=+- ⎪⎝⎭(0>ω)有且仅有5个零点,则ω的取值范围是______.三、解答题21.已知函数2()log (2)a f x ax x =-,其中0a >且1a ≠. (1)若函数()f x 在区间1(,1)2单调递增,求实数a 的取值范围;(2)当3a =时,若关于x 的方程3(3)log (3)xxf m x -=++恰有两个不同的解,求实数m 的取值范围.22.“金山银山,不如绿水青山,而且绿水青山就是金山银山”.某乡镇为创建“绿色家园”,决定在乡镇范围内栽种某种观赏树木,已知这种树木自栽种之日起,其生长规律为:树木的高度()f x (单位:米)与生长年限x (单位:年)满足关系()()41=013kx b f x x +≥+,树木栽种时的高度为12米;1年后,树木的高度达到4128米. (1)求()f x 的解析式;(2)问从种植起,第几年树木生长最快?23.函数()f x 是定义在R 上的奇函数,当0x >时,()241f x x x =-+.(1)求函数()f x 的解析式:(2)根据解析式在图画出()f x 图象. (3)讨论函数()()g x f x m =-零点的个数. 24.已知函数()2()log 41xf x mx =++. (1)若()f x 是偶函数,求实数m 的值;(2)当0m >时,关于x 的方程()242148log 2log 41f x x m ⎡⎤++-=⎢⎥⎣⎦在区间[1上恰有两个不同的实数解,求m 的范围.25.荷兰阿斯麦尔公司(ASML )是全球高端光刻机霸主,最新的EUV (极紫外光源)具备7nm 工艺.芯片是手机中重要部件,除此以外还有如液晶屏、电池等配件.如果某工厂一条手机配件生产线的产量ω(单位:百个)与生产成本x (单位:百元)满足如下关系:()213(02)236(25)1x x x x x ω⎧+≤≤⎪⎪=⎨⎪-<≤⎪+⎩此外,还需要投入其他成本(如运输、包装成本等)2x 百元,已知这种手机配件的市场售价为16元/个(即16百元/百个),且市场需要始终供不应求.记这条生产线获得的利润为()L x (单位:百元). (Ⅰ)求()L x 的函数表达式;(Ⅱ)当投入的生产成本为多少时,这条生产线获得的利润最大?最大利润是多少? 26.宜城市流水镇是全国闻名的西瓜基地,流水西瓜含糖量高,口感好,多次入选全国农博会并获金奖,畅销全国12省百余个大中城市.实践证明西瓜的产量和品质与施肥关系极大,现研究发现该镇礼品瓜“金皇后”的每亩产量L (单位:百斤)与施用肥料x (单位:百斤)满足如下关系:238(2),02()603,312x x L x x x x ⎧+<≤⎪⎪=⎨⎪<≤⎪+⎩,肥料成本投入为5x (单位:百元),其它成本投入为10x (单位:百元).已知“金皇后”的市场批发价为2元/斤,且销路畅通供不应求,记每亩“金皇后”的利润为()f x (单位:百元). (1)求()f x 的函数关系式;(2)当施用肥料为多少斤时,每亩“金皇后”的利润最大,最大利润是多少元?1.414≈).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】按0a >和0a <分类讨论[()]1y f f x =+的零点个数,即确定[()]10f f x +=的解的个数,可得正确选项. 【详解】0x >时,1()f x x x=-是增函数,()(,)f x ∈-∞+∞,此时()f x m =对任意m R ∈均有一解.0x ≤时,若0a >,()1f x ax =+是增函数,()(,1]f x ∈-∞,此时()f x m =在1m 时有一解,1m 时无解,若0a <,()1f x ax =+是减函数,()[1,)f x ∈+∞,此时()f x m =在m 1≥时有一解,1m <时无解,由[())10f f x +=得[()]1f f x =-,设()1f t =-,则0a >时,()1f t =-的解为2t a =-和12t =, 20a-<,1012<<,因此2()f x a =-有两解,1()2f x =有两解,共4解.0a <时,()1f t =-只有一解1t=<,()f x = ∴函数[()]1y f f x =+在0a >时,有4个零点,当0a <时,有1个零点. 故选:A . 【点睛】关键点点睛:本题考查函数的零点,解题方法是转化与化归思想,转化为方程[()]10f f x +=的解.通过换元法,先求得()1f t =-的解,若0t 是其解,再求0()f x t =的解,从而得出结论.2.B解析:B 【分析】根据已知条件可得出10200.10.2m a m a ⎧⋅=⎨⋅=⎩,可求得m 、a 的值,可得出h 关于t 的函数关系式,然后令1h =求出t 的值,即可得解. 【详解】由题意可得10200.10.2m a m a ⎧⋅=⎨⋅=⎩,可得1101202m a ⎧=⎪⎨⎪=⎩,所以,101220t h =⨯, 令1012120th =⨯=,可得10220t =,所以,()()210lg10lg 2101lg 210lg 2010 1.310log 2043lg 2lg 2lg 20.3t ++⨯====≈≈(分钟). 因此,打上来的这种鱼在43分钟后开始失去全部新鲜度. 故选:B. 【点睛】关键点点睛:求解本题的关键在于理解题中的条件,结合给定的函数模型以及题中的数据求解函数模型的解析式,即可求解.3.C解析:C 【分析】设123x x x <<,作出函数()f x 的图象,结合图象可得出1x 的取值范围,结合二次函数图象的对称性可得出234x x +=,进而可求得123x x x ++的取值范围. 【详解】设123x x x <<,作出函数()f x 的图象如下图所示:设()()()123f x f x f x m ===,当0x ≥时,()()2243211f x x x x =-+=--≥-,由图象可知,13m -<<,则()()11231,3f x x =+∈-,可得120x -<<, 由于二次函数243y xx =-+的图象的对称轴为直线2x =,所以,234x x +=,因此,12324x x x <++<. 故选:C. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(或取值范围),常用方法如下: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数的取值范围; (2)分离常数法:先将参数分离,转化为求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.4.B解析:B 【分析】根据所给模型求得0.4r =,代入已知模型,再由0()2I t N =,得002rtN e N =,求解t 值得答案 【详解】解:把0 3.4,6R T ==代入01R rT =+,得3.416r =+,解得0.4r =, 所以0.40()tI t N e=,由0()2I t N =,得0.4002tN e N =,则0.42t e =,两边取对数得,0.4ln 2t =,得ln 20.691.70.40.4t =≈≈, 故选:B【点睛】关键点点睛:此题考查函数模型的实际应用,考查计算能力,解题的关键是准确理解题意,弄清函数模型中各个量的关系,属于中档题5.C解析:C 【分析】将方程的解的个数转化为函数()y f x =的图象与直线23y =和1y m=的交点总数,数形结合即可得解. 【详解】由题意,23()(23)()20[3()2][()1]0mf x m f x f x mf x -++=⇒--=, 解得2()3f x =或1()f x m=, 则方程解的个数即为函数()y f x =的图象与直线23y =和1y m=的交点总数, 作出函数()f x 的图象,如图,由()f x 的图象可知,2()3f x =有两个非零解, 由1(0)f m =得1()f x m=至少有一个解0,故①错; 当方程有3个解时,10m <或11m ≥或123m =,由函数的对称性可得这3个解的和为0, 故②对;不存在实数m ,使方程有4个解,故③对; 当方程有5个解时,则函数()y f x =的图象与直线23y =和1y m=共有五个交点, 所以直线1y m=与函数()y f x =的图象有三个交点,数形结合可得101123mm ⎧<<⎪⎪⎨⎪≠⎪⎩,解得331,,22m ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,故④对.故正确结论有3个. 故选:C . 【点睛】方法点睛:解决函数零点(方程的根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6.C解析:C 【分析】先根据图象,求出sin ϕ的值,再根据公式即可计算出v 的值. 【详解】 解:3sinϕ-==,98.7210∴⨯=,即8.72=, 340148.009v ∴=≈米/小时340/km h ≈,故该时刻高铁的速度约为340/km h .故选:C . 【点评】本题主要考查了函数的实际应用,考查了三角函数的实际应用,也考查了学生的计算能力,关键在于将生活中的数据转化为数学公式中的数据,属于中档题.7.A解析:A 【分析】作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象,根据题意可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】对任意x ∈R ,都有()()4f x f x +=,则函数()f x 是周期为4的周期函数,当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象如下图所示:由于在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则()()log 623log 10231a a a ⎧+≤⎪+>⎨⎪>⎩,解得3212a ≤< 因此,实数a 的取值范围是312⎡⎣.故选:A. 【点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.8.B解析:B 【分析】求导函数,求出函数的极值,利用函数2()x f x x e a =-恰有三个零点,即可求实数a 的取值范围. 【详解】函数2x y x e =的导数为2'2(2)x x x y xe x e xe x =+=+, 令'0y =,则0x =或2-,20x -<<上单调递减,(,2),(0,)-∞-+∞上单调递增,所以0或2-是函数y 的极值点,函数的极值为:224(0)0,(2)4f f e e -=-==, 函数2()x f x x e a =-恰有三个零点,则实数的取值范围是:24(0,)e . 故选B. 【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.9.A解析:A 【解析】试题分析:根据题意有00()0xf x e -=,所以00()xf x e =,而000000()1()110x x x x f x e f x e e e ----+=-+=-⋅+=,所以有0x -是函数()1x y f x e =+的零点,故选A .考点:函数的零点的定义.10.D解析:D 【解析】解:因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,结合图象可得函数f (x )必在区间(0,4)内有零点因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的, 函数的图象与x 轴相交有多种可能,如图所示:所以函数f (x )必在区间(0,4)内有零点, 故选D .11.C解析:C 【分析】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a ,则21(1)2a x a +=.由此能求出该工厂从6月开始月产量平均增长率至少需到达多少个百分点. 【详解】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a , 则21(1)2a x a +=. 解得210.41442%x =-≈≈.∴该工厂从6月开始月产量平均增长率至少需到达42个百分点.故选:C . 【点睛】本题考查百分点的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.12.B解析:B 【分析】由函数的奇偶性和周期性作()f x 的图象,将方程的根的问题转化为两函数图象交点的问题,从而得log (22)3log (62)3a a+<⎧⎨+>⎩,进而可求出实数a 的取值范围.【详解】依题意函数()f x 的图象关于y 轴及直线2x =对称,所以()f x 的周期为4,作出[]2,0x ∈-时()f x 的图象,由()f x 的奇偶性和周期性作出()f x 的图象, 关于x 的方程()log (2)0a f x x -+=恰有三个不同的实数根, 可转化为函数()f x 与log (2)a y x =+的图象有三个不同的交点, 由数形结合可知log (22)3log (62)3a a +<⎧⎨+>⎩,解得2322a <<,故选:B .【点睛】本题考查了数形结合的思想,考查了函数的奇偶性和周期性,考查了函数的零点与方程的根,考查了对数不等式的求解,属于中档题.画出函数的图象是本题的关键.二、填空题13.【分析】根据局部奇函数的定义便知若函数是定义在上的局部奇函数只需方程有解可设从而得出方程在时有解从而设由二次函数的性质分析可得答案【详解】根据题意由局部奇函数的定义可知:若函数是定义在上的局部奇函数 解析:[)2,-+∞【分析】根据“局部奇函数”的定义便知,若函数()f x 是定义在R 上的“局部奇函数”,只需方程()()2222280xx x x m --+-+-=有解.可设()222x xt t -+=≥,从而得出方程280t mt --=在2t ≥时有解,从而设()28g x t mt =--,由二次函数的性质分析可得答案. 【详解】根据题意,由“局部奇函数”的定义可知:若函数()423xxf x m =-⋅-是定义在R 上的“局部奇函数”,则方程()()f x f x -=-有解,即()423423xx x x m m ---⋅-=--⋅-有解;变形可得()442260x x x xm --+-+-=, 即()()2222280xx x x m --+-+-=有解即可.设22x x t -+=,则222x x t -=+≥=,当且仅当0x =时,等号成立. 则方程()()f x f x -=-等价为280t mt --=在2t ≥时有解.设()28g t t mt =--,若方程280t mt --=的两根分别为1t 、2t ,则1280t t =-<,所以,()2428240g m m =--=--≤, 解可得:2m ≥-,即m 的取值范围为[)2,-+∞. 故答案为:[)2,-+∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】作出函数的图象及与函数的图象求出相切时的值即可得答案;【详解】分别作出函数的图象即当与相切时方程有3个不等的实数根两函数图象有3个交点由图可知时符合题意故答案为:【点睛】利用数形结合思想作出解析:4k >【分析】 作出函数()11f x x =-的图象及与函数()g x kx =的图象,求出相切时k 的值即可得答案; 【详解】分别作出函数的图象, 即21101kx kx kx x -=⇒-+=- 当()g x kx =与()11f x x =-相切时, 24040k k k k ⎧∆=-=⇒=⎨≠⎩,, 方程()()f x g x =有3个不等的实数根,∴两函数图象有3个交点,由图可知4k >时符合题意, 故答案为:4k >.【点睛】利用数形结合思想,作出两函数的图象,首先找到临界位置,即相切位置.15.7【分析】设每辆车的销售价格为万元求出每月的销售数量乘以每一辆的获利可得每月的利润再由二次函数求最值【详解】解:设每辆车的销售价格为万元则月销售为辆由解得获利当时取得最大值为1800万元为了获取最大解析:7 【分析】设每辆车的销售价格为x 万元,求出每月的销售数量,乘以每一辆的获利可得每月的利润,再由二次函数求最值.【详解】解:设每辆车的销售价格为x 万元,则月销售为68002020002000.1x x --⨯=-辆, 由20002000x ->,解得10x <,∴获利2(2000200)(4)20028008000(010)y x x x x x =--=-+-<<,当28007400x ==时,y 取得最大值为1800万元. ∴为了获取最大利润,每辆车的销售价格应定为7万元.故答案为:7. 【点睛】本题考查函数模型的选择及应用,二次函数最值的求法,是基础题.16.【分析】把问题转化为函数与两个函数的交点问题画出图像观察即可得出结果【详解】由方程的两实根为则转化为两个函数的交点问题由方程的两实根为转化为两个函数的交点问题画出函数的图像如图所示:又观察图像可得: 解析:412a <<【分析】把问题转化为函数y a =与()642f x x x=-+,()222g x x x =-两个函数的交点问题,画出图像,观察即可得出结果. 【详解】由方程24(2)60x a x +--=的两实根为1 x ,2x ,1232x x ⋅=-,则120,0 x x ≠≠, 转化为()6,42y a f x x x==-+两个函数的交点问题, 由方程2220x x a --=的两实根为3x ,4x , 转化为()2,22y a g x x x ==-两个函数的交点问题,画出函数()(),,f x g x y a =的图像,如图所示:又3124x x x x <<<,观察图像可得:412a <<.则实数a 的取值范围为412a <<. 故答案为:412a <<. 【点睛】方法点睛:已知函数有零点(方程有实根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.17.【解析】试题分析:当时当时函数在上递减在上递增所以在处取得最小值且所以最小值点的坐标为若方程有两个不相等的实根则函数与有两个不同交点而是过原点的直线则应大于点与原点连线的斜率且小于直线的斜率即故答案解析:1,12⎛⎫⎪⎝⎭【解析】试题分析:当2x ≥时,()1f x x =-,当2x <时,()3f x x =-+,函数()f x 在(),2-∞上递减,在2,上递增,所以在2x =处取得最小值,且()21f =,所以最小值点的坐标为()2,1,若方程()()f x g x =有两个不相等的实根,则函数()f x 与()g x 有两个不同交点,而()g x kx =是过原点的直线,则k 应大于点()2,1与原点连线的斜率,且小于直线1y x =-的斜率,即112k <<,故答案为1,12⎛⎫ ⎪⎝⎭.考点:分段函数的图象与性质、数形结合判断方程根的个数.【方法点睛】本题主要考查分段函数的图象与性质、数形结合判断方程根的个数,属于难题.已知函数有零点(方程有根)求参数取值范围的三种常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.18.【分析】推导出函数的周期和对称轴方程并作出函数在上的图象数形结合可得出关于的不等式进而可求得实数的取值范围【详解】由得:所以函数的周期为由得所以函数关于直线对称所以函数在上单调递增在上的图象如下:函 解析:()6,2-【分析】推导出函数()y f x =的周期和对称轴方程,并作出函数()y f x =在[]4,4-上的图象,数形结合可得出关于t 的不等式,进而可求得实数t 的取值范围. 【详解】由()()()()2f x f x f x f x ⎧-=+⎪⎨-=-⎪⎩得:()()4f x f x +=,所以,函数()y f x =的周期为4,由()()2f x f x -=+得()()11f x f x -=+,所以,函数()y f x =关于直线1x =对称,()3f x x x =+,[]0,1x ∈,()2310f x x '=+>,所以,函数()y f x =在[]0,1x ∈上单调递增,()y f x =在[]4,4x ∈-上的图象如下:函数()()t h x f x x =-的零点,即()y f x =与()tg x x=的图象的交点. ①当0t >时,要有四个交点,则需满足()()11g f <,即2t <,此时02t <<; ②当0t <时,要有四个交点,则需满足()()33g f >,即23t>-,即60t -<<; ③当0t =时,()0g x =,即()y f x =在[)(]4,00,4-⋃上的零点,有4个,分别是4x =-、2-、2、4,满足题意.综上:()6,2t ∈-. 故答案为:()6,2-. 【点睛】本题利用函数的零点个数求参数,一般转化为两个函数的交点个数,考查分类讨论思想与数形结合思想的应用,属于中等题.19.2【分析】根据恒成立可知同理得出故的最小值为2【详解】由恒成立可得即恒成立而且为周期函数故且同理可得的最小值为故答案为:2【点睛】本题主要考查函数的性质考查不等式恒成立考查分析问题和解决问题的能力考解析:2 【分析】根据23cos x x kx b ≤+-恒成立可知21b ≥,同理得出11b ≤-,故21b b -的最小值为2. 【详解】由2()f x kx b ≤+恒成立,可得23cos x x kx b ≤+-,即2cos 3)(k x x b --≤+恒成立, 而1cos 1x -≤-≤,且cos y x =-为周期函数,故30k -=,且21b ≥,同理可得11b ≤-,∴21b b -的最小值为1(1)2--=.故答案为:2. 【点睛】本题主要考查函数的性质,考查不等式恒成立,考查分析问题和解决问题的能力,考查学生的逻辑推理能力.20.【分析】令利用正弦函数的性质解方程得出非负根中较小的六个根根据题意得出且整理即可得出答案【详解】令得则或整理得或则非负根中较小的有则且解得:故答案为:【点睛】本题主要考查了根据函数零点的个数求参数范 解析:56163ω≤<【分析】令()0f x =,利用正弦函数的性质解方程1sin 62x πω⎛⎫+= ⎪⎝⎭,得出非负根中较小的六个根,根据题意,得出44ππω≤且2434πππωω+>,整理即可得出答案. 【详解】令()0f x =,得1sin 62x πω⎛⎫+= ⎪⎝⎭ 则266x k ππωπ+=+或52,66x k k Z ππωπ+=+∈ 整理得2k x πω=或22,3k x k Z ππωω=+∈ 则非负根中较小的有22224240,,,,,333πππππππωωωωωωω++ 则44ππω≤且2434πππωω+>解得:56163ω≤<故答案为:56163ω≤< 【点睛】本题主要考查了根据函数零点的个数求参数范围,属于中档题.三、解答题21.(1)12a =或1a >;(2)146m -<<. 【分析】(1)由复合函数的单调性和对数函数的定义域列出不等式组,解之可得;(2)把对数方程转化为指数方程,换元后转化为一元二次方程,再由二次方程根的分布知识得结论. 【详解】解(1)由复合函数的单调性法则,以及()f x 的定义域可得1104a a >⎧⎪⎨-≥⎪⎩或0112210a a a <<⎧⎪⎪≤⎨⎪⎪-≥⎩1a ⇒>或12a = (2)原方程2333log [63(3)]log (3)log (3)xx xxm -⇔⋅-=++233log [63(3)]log (31)x x x m ⇔⋅-=⋅+ 263(3)31x x x m ⇔⋅-=⋅+(其中036x <<), 2(3)(6)310x x m ⇔+-⋅+=其中036x <<),令3(0,6)x t =∈,原条件⇔关于t 的方程2(6)10t m t +-⋅+=在区间(0,6)内有两个不同的根记2()(6)1g t t m t =+-+,由二次方程根的分布的求解方法可得2(6)406062(0)10(6)610m m g g m ⎧∆=-->⎪-⎪<<⎪⎨⎪=>⎪=+>⎪⎩146m ⇒-<<. 【点睛】关键点点睛:本题考查复合函数的单调性,对数方程解的问题.对数方程的解的个数问题的解题关键是进行转化,一是由对数方程转化为指数方程,二是指数方程转化为一元二次方程,最后由一元二次方程的根的分布知识可求解.22.(1)()441()013x f x x -+=≥+;(2)第3年与第4年. 【分析】(1)由已知得1(0)241(1)28f f ⎧=⎪⎪⎨⎪=⎪⎩,即41113241411328b k b+⎧=⎪⎪+⎨⎪=⎪+⎩,解方程即可求,k b 的值,即可求解.(2)树木第x 年的增长量为:()()344141()11313x x g x f x f x -+-+=+-=-++整理之后利用基本不等式求最大值即可. 【详解】(1)由已知得1(0)241(1)28f f ⎧=⎪⎪⎨⎪=⎪⎩,即41113241411328b k b +⎧=⎪⎪+⎨⎪=⎪+⎩,所以381327b k b +⎧=⎨=⎩,解得1k =-,4b =,所以,()441()013x f x x -+=≥+.(2)令x ∈N ,()()()()334344141823()113131313x x x x x g x f x f x -+-+-+-+-+⋅=+-=-=++++. 问题化为,当x ∈N 时,求函数()g x 的最大值.而()3273782382()1343133427x x x x x g x -+-+-+-⋅==+⋅+++(8241224≤=.当且仅当733x x -=,即72x =,上式取等号,但x ∈N ,()()41344g g ==, 故种植之日起,第3年与第4年树木生长最快. 【点睛】关键点点睛:求第几年树木生长最快关键是构造函数()()()1g x f x f x =+-3441411313x x -+-+=-++表示第x 年的增长量的增长量,经过变形可以利用基本不等式求最值,即可求出取得最值时x 的值,本题也可以采用换元法令33x t -+=,则()()3441414141()11313113x x g x f x f x t t-+-+=+-=-=-++++通分后分子分母同时除以t ,再利用基本不等式求最值.23.(1)()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩;(2)答案见解析;(3)答案见解析.【分析】(1)当0x <时,0x ->,运用已知区间的解析式和奇函数的定义结合()00f =,即可求解;(2)根据(1)中的解析式作出图象即可;(3)()()g x f x m =-零点的个数即等价于()y f x =与y m =两个函数图象交点的个数,数形结合讨论m 的值即可.【详解】(1)当0x =时,()00f =,当0x <时,0x ->,()241f x x x -=++,因为()f x 时奇函数,所以()()f x f x -=-,所以()()241f x x x f x -=++=-,即()()2410f x x x x =---<,所以()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩(2)()f x 图象如图所示:(3)由()f x 图象知:()23f -=,()23f =-,①当3m <-或3m >时,()y f x =与y m =两个函数图象有1个交点,函数()()g x f x m =-有1个零点;②当3m =±时,()y f x =与y m =两个函数图象有2个交点,函数()()g x f x m =-有2个零点;③当31m -<≤-或13m ≤<时,()y f x =与y m =两个函数图象有3个交点,函数 ()()g x f x m =-有3个零点;④当11m -<<且0m ≠时,()y f x =与y m =两个函数图象有4个交点,函数 ()()g x f x m =-有4个零点;⑤当0m =时,()y f x =与y m =两个函数图象有5个交点,函数()()g x f x m =-有5个零点;综上所述:当3m <-或3m >时,()g x 有1个零点;当3m =±时,,()g x 有2个零点;当31m -<≤-或13m ≤<时,()g x 有3个零点;当11m -<<且0m ≠时,()g x 有4个零点;当0m = 时,()g x 有5个零点;【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.24.(1)1m =-;(2)8,19m ⎛⎤∈ ⎥⎝⎦.【分析】(1)根据偶函数的定义()()f x f x -=,求得实数m 的值;(2)首先观察函数的单调性和()01f =,可得()242148log 2log 40x x m++-=,再根据换元设2log x t =,。
人教版高中历史必修一第四单元测试题(考试范围:必修一第四单元,考试时间:45分钟,满分100分)一、单选题(每题3分,20题共60分)1、有人曾对中国近代史上一场战争发出感慨:“我们堂堂天朝大国,现在竟被西方的一个夷狄小国打败了,而且失败得那样惨,条约又订得那样苛刻,这是多么大的耻辱啊!”该条约指的是()A.《南京条约》B.《天津条约》C.《马关条约》D.《辛丑条约》2、右图为“太平天国历史博物馆”网站首页,页面设置了三项链接。
如果再添加一个新的网页链接,最合适的是()A.鸦片战争B.天国兴衰C.洪秀全D.《天朝田亩制度》3、右图是某同学在研究性学习中使用的一幅地图。
据此判断,他的研究课题是()A.鸦片战争B.甲午战争C.义和团运动D.八国联军侵华4、20世纪初,一份西方报纸称“甲午以后,中国有三党:守旧党……意在保现存之局面;中立党……意在保国以变法;维新党……意在作乱以反满”。
文中“维新党”的实践活动是()A.领导太平天国运动B.倡导戊戌变法C.领导义和团运动D.领导辛亥革命5、2008年12月7日中新网报道,当地时间12月6日,法国总统萨科齐在波兰华沙同窜访欧洲的达赖喇嘛见面,这严重伤害了中国人民的民族感情。
下列事件中有法国参与并伤害了中国人民民族感情的是()①《南京条约》开启中国屈辱历程②火烧圆明园③《辛丑条约》陷中国于半殖民地深渊④巴黎和会上拒绝中国的正当要求A.①②③B.①②③④C.②③④D.①②④6、“五四”运动标志着中国新民主义革命的开端,其最主要的依据是( )A.在“五四”运动中提出了“外争国权.内惩国贼”的口号B.在“五四”运动中出现了“三罢斗争”C.“五四”运动一次彻底的反帝反封建的革命运动D.在“五四”运动中无产阶级作为一支独立的政治力量登上了中国的历史舞台7、右图中情景反映的应是哪一次战争带来的影响( )A.鸦片战争B.第二次鸦片战争C.甲午中日战争D.八国联军侵华战争8、与以往清政府对外签订的不平等条约相比,《辛丑条约》( )A.对外支付的赔款最多B.开放的通商口岸最广C.割让的领土面积最大D.对中国半殖民地化程度影响最小9、下列关于辛亥革命说法错误的是①中国同盟会是中国第一个全国性的统一的资产阶级革命政党②《临时约法》是中国历史上第一部资产阶级民主宪法③辛亥革命第一次担负起反封建反侵略的民主革命任务④兴中会是中国第一个资产阶级革命团体( )A.①B.①③C.②④D.③10、从内容上看,右图两部文献共同的局限性表现在( )①不能对当时的社会矛盾作出正确认识②具有反封建的进步性③只学习西方先进技术④缺乏坚实的社会基础A.①②B.①C.②③D. ①④11、参加过辛亥革命的老人吴玉章说过“从前皇帝自称为天子,如果有人说皇帝是强盗,可以打倒,别人一定把他看作疯子。
第四章力与运动一、选择题1.测量国际单位制中力学基本单位对应的三个力学基本量,可用的仪器分别是().A.米尺、弹簧测力计、秒表B.量筒、天平、秒表C.米尺、测力计、打点计时器D.米尺、天平、秒表2.歼击机在进入战斗状态时要丢掉副油箱,这样做是为了().A.减小重力,增加稳定B.减小体积,增大速度C.减小质量,增大加速度D.减小质量,增大速度3.某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动,可见().A.力是使物体产生运动的原因B.力是维持物体运动速度的原因C.力是使物体速度发生改变的原因D.力是使物体惯性改变的原因4.卡车上装着一个始终与它相对静止的集装箱,不计空气阻力,下列说法正确的是().A.当卡车开始运动时,卡车对集装箱的静摩擦力使集装箱随卡车一起运动B.当卡车匀速运动时,卡车对集装箱的静摩擦力使集装箱随卡车一起运动C.当卡车匀速运动时,卡车对集装箱的静摩擦力等于零D.当卡车制动时,卡车对集装箱的静摩擦力等于零5.关于运动和力的关系,下列说法正确的是().A.物体所受的合外力不为零时,其速度一定增大B.物体运动的速度越大,它受到的合外力一定越大C.一个物体受到的合外力越大,它的速度变化一定越快D.某时刻物体的速度为零,此时刻它受到的合外力一定为零6.下列对力与运动的认识,正确的是().A.亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动B.伽利略认为力是维持物体速度的原因C.牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动D.伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去7.从地面上将一小球竖直向上抛出,小球所受空气阻力与运动方向相反,阻力的大小与运动速度成正比,则小球在整个运动过程中,加速度最大的时刻是().A.抛出时B.到达最高点时C.落地时D.条件不足,无法判断8.一物体受绳的拉力作用由静止开始前进,先做加速运动,然后改做匀速运动,再改做减速运动,则下列说法正确的是().A.加速前进时,绳拉物体的力大于物体拉绳的力B.减速前进时,绳拉物体的力小于物体拉绳的力C.只有匀速前进时,绳拉物体的力与物体拉绳的力大小才相等D.不管物体如何前进,绳拉物体的力与物体拉绳的力大小总相等9.力F1单独作用于一物体时,物体获得的加速度大小为3 m/s2;力F2单独作用于同一物体时,物体获得的加速度大小为5 m/s2.当F1和F2共同作用于该物体时,物体获得的加速度大小可能是().A.1 m/s2B.2 m/s2C.4 m/s2D.9 m/s210.下列说法正确的是().A.游泳运动员仰卧在水面静止不动时处于平衡状态B.蹦床运动员在空中上升和下落过程中都处于失重状态C.举重运动员在举起杠铃后不动的那段时间内处于超重状态D.体操运动员双手握住单杠在空中静止不动时处于失重状态11.电梯内有一弹簧测力计上挂着一个重为5 N的物体,当电梯运动时,看到弹簧测力计的读数为6 N,可以确定().A.电梯可能加速向上运动B.电梯可能减速向上运动C.电梯可能加速向下运动D.电梯可能减速向下运动12.搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为a2,则().A.a l = a2B.a1 < a2 < 2a lC.a2 = 2a1D.a2 >2a1(第12题)t 13.建筑工人用如图所示的定滑轮装置运送建筑材料.一个质量为 70.0 kg 的工人站在地面上,通过定滑轮将20.0 kg 的建筑材料以0.500 m /s 2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为( g 取10 m /s 2) ( ).A .510 NB .490 NC .890 ND .910 N14.某人在地面上用弹簧测力计称得体重为490 N .他将弹簧测力计移至电梯内称其体重,t 0至t 3时间段内,弹簧测力计的示数如图所示,电梯运行的v -t 图可能是(取电梯向上运动的方向为正) ( ).15.如图所示,轻弹簧下端固定在水平面上.一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落.在小球下落这一全过程中,下列说法中正确的是( ).A .小球刚接触弹簧瞬间速度最大B .从小球接触弹簧起加速度变为竖直向上C .从小球接触弹簧到到达最低点,小球的速度先增大后减小D .从小球接触弹簧到到达最低点,小球的加速度先减小后增大 二、填空题16.一个物体受到4 N 的力的作用,产生的加速度为2 m/s 2.要使它产生的加速度为3 m/s 2,需要施加的力为.17.已知A 、B 两物体的质量之比为5∶3,所受合外力之比为2∶1,则A 、B的加速度之比为 .18.升降机由静止开始做匀加速直线运动,持续的时间为t , 接着做匀减速运动,再经2t的时间停下,电梯在两段运动中, 加速度的大小之比是 ,位移之比是 . t t t t (第14题)(第15题)t19.质量为2 kg 的物体,一共受到三个力的作用,大小分别为20 N 、22 N 、40 N ,物体产生的加速度最大值为 m/s 2, 加速度最小值为 m/s 2.20.放在水平地面上的一物块,受到方向不变的水平推力F 的作用,F 的大小与时间t 的关系和物块速度v 与时间t 的关系如图所示.取重力加速度g =10 m/s 2,由此两图线可以求得物块的质量m =______________,物块与地面之间的动摩擦因数 =____________.三、实验题21.实验室给同学们提供了如下实验器材:滑轮小车、小木块、长木板、秒表、砝码、弹簧测力计、直尺,要求用它们来粗略探究影响加速度的因素.(1)实验中因涉及的物理量较多,须采用控制变量的方法来完成该实验,即先保持 不变,验证物体 越小加速度越大;再保持 不变,验证物体 越大,加速度越大.(2)某同学的做法是:将长木板的一端放在小木块上构成一斜面,用小木块改变斜面的倾角,保持滑轮小车的质量不变,让小车沿不同倾角的斜面由顶端无初速释放,用秒表记录小车滑到斜面底端的时间.试回答下列问题.①改变斜面倾角的目的是: .②用秒表记录小车下滑相同距离(从斜面顶端到底端)所花的时间,而不是记录下滑相同时间所对应的下滑距离,这样做的好处是: .s(第20题)(第21题)22.在“探究加速度与力、质量的关系”的实验中,采用如图所示的装置.(1)本实验应用的实验方法是 .下列说法中,正确的是 .A .在探究加速度与质量的关系时,应该改变拉力的大小B .在探究加速度与外力的关系时,应该改变小车的质量C .在探究加速度a 与质量m 的关系时,为了直观判断二者间的关系,应作出a ―m1图象 D .当小车的质量远大于砝码盘和砝码的总质量时,才能近似认为细线对小车的拉力大小等于砝码盘和砝码的总重力大小(2)某同学测得小车的加速度a 和拉力F 的数据如下表所示(小车质量保持不变).①根据表中的数据在坐标图上作出a -F 图象.②图线不过原点的原因可能是 . (3)在“探究加速度与力、质量”的关系实验中,为了平衡摩擦力,需要在长木板的下面垫一木块(木块垫在没有滑轮的一端),反复移动木块的位置,直到测出小车所拖纸带上的各个相邻记数点之间的距离都 为止.这时小车在斜面上所做的是 运动,小车拖着纸带运动时受到的摩擦阻力恰好与小车的 平衡.四、计算题23.一木块在光滑的水平面上,在一水平力F 的作用下做匀加速直线运动,其v -t 图象如图所示.已知木块的质量m =0.5 kg ,求F 的大小.(第22题)(第23题)24.如图所示,质量为M 的人站在地上通过光滑定滑轮拉细绳将质量为m 的重物以加速度a 上提,细绳与竖直方向夹角为 ,求人对地面的压力.25.一质量为m =40 kg 的小孩子站在电梯内的体重计上.电梯从t =0时刻由静止开始上升,在0~6 s 内体重计示数F 的变化如图所示.试问:在这段时间内电梯上升的高度是多少?(取重力加速度g =10 m/s 2)26.如图所示,质量为M =4.0 kg 的一个长方体形铁箱在水平拉力F 的作用下沿水平面向右运动,铁箱与水平面间的动摩擦因数为μ1=0.20.这时铁箱内一个质量为m =1.0 kg 的木块恰好能沿箱的后壁向下匀速下滑,木块与铁箱间的动摩擦因数为μ2=0.50.求水平拉力F 的大小.(取g =10 m/s 2)(第25题)(第26题)(第24题)*27.如图所示,传送带与地面倾角θ=37°,从A→B长度为16 m,传送带以10 m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5 kg的物体,它与传送带之间的动摩擦因数为0.5.求物体从A运动到B所需的时间是多少?(最大静摩擦力大小等于滑动摩擦力大小且sin37°=0.6,cos37°=0.8)(第27题)参 考 答 案一、选择题1.D . 2.C . 3.C . 4.AC . 5.C . 6.CD . 7.A . 8.D . 9.BC .10.AB . 11.AD . 12.D .解析:当力为F 时,有a 1=m fF -;当力为2F 时,有a 2=m f F -2=mf f F +-22=2a 1+mf,故D 正确. 13.B .解析:对建筑材料进行受力分析, 据牛顿第二定律有F ―mg =ma , 得绳子的拉力大小F =210 N ;对人受力分析,由平衡的知识得Mg =F +F N , 得F N =490 N .根据牛顿第三定律,可知人对地面间的压力为490 N .故B 正确. 14.AD .解析:由图可知,在t 0~t 1时间内,弹簧测力计的示数小于实际重量,则处于失重状态,此时具有向下的加速度;在t 1~t 2阶段,弹簧测力计的示数等于实际重量,则既不超重也不失重;在t 2~t 3阶段,弹簧测力计示数大于实际重量,则处于超重状态,具有向上的加速度.若电梯向下运动,则t 0~t 1时间内向下加速,t 1~t 2阶段匀速运动,t 2~t 3阶段减速下降,故A 正确;若电梯向上运动,则t 0~t 1时间内向上减速,t 1~t 2阶段静止,t 2~t 3阶段加速上升,故D 正确.B 、C 项t 0~t 1内超重,t 2~t 3内失重,不符合题意.15.CD .解析:小球的加速度大小决定于小球受到的合力.从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大.当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大.二、填空题 16.6 N . 17.6∶5. 18.1∶2;2∶1.提示:画出v -t 图象,利用图象求解最为简便. 19.41;0.提示:三力合力最大值为82 N ,最小值为0 N . 20.0.5 kg ;0.4.提示:由图可知,4~6 s 内,外力F 4~6=f =μ mg =2 N ,而2~4 s 内,物体做匀加速运动, F 2~4=3 N ,由图象求出2~4 s 内的斜率,得到a =2404--m/s 2=2 m /s 2.代入F 2~4-f =ma ,即可求出m =0.5 kg ,μ=0.4.三、实验题21.本题主要涉及学生的实验设计以及对已有的实验设计的理解能力与水平以及实验探究能力,理解控制变量法思想.(1)合外力;质量;质量;所受合外力.(2)①改变小车所受的合外力.②记录更准确(或更容易记录,记录误差会更小,时间更容易记录,方便记录,方便计时,位置很难记录等).22.(1)控制变量法;CD . (2)①如图所示.②小车与木板间有摩擦阻力(未平衡摩擦力或平衡摩擦力不够).(3)相等;匀速;重力沿斜面向下的分力.四、计算题23.解析:从v -t 图象可得a =t t 0v v -=44m /s 2=1 m /s 2, F =ma =1×0.5 kg =0.5 N .24.解析:以物体为研究对象:F -mg =ma ,得到F =mg +ma ;以人为研究对象:F cos θ+F N =Mg ,得到F N =Mg -F cos θ=Mg -(mg +ma )cos θ. 由牛顿第三定律,有F N ′=F N =Mg -(mg +ma )cos θ. 25.解析:在0~2 s 内,电梯做匀加速运动,加速度为a 1=mmg-F 1=1 m /s 2, 上升高度为 h 1=2211t a =2 m .2 s 末速度为v =a 1t 1=2 m/s .在中间3 s 内,电梯加速度为0,做匀速运动, 上升高度h 2=v t 2=6 m .(第22题答图)最后1 s 内做匀减速运动,加速度a 2=mmg-F 3=-2 m/s 2,在第6 s 末恰好停止. 上升高度为 h 3=23t v =1 m . 故在这段时间内上升高度为 h =h 1+h 2+h 3=(2+6+1)m =9 m . 26.解析:以木块为对象受力分析: 竖直方向匀速:f =mg , 由滑动摩擦力公式:f =μ2N , 解得 μ2F N =mg ,F N =20 N .水平方向匀加速:F N =ma ,解得a =20 m/s 2. 以质点组为对象受力分析:竖直方向整体加速度为零,F N ′=(M +m )g , 地面的滑动摩擦力 f ′=μ1 F N ′,由牛顿第二定律,得F -μ1(M +m )g =(M +m )a , 代入数据,解得F =110 N .*27.思路分析:物体的运动分为两个过程.第一个过程是物体速度等于传送带速度之前,物体做匀加速直线运动.第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mg sin θ与所受的最大静摩擦力的关系,若μ<tan θ,则继续向下加速;若μ≥ tan θ,则将随传送带一起匀速运动.分析清楚了受力情况与运动情况后,再利用相应规律求解即可.解析:物体放在传送带上后,在开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力f ,物体受力情况如答图①所示.物体由静止加速,由牛顿第二定律得mg sin θ+μmg cos θ=ma 1,解得a 1 = 10×(0.6+0.5×0.8)m /s 2=10 m /s 2.物体加速至与传送带速度相等所需的时间 t 1=1a v =1010s =1 s , t 1时间内位移s =21a 1t 21=5 m . 由于μ<tan θ,物体在重力作用下将继续加速运动,此后物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力f .此时物体受力情况如答图②所示,由牛顿第(第27题答图①)第 11 页 共 11 页 二定律,得mg sin θ-μmg cos θ = ma 2,a 2 = 2 m/s 2,设后一阶段物体滑至底端所用的时间为t 2,由L -s =v t 2+21a 2t 22. 解得t 2=1 s ,t 2=-11 s (舍去).所以物体由A →B 的时间t =t 1+t 2=2 s . 说明:(1)审题时,应注意由题给条件作必要的定性分析或半定量分析.譬如,由本题中给出的μ和θ值可作出判断:当μ≥ tan θ时,物体在加速至与传送带速度相同后,将与传送带相对静止一起匀速运动;当μ<tan θ时,物体在获得与传送带相同的速度后仍继续加速.(2)通过此题可进一步体会到,滑动摩擦力的方向并不总是阻碍物体的运动,而是阻碍物体间的相对运动.它可能是阻力,也可能是动力.(第27题答图②)。
一、选择题1.已知函数()24xf x =-,()()()1g x a x a x a =-++同时满足:①x ∀∈R ,都有()0f x <或()0g x <,②(],1x ∃∈-∞-,()()0f x g x <,则实数a 的取值范围为( ) A .(-3,0) B .13,2⎛⎫-- ⎪⎝⎭C .(-3,-1)D .(-3,-1]2.已知方程923310x x k -⋅+-=有两个实根,则实数k 的取值范围为( ) A .2,13⎡⎤⎢⎥⎣⎦B .12,33⎛⎤ ⎥⎝⎦C .2,3⎡⎫+∞⎪⎢⎣⎭D .[1,)+∞3.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 4.流行病学基本参数:基本再生数0R 指一个感染者传染的平均人数,世代间隔T 指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可用模型:0()rtI t N e =(其中0N 是开始确诊病例数)描述累计感染病例()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 满足01R rT =+,有学者估计出0 3.4,6R T ==.据此,在新冠肺炎疫情初始阶段,当0()2I t N =时,t 的值为(ln 20.69≈)( ) A .1.2B .1.7C .2.0D .2.55.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为( )A .4.25米B .4.5米C .3.9米D .4.05米6.对于函数()f x ,若在定义域内存在实数0x 满足()()00f x f x -=-,则称函数()f x 为“倒戈函数”.设()31xf x m =+-(m ∈R ,0m ≠)是定义在[]1,1-上的“倒戈函数”,则实数m 的取值范围是( ) A .2,03⎡⎫-⎪⎢⎣⎭B .21,33⎡⎤--⎢⎥⎣⎦C .2,03⎡⎤-⎢⎥⎣⎦D .(),0-∞7.具有性质:1()()f f x x=-的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211x y x -=+;③,01,{0,1,1, 1.x x y x x x<<==->其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①8.函数f(x)=2log ,02,0xx x a x >⎧⎨-+≤⎩有且只有一个零点的充分不必要条件是( ) A .a<0B .0<a<C . <a<1D .a≤0或a>19.用二分法求方程x 2–2=0在(1,2)内近似解,设f (x )=x 2–2,得f (1)<0,f (1.5)>0, f (1.25)<0,则方程的根在区间( ) A .(1.25,1.5)B .(1,1.25)C .(1, 1.5)D .不能确定10.某高校为提升科研能力,计划逐年加大科研经费投人.若该高校2018年全年投入科研经费1300万元,在此基础上,每年投人的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.120.05≈,lg1.30.11≈,lg 20.30≈)( )A .2020年B .2021年C .2022年D .2023年11.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( )A .πB .2πC .3πD .4π12.若关于x 的方程12xa a -= (a >0,a ≠1)有两个不等实根,则a 的取值范围是( )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .1(0,)2二、填空题13.设方程240x mx -+=的两根为α,β,其中[1,3]α∈,则实数m 的取值范围是________.14.已知函数()1,0ln ,0x x f x x x +≤⎧=⎨>⎩,则函数()1y f f x ⎡⎤=-⎣⎦的零点个数为______. 15.已知函数()()21,043,0x e x f x x x x +⎧≤⎪=⎨+->⎪⎩,函数()y f x a =-有四个不同的零点,从小到大依次为1x ,2x ,3x ,4x ,则1234x x x x -++的取值范围为 _________16.若函数222,0(),0x x x x f x e a x +⎧->⎪=⎨-≤⎪⎩有3个零点,则实数a 的取值范围是___17.已知函数()2log ,02 sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩,若1234x x x x <<<且()()()()1234f x f x f x f x ===,则()()341222x x x x --的取值范围为____________.18.若y a x =的图象与直线y x a =+(0a >)有两个不同交点,则a 的取值范围是__________.19.已知函数21,0()(1),0x x f x f x x ⎧-≥=⎨+<⎩,若方程()f x x a =--有两个不同实根,则实数a的取值范围为________.20.已知函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,若关于x 方程()f x ax =有三个不相等的实数根,则实数a 的取值范围是_______________. 三、解答题21.设函数()()21f x ax ax a R =+-∈.(1)当12a =时,求函数()f x 的零点; (2)讨论函数()f x 零点的个数.22.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()124x f x g x +-=.(Ⅰ)求函数()f x 和()g x 的表达式;(Ⅱ)若方程()4xf x m m =⋅-在10,2⎛⎫ ⎪⎝⎭上恰有一个实根,求实数m 的取值范围.23.如图所示,河(阴影部分)的两岸分别有生活小区ABC 和DEF ,其中AB BC ⊥,EF DF ⊥,DF AB ⊥,C ,E ,F 三点共线,FD 与BA 的延长线交于点O ,测得3AB FE ==千米,74OD =千米,94DF =千米,32EC =千米,若以OA ,OD 所在直线分别为x ,y 轴建立平面直角坐标系xOy ,则河岸DE 可看成是函数1by x a=--(其中a ,b 是常数)图象的一部分,河岸AC 可看成是函数y kx m =+(其中k ,m 为常数)图象的一部分.(1)写出点A 和点C 的坐标,并求k ,m ,a ,b 的值.(2)现准备建一座桥MN ,其中M 在曲线段DE 上,N 在AC 上,且MN AC ⊥.记M 的横坐标为t .①写出桥MN 的长l 关于t 的函数关系式()l f t =,并标明定义域;(注:若点M 的坐标为0(,)t y ,则桥MN 的长l 可用公式021lk计算)②当t 为何值时,l 取到最小值?最小值是多少?24.某工厂生产某产品x 件所需成本费用为P 元,且2110005,10P x x =++而每件售出的价格为Q 元,其中(),xQ a a b R b=+∈. (1)问:该工厂生产多少件产品,使得每件产品所需成本费用最少?(2)若生产出的产品能全部售出,且当产量为150件时利润最大,此时每件价格为30,求a b 、的值.25.已知()y f x =(x D ∈,D 为此函数的定义域)同时满足下列两个条件:①函数()f x 在D 内单调递增或单调递减;②如果存在区间[,]a b D ⊆,使函数()f x 在区间[,]a b 上的值域为[,]a b ,那么称()y f x =,x D ∈为闭函数(1)判断函数2()1((0,))f x x x x =+-∈+∞是否为闭函数?并说明理由; (2)求证:函数3y x =-([1,1]x ∈-)为闭函数; (3)若(0)y k x k =<是闭函数,求实数k 的取值范围26.如图所示,已知1(,)A x m 、2(,2)B x m +、3(,4)C x m +(其中2m ≥)是指数函数()2x f x =图像上的三点.(1)当2m =时,求123()f x x x ++的值;(2)设ABC ∆的面积为S ,求S 关于m 的函数()S m 及其最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断当2x <时()0f x <,当2x ≥时()0f x ≥,问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解,分类讨论列出不等式可解出a 的范围. 【详解】∵()24xf x =-,∴当2x <时()0f x <,当2x ≥时()0f x ≥.因为x ∀∈R ,都有()0f x <或()0g x <且 (],1x ∃∈-∞-,()()0f x g x < 所以函数()g x 需满足:①当2x ≥时,()0g x <恒成立; ②当1x ≤-时,()0g x >有解.(1)当0a ≥时,显然()g x 不满足条件①;(2)当0a <时,方程()0g x =的两根为1x a =,21x a =--, ∵0a <,∴11a -->-,∴112a a <-⎧⎨--<⎩,解得31a -<<-.故选:C . 【点睛】转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解是解题的关键.2.B解析:B 【分析】先将指数型方程的解的问题转化为二次方程的根的问题,再利用判别式和韦达定理即可求出实数k 的取值范围. 【详解】设3x t =,则0t >,则方程923310x x k -⋅+-=有两个实根可转化为方程22310t t k -+-=有两个正根,则利用判别式和韦达定理得()()22431020310k k ⎧∆=---≥⎪>⎨⎪->⎩,解得:1233k <≤; 所以实数k 的取值范围为12,33⎛⎤⎥⎝⎦. 故选:B. 【点睛】关键点睛:将指数型方程的解的问题转化为二次方程的根的问题是解决本题的关键.3.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知,当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误. 由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.4.B解析:B 【分析】根据所给模型求得0.4r =,代入已知模型,再由0()2I t N =,得002rtN e N =,求解t 值得答案 【详解】解:把0 3.4,6R T ==代入01R rT =+,得3.416r =+,解得0.4r =, 所以0.40()tI t N e=,由0()2I t N =,得0.4002tN e N =,则0.42t e =,两边取对数得,0.4ln 2t =,得ln 20.691.70.40.4t =≈≈, 故选:B 【点睛】关键点点睛:此题考查函数模型的实际应用,考查计算能力,解题的关键是准确理解题意,弄清函数模型中各个量的关系,属于中档题5.D解析:D 【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-, 即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米). 故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.6.A解析:A 【分析】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,即存在0[1,1]x ∈-,满足00()()f x f x -=-,即02332x x m -=--+有根,即可求出答案.【详解】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,∴存在0[1,1]x ∈-满足00()()f x f x -=-,003131x x m m -∴+-=--+, 002332x x m -∴=--+,构造函数00332x x y -=--+,0[1,1]x ∈-,令03x t =,1[,3]3t ∈,1122()y t t t t=--+=-+在1[,1]3单调递增,在(1,3]单调递减,所以1t =取得最大值0, 13t =或3t =取得最小值43-,4[,0]3y ∴∈-,4203m ∴-<,032m ∴-<, 故选:A . 【点睛】本题考查的知识点是指数函数的性质、函数的值域,新定义“倒戈函数”,正确理解新定义“倒戈函数”的含义,是解答的关键.7.C解析:C 【解析】①1ln 1x y x -=+;1111()ln ln ()111x x f f x x x x--==≠-++所以不符合题意;②2211x y x -=+;22221111()()111x x f f x x x x --===-++所以符合题意;③,01,{0,1,1, 1.x x y x x x<<==->当01x <<时11x >,故1()()f x f x x =-=-,当1,x =时11x =显然满足题意,当1x >时,101x <<,故11()()f f x x x==-符合题意,综合得选C 点睛:新定义倒负函数,根据题意逐一验证()1f f x x ⎛⎫=-⎪⎝⎭是否成立,在计算中要注意对数的公式得灵活变幻,对于分段函数要注意逐段去讨论8.A解析:A 【分析】函数y=f (x )只有一个零点,分段函数在0x >时,2log y x = 存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件. 【详解】当0x >时,y=2log x ,x=1是函数的一个零点,则当0y 2x x a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1 又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集, 故选A 【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.9.A解析:A 【分析】根据零点存在定理,结合条件,即可得出结论. 【详解】已知(1)0,(1.5)0,(1.25)0f f f <><, 所以(1,25)(1.5)0f f ⋅<,可得方程的根落在区间(1.25,1.5)内, 故选A. 【点睛】该题考查的是有关判断函数零点所在区间的问题,涉及到的知识点有二分法,函数零点存在性定理,属于简单题目.10.C解析:C 【分析】由题意知,2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元,然后解不等式1300 1.122000n ⨯>,将指数式化为对数式,得出n 的取值范围,即可得出答案. 【详解】若2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元, 由1300 1.122000n ⨯>可得1.3 1.122n ⨯>,lg1.3lg1.12lg 2n ∴+>, 所以0.050.19n ⨯>, 得 3.8n >,则正整数n 的最小值为4, 所以第4年,即2022年全年投入的科研经费开始超过2000万元, 故选:C. 【点睛】本题考查指数函数模型的应用,解题的关键就是列出指数不等式,考查函数思想的应用与计算能力,属于中等题.11.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称. 函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.12.D解析:D 【分析】由题意转化条件为函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点,按照a >1、0<a <1分类,数形结合即可得解. 【详解】根据题意,函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点,a >1时,如图(1)所示;0<a <1时,如图(2)所示.由图象知,0<2a <1,所以10,2a ⎛⎫∈ ⎪⎝⎭. 故选:D. 【点睛】本题考查了指数函数图象及函数图象变换的应用,考查了函数与方程的综合应用及数形结合思想、分类讨论思想,属于中档题.二、填空题13.【分析】由题意利用韦达定理不等式的性质求出实数的取值范围【详解】解:方程的两根其中故即解得或令①解得;②解得综上可得故答案为:【点睛】本题考查二次函数根的分布问题属于中档题 解析:[]4,5【分析】由题意利用韦达定理,不等式的性质,求出实数m 的取值范围. 【详解】 解:方程240x mx -+=的两根α,β,其中[1,3]α∈, 故0∆,即()2440m --⨯≥,解得4m ≥或4m ≤-,令()24f x x mx =-+①()()0130f f ∆⎧⎨≤⎩,解得1353m ≤≤; ②()()01030132f f m ∆⎧⎪>⎪⎪⎨>⎪⎪≤≤⎪⎩解得134,3m ⎡⎤∈⎢⎥⎣⎦综上可得[]4,5m ∈ 故答案为:[]4,5. 【点睛】本题考查二次函数根的分布问题,属于中档题.14.【分析】先由可求得的值再由和两种情况结合的值可求得的值即可得解【详解】下面先解方程得出的值(1)当时可得可得;(2)当时可得可得或下面解方程和①当时由可得由可得(舍去)由可得;②当时由可得由可得或由 解析:7【分析】先由()10f f x ⎡⎤-=⎣⎦可求得()f x 的值,再由0x ≤和0x >两种情况结合()f x 的值,可求得x 的值,即可得解. 【详解】下面先解方程()10f f x ⎡⎤-=⎣⎦得出()f x 的值.(1)当()0f x ≤时,可得()()1110f f x f x -=+-=⎡⎤⎣⎦,可得()0f x =;(2)当()0f x >时,可得()()1ln 10f f x f x -=-=⎡⎤⎣⎦,可得()f x e =或()1f x e=. 下面解方程()0f x =、()f x e =和()1f x e=. ①当0x ≤时,由()10f x x =+=可得1x =-,由()1f x x e =+=可得1x e =-(舍去),由()11f x x e =+=可得11x e=-; ②当0x >时,由()ln 0f x x ==可得1x =,由()1ln f x x e==可得1e x e =或1ex e -=,由()ln f x x e ==可得e x e =或ex e -=.综上所述,函数()1y f f x =-⎡⎤⎣⎦的零点个数为7. 故答案为:7. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.15.【分析】先将函数有四个不同的零点转化为函数有四个不同的交点利用数形结合得到a 的范围再根据为方程的两根为方程的两根利用韦达定理建立的函数再利用函数的单调性求解【详解】因为函数有四个不同的零点所以函数有 解析:(]3,3e +【分析】先将函数()y f x a =-有四个不同的零点,转化为函数(),y f x y a ==有四个不同的交点,利用数形结合得到a 的范围,再根据1x ,2x 为方程()21x e a +=的两根,3x ,4x 为方程43x a x+-=的两根,利用韦达定理建立1234x x x x -++的函数,再利用函数的单调性求解.【详解】因为函数()y f x a =-有四个不同的零点, 所以函数(),y f x y a ==有四个不同的交点, 如图所示:由图知:1a e <≤,设1x ,2x 为方程()21x e a +=的两根,即221ln 0x x a ++-=的两根, 所以121ln =-x x a , 设3x ,4x 为方程43x a x+-=的两根,即()2340x a x -++=的两根, 所以343x x a +=+,所以1234ln 13ln 2x x x x a a a a -++=-++=++, 因为ln ,2y a y a ==+在()0,∞+上递增, 所以ln 2y a a =++在()0,∞+上递增, 所以1234(3,3]x x x x e ∈-+++, 故答案为:(]3,3e + 【点睛】关键点点睛:本题关键是利用利用数形结合法确定a 的范围,进而利用函数法求解.16.【分析】结合与的图象判断出当时的零点个数由此判断出当时的零点个数画出时的图象由此求得的取值范围【详解】画出与的图象如下图所示由图可知当时与的图象有个交点也即的图象有个零点所以当时有个零点当时画出的图解析:{}()21,e ⋃+∞【分析】 结合2x y =与2yx 的图象,判断出当0x >时,()f x 的零点个数.由此判断出当0x ≤时,()f x 的零点个数.画出0x ≤时2x y e +=的图象,由此求得a 的取值范围.【详解】 画出2x y =与2yx 的图象如下图所示,由图可知,当0x >时,2x y =与2y x 的图象有2个交点,也即()f x 的图象有2个零点. 所以当0x ≤时,()f x 有1个零点.当0x ≤时,画出()20x y ex +=≤的图象如下图所示,由图可知,要使()20x y e x +=≤与y a =只有1个交点,则需1a =或2a e >.所以a 的取值范围是{}()21,e ⋃+∞. 故答案为:{}()21,e ⋃+∞【点睛】研究分段函数零点问题,可结合函数图象,将零点问题转化为函数交点个数问来研究.17.【分析】根据解析式画出函数图象去绝对值并结合对数的运算性质求得根据正弦函数的对称性求得将化为结合二次函数的性质即可得出结果【详解】函数画出函数图象如下图所示:由函数图象可知若则因为与关于对称则且去绝 解析:()0,12【分析】根据解析式,画出函数图象.去绝对值并结合对数的运算性质求得12x x ⋅,根据正弦函数的对称性求得34x x +,将()()341222x x x x --化为2441220x x -+-,结合二次函数的性质,即可得出结果. 【详解】函数()2 log,02sin,2104x xf xx xπ⎧<<⎪=⎨⎛⎫≤≤⎪⎪⎝⎭⎩,画出函数图象如下图所示:由函数图象可知,若()()()()1234f x f x f x f x k====,则()0,1k∈,因为1234x x x x<<<,3x与4x关于6x=对称,则2122log logx x=,3412x x+=,且4810x<<,去绝对值化简可得2122log logx x-=,即2122log log0x x+=,由对数运算可得()212log0x x⋅=所以121x x⋅=,则()()()3434343412222420x xx x x x x xx x--=-=++-()23444442012201220x x x x x x=-=--=-+-,令21220y x x=-+-,()8,10x∈,因为21220y x x=-+-是开口向下,对称轴为6x=的二次函数,所以21220y x x=-+-在()8,10x∈上单调递减,所以10012020649620y-+-<<-+-,即012y<<;即()()()34244122212200,12x xx xx x--=-+-∈故答案为: ()0,12.【点睛】本题考查了分段函数的性质及应用,涉及求二次函数的最值,根据数形结合的方法求解即可,属于中档题.18.【分析】首先根据已知题意画出图形然后根据数形结合分析的取值范围需要注意为的斜率【详解】根据题意的图象如图:结合图象知要想有两个不同交点的斜率要大于的斜率的取值范围是故答案为:【点睛】本题考查函数图象解析:()1,+∞【分析】首先根据已知题意画出图形,然后根据数形结合分析a 的取值范围,需要注意a 为y ax =的斜率. 【详解】根据题意y a x =的图象如图:()0a >,结合图象知,要想有两个不同交点y ax ∴=的斜率要大于y x a =+的斜率a ∴的取值范围是1a >.故答案为:()1,+∞ 【点睛】本题考查函数图象的交点问题,考查数形结合能力,属于中等题型.19.【分析】先画出当时函数的图象当时利用周期性画出函数的图象在同一直角坐标系内画出直线的图象利用数形结合进行求解即可【详解】当时画出函数的图象当时当时画出函数的图象如下图所示:Failedtodownl 解析:(1,)-+∞【分析】先画出当0x ≥时函数()f x 的图象,当0x <时,利用周期性画出函数()f x 的图象,在同一直角坐标系内画出直线y x a =--的图象,利用数形结合进行求解即可. 【详解】当0x ≥时,画出函数()f x 的图象,当10x -≤<时,1()21x f x +=-,当21x -≤<-时,2()21x f x +=-,画出函数()f x 的图象如下图所示: [Failed to download image :http://192.168.0.10:8086/QBM/2020/4/16/2442971918139392/2444041550692352/EXPLANATION /d0eaa7b33ddc4636b9cc52164f3abcc4.png]因为方程()f x x a =--有两个不同实根,所以函数()f x 和函数y x a =--的图象有两个不同的交点.由直线y x a =--过(0,1),得1a =-; 由直线y x a =--过(0,0),得0a =; 由直线y x a =--过(1,0)-,得1a =; 而函数()f x 不过(0,1),(1,1),(2,1)--因此有当1a >-时,函数()f x 和函数y x a =--的图象有两个不同的交点.,即方程()f x x a =--有两个不同实根.故答案为:(1,)-+∞【点睛】本题考查了已知方程根的个数求参数取值范围问题,考查了数形结合思想,考查了函数的周期性,考查了数学运算能力.20.【分析】作出函数图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点数形结合即可得解【详解】作出函数的图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点由图可得:【点睛】此题考解析:1[,1)2.【分析】作出函数图象,关于x方程()f x ax=有三个不相等的实数根,即()f x图象与直线y ax=有三个不同的公共点,数形结合即可得解.【详解】作出函数21(0)()(1)(0)x xf xf x x-⎧-≤=⎨->⎩,,的图象,关于x方程()f x ax=有三个不相等的实数根,即()f x图象与直线y ax=有三个不同的公共点由图可得:1[,1)2a∈【点睛】此题考查方程的根的问题,根据函数图象,数形结合求解,需要熟练掌握常见基本初等函数的图象和性质,准确作出函数图象求解.三、解答题21.(1)2-和1;(2)答案见解析.【分析】(1)当12a=时,直接解方程()0f x=,即可求得函数()f x的零点;(2)分0a=和0a≠两种情况讨论,在0a=时,直接求解即可;在0a≠时,结合∆的符号可得出函数()f x 的零点个数. 【详解】 (1)当12a =时,()211122f x x x =+-,令()0f x =,可得220x x +-=,解得2x =-或1x =.此时,函数()f x 的零点为2-和1;(2)当0a =时,()1f x =-,此时函数()f x 无零点; 当0a ≠时,24a a ∆=+. ①若∆<0,即40a 时,此时函数()f x 无零点;②若0∆=,即4a =-时,函数()f x 有且只有一个零点; ③若0∆>,即4a 或0a >时,此时函数()f x 有两个零点. 综上所述,当40a时,函数()f x 无零点;当4a =-时,函数()f x 有且只有一个零点; 当4a或0a >时,函数()f x 有两个零点.【点睛】思路点睛:本题考查含参二次函数零点个数的分类讨论,步骤如下: (1)首先确定首项系数为零的情况,直接解方程()0f x =即可;(2)对首项系数不为零进行讨论,分∆<0、0∆=、0∆>三种情况讨论,可得出函数()f x 在不同情况下的零点个数.22.(Ⅰ)()44xxf x -=+,()44xx g x -=-;(Ⅱ)5,2⎛⎫+∞ ⎪⎝⎭.【分析】(Ⅰ)由()()124x f x g x +-=,结合()f x 的偶函数,()g x 是奇函数,得到()()124x f x g x -+-=,两式联立求解.(Ⅱ)()4x f x m m =⋅-在10,2⎛⎫ ⎪⎝⎭恰有一个实根,即()214410x x m m --⋅-=在10,2⎛⎫ ⎪⎝⎭上恰有一个实根,令()4,1,2xz z =∈,转化为()2110m z mz ---=在()1,2上恰有一个实根,令()()211h z m z mz =---,用二次函数的性质求解.【详解】(Ⅰ)由()()124x f x g x +-=.得()()124x f x g x -+---=,.因为()f x 的偶函数,()g x 是奇函数, 所以()()124x f x g x -+-=,解得()44xxf x -=+,()44xx g x -=-.(Ⅱ)因为()4xf x m m =⋅-在10,2⎛⎫ ⎪⎝⎭恰有一个实根, 即444x x x m m -+=⋅-,在10,2⎛⎫ ⎪⎝⎭恰有一个实根, 即()214410xxm m --⋅-=在10,2⎛⎫ ⎪⎝⎭上恰有一个实根,令()4,1,2xz z =∈,则()2110m z mz ---=在()1,2上恰有一个实根,令()()211h z m z mz =---又()12h =-,则有()2250h m =->或()()244012211020m m m m m h ⎧∆=+-=⎪⎪<<⎪-⎨⎪-<⎪<⎪⎩, 解得52m >, 综上m 的取值范围为5,2⎛⎫+∞ ⎪⎝⎭. 【点睛】方法点睛:在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 23.(1)3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫⎪⎝⎭,43k =,2m =-,4a =,3b =;(2)①19()94,[0,3]54f t t t t ⎛⎫=--∈ ⎪-⎝⎭;②52t =,min ()1f t =. 【分析】(1)根据题中给的边长,得到点,A C 的坐标,并代入直线,求,k m ,由点,D E 的坐标代入函数1b y x a =--,求,a b 的值;(2)①由(1)可知点43,1M t t ⎛⎫- ⎪-⎝⎭,利用点到直线的距离求()l f t =,②定义域下利用基本不等式求最值. 【详解】(1)由题意得:4OF BC ==,OA EC =,∴3,02A ⎛⎫⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭, 把3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭代入y kx m =+得302942k m k m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得43k =,2m =-.∵70,4D ⎛⎫ ⎪⎝⎭,()3,4E ,把70,4D ⎛⎫⎪⎝⎭,()3,4E 代入1b y x a =--得3433b a b a ⎧=⎪⎪⎨⎪=⎪-⎩,解得:4a =,3b =.(2)①由(1)得:M 点在314y x =--上,∴43,1M t t ⎛⎫- ⎪-⎝⎭,[0,3]t ∈, ∴桥MN 的长l为341219()(94),[0,3]54l f t t t t t --+===--∈-; ②由①得:1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦194(4)754t t ⎡⎤=----⎢⎥-⎣⎦, 而40t -<,904t <-,∴94(4)124t t ---≥=-, 当且仅当94(4)4t t --=--时即52t =时,“=”成立,∴min 1()12715f t =-+=. 【点睛】关键点点睛:本题考查函数应用题,函数模型的应用,基本不等式求最值. 本题的关键是最后一问,函数的变形,1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦,只有变形成这种形式,才能用基本不等式求最值.24.(1)该工厂生产100件产品时,使得每件产品所需成本费用最少;(2)25,30.a b ==【分析】(1)建立函数的解析式,再利用基本不等式求函数的最值;(2)根据利润=销售收入-成本,求出利润函数,再利用当产量为150套时利润最大,此时每套价格为30元,结合二次函数的性质建立条件关系,即可求a ,b 的值 【详解】解:(1)由题意,每套玩具所需成本费用为211000510001000105255251010x xP x x xxx x++==+++==,当且仅当100010x x=, 即100x =时,每套玩具所需成本费用最少为25元.(2)利润22111()()(10005)()(5)10001010x y xQ x P x a x x x a x b b =-=+-++=-+--,若生产出的玩具能全部售出,且当产量为150套时利润最大,此时每套价格为30元,∴满足5150112()1015030ab a b -⎧=⎪-⎪⎨⎪+=⎪⎩,解得25a =,30b =.【点睛】本题考查函数模型的构建,考查利用基本不等式求函数的最值,考查二次函数的最值,确立函数模型是关键,属于中档题.25.(1)见解析;(2)见解析;(3)1(,0)4-【分析】(1)可判断函数f (x )在定义域内不单调,由闭函数的定义可作出判断;(2)按照闭函数的定义只需证明两条:①在定义域内单调;②该函数值域也为[﹣1,1];(3)由y k =0,+∞)上的增函数,知其符合条件①;设函数符合条件②的区间为[a ,b ],从而有a k b k ⎧=⎪⎨=⎪⎩x k =用二次方程根的分布知识可得k 的限制条件; 【详解】(1)函数f (x )在区间1,2⎛⎤-∞ ⎥⎝⎦上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增;所以,函数在定义域上不是单调递增或单调递减函数,从而该函数不是闭函数. (2)先证y =﹣x 3符合条件①:对于任意x 1,x 2∈[﹣1,1],且x 1<x 2, 有331221y y x x-=-=()()22212121x x x x x x -++=()222121113024x x x x x ⎡⎤⎛⎫-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,∴y 1>y 2,故y =﹣x 3是R 上的减函数.又因为y =﹣x 3在[﹣1,1]上的值域是[﹣1,1]. 所以函数y =﹣x 3(x ∈[﹣1,1])为闭函数;(3)易知y k =0,+∞)上的增函数,符合条件①;设函数符合条件②的区间为[a ,b ],则有a k b k ⎧=+⎪⎨=⎪⎩故a ,b是x k =22(21)00x k x k x x k ⎧-++=⎪⎨⎪⎩有两个不等非负实根;设x 1,x 2为方程x 2﹣(2k +1)x +k 2=0的二根,则2212212(21)4021000k k x x k x x k k ⎧∆=+->⎪+=+>⎪⎨=⎪⎪<⎩,解得:104-<<k ∴k 的取值范围:1,04⎛⎫- ⎪⎝⎭. 【点睛】本题考查新定义,考查导数知识的运用,解题的关键是理解新定义,并利用新定义求参数的值,属于中档题. 26.(1)48;(2)24log 3【分析】(1)根据指数运算法则求解,(2)作辅助线,将所求三角形面积转化为一个大直角三角形面积减去一个小直角三角形面积以及一个直角梯形面积,利用坐标表示面积,最后根据二次函数性质求最值. 【详解】(1)()()()123312123222224x x x x x x f x x x m m m ++++===++,∴ 当2m =时,()12348f x x x ++=;(2)过C 作直线l 垂直于x 轴,分别过,A B 作11,AA BB 垂直于直线l ,垂足分别为11,A B ,则1111ABC AAC BB C AA B B S S S S ∆∆∆=--梯形 ()()()31323231111422222x x x x x x x x =-⨯--⨯--+-⨯ ()()()()21322222log 2log log 4x x x m m m =-+=+-++()2222224log log 144m m m m m +⎛⎫==+ ⎪++⎝⎭即S 关于m 的函数为:()224log 14S m m m ⎛⎫=+⎪+⎝⎭,[)2,m ∈+∞令24v m m =+,因为24v m m =+在[)2,+∞上是增函数,∴12v ≥ 再令41t v =+,则41t v =+在[)12,+∞上是减函数,∴413t <≤; 而2log S t =在区间41,3⎛⎤ ⎥⎝⎦上是增函数,所以,函数()224log 14S m m m ⎛⎫=+⎪+⎝⎭在区间[)2,+∞上是减函数,故当2m =时,()()2max 42log 3S m S ==.【点睛】本题考查指数函数、对数函数以及二次函数性质,考查基本分析求解能力,属中档题.。
第4章细胞物质输入和输出一、选择题(20×3分)1.下列叙述正确的是 ( )A.细胞膜是选择透过性膜B.小分子物质都能通过细胞膜,而大分子物质则不能C.原生质层包括细胞膜、细胞质和细胞核D.动物细胞一般不会吸水胀破,是因为细胞最外层有细胞壁2.下列关于细胞结构和功能的叙述,错误的是 ( )A.生物膜相互转化的基础是膜的组成和结构的相似性B.细胞膜的结构特点是选择透过性C.细菌和酵母菌都有细胞膜、核糖体、DNA、RNAD.细胞核能贮存遗传信息,也能对细胞的新陈代谢起调控作用3.甜菜根细胞的液泡中有花青素,使块根为红色。
将块根切成小块放在蒸馏水中,水无明显的颜色变化,但用盐酸处理后再放人蒸馏水中,则能使水变红。
其原因是 ( )A.花青素不溶于水而溶于盐酸 B.盐酸破坏了细胞膜的选择透过性C.盐酸破坏了原生质层的选择透过性 D.细胞壁被盐酸破坏4.右图为显微镜下洋葱表皮细胞在30%蔗糖溶液中的示意图。
下列叙述中错误的是()A.若将细胞置于清水中,A基本不变B.若将该细胞置于20%蔗糖溶液中,B值将变小C.B/A值能表示细胞失水的程度 D.B/A值能表示液泡体积的变化5.下列物质进出细胞的过程消耗能量的是( )①水被胃黏膜吸收②氧气进入红细胞③肾小管壁上皮细胞吸收原尿中的Na+④小肠绒毛上皮细胞吸收氨基酸A.①② B.③④ C.②③④ D.①②③④6.有关生物膜结构和功能的下列叙述中,错误的是 ( )A.细胞膜上载体蛋白的种类和数量决定了植物根细胞对无机盐离子的吸收具有选择性B.甘油容易通过细胞膜,是因为磷脂双分子层构成了细胞膜的基本支架C.细胞器膜和核膜使得细胞内能够同时进行多种化学反应,而不会相互干扰D.B细胞对抗原的识别具有特异性,是因为B细胞膜上具有结合特定抗原的载体7.大肠杆菌在繁殖时,细胞内钾离子的浓度是培养液中的3 000倍。
如果在培养液中加入一种叫箭毒的药物,大肠杆菌细胞内钾离子浓度立即下降,这种药物很可能( )A.使细胞膜变成了全透性膜 B.抑制膜上载体的活动C.加快细胞膜的流动 D.使载体运动方向改变8.把蚕豆叶表皮浸泡在7%尿素溶液中,开始表皮细胞发生了质壁分离,然后又自动复原,发生自动复原的原因是( )A.原生质层破坏 B.尿素分子进入细胞C.细胞壁破坏 D.尿素溶液浓度低9.细胞膜的选择透过性主要取决于膜中的哪种成分()A、磷脂分子B、核酸C、脂肪D、蛋白质10.囊性纤维病是由于有的细胞中某种蛋白质的结构异常,影响了一些离子的跨膜运输,使这些离子在细胞外积累过多造成的。
高一语文必修一第四单元测试及答案(分值:150分时间:150分钟)第Ⅰ卷(选择题,共36分)一、(15分,每小题3分)1、下列加点字的读音,完全正确的一项是()A、婆娑.(suō)凋.谢(diāo) 停泊.(pō) 冉.冉升起(rǎn)B、记载.(zǎi) 弄.堂(nòng) 游说.(shuì) 鱼肉荤.腥(hūn)C、佳肴.(yáo) 执拗.(niù) 譬.如(bì) 衣衫褴褛..(lán)(lǚ)D、横亘.)gèn ) 翌.年(yì) 揩.油(kāi) 量.体裁衣(liàng)2、下列词语中没有错别字的一项是()A、旗杆嘻嘻哈哈恶梦绿树成阴B、恳求阳光明媚混沌睡眼醒忪C、殴打忸怩不安帐蓬阿谀谄媚D、云霄不同凡响嫦娥摘星揽月3、下面语段横线处应填入的词句,最恰当的一项是()中国文人对审美具有的感知力,他们可以在安然怡悦中鸟翼几乎无声的扑动,还有花边簌簌飘落的声音。
他们喜爱“”那种让静寂更清幽的氛围。
A、精细用心倾听星垂平野阔,月涌大荒流B、精细凝神谛听明月松间照,清泉石上流C、精确凝神谛听星垂平野阔,月涌大荒流D、精确用心倾听明月松间照,清泉石上流4、下列句子中没有语病的一项是()A、每一个学生都具有创新的潜能,要激发这种潜能,就要看能否培养学生自主学习的能力。
B、17世纪至18世纪,荷兰铸制著名的马剑银币,逐渐流入中国台湾和东南沿海地区,至今在中国民间仍有不少收藏。
C、在任何组织内,优柔寡断者和盲目冲动者都是传染病毒,前者的延误时机和后者的盲目冲动均可使企业在一夕间造成灾难。
D、如果仅仅把这部话剧理解为简单意义上的反映两个阶级间不可调和的矛盾的一次愤懑的碰撞的话,那么可能就低估了作品的审美价值。
5、依次填入下列一段话中横线处的语句,与上下文衔接最恰当的一项是()乐观的人看见问题后面的机会,。
机会从来不会主动敲响你的门,无论你等待多少年,。
必修一第四章 单元检测一、单选题1.下列说法正确的是( )A .34S 原子核内中子数为16B .2H +核外电子数为2 C .13C 和15N 核内中子数相差1 D .146C 和147N 质量数相同,互称为同位素 2.一种微粒的质子数、电子数与另一种微粒的质子数、电子数均相等,则下列叙述中一定错误的是( )A .可能是同位素B .可能是一种单质和化合物C .可能是同一种元素D .可能是一种分子和一种离子3.As 的原子结构示意图为,下列关于As 的描述正确的是( ) A .位于第五周期,第ⅤA 族B .属于金属元素C .酸性:3434H AsO H PO >D .稳定性:33AsH PH <4.下列性质的比较,强弱关系正确且能用元素周期律解释的是( )A .酸性:22HCl H S H Se >>B .碱性:()2NaOH Be OH >C .还原性:33PH NH <D .沸点:32NH HF H O <<5.下列说法正确的是A .N 2的电子式是:N NB .16O 和18O 是同素异形体C .CO 2的结构式是:O=C=OD .碳的原子结构示意图是:6.下列物质中,含有化学键类型相同的是( )A .NaCl 、FeCl 2、Al(OH)3B .HF 、NH 4Cl 、H 2SC .MgO 、Na 2O 2、CuOD .CH 4、NH 3、H 2O7.某元素的一种同位素X 的原子质量数为A ,含N 个中子,它与1H 原子组成H m X 分子。
在ag H m X 中所含质子的物质的量是( )A .a A+m (A —N) mol B .a A (A-N) mol C .a A+m (A —N +m) mol D .a A(A —N +m) mol 8.X 、Y 、Z 、Q 、R 是五种短周期主族元素,原子序数依次增大。
X 元素原子半径最小,Y 元素的某种单质硬度最大;Q 与X 同主族,R 与Y 同主族;Z 与R 最外层电子数之和是Y 与Q 最外层电子数之和的两倍。
一、选择题1.若函数2()f x x x a =--有四个零点,则关于x 的方程210ax x ++=的实根个数为( ) A .0B .1C .2D .不确定2.已知函数()()223,ln 1,x x x f x x x λλ⎧--≤⎪=⎨->⎪⎩,若()f x 恰有两个零点,则λ的取值范围是( ) A .[)[)1,23,-+∞ B .[)[)1,23,+∞C .[)()1,22,⋃+∞D .[)1,+∞3.已知函数21,1()1,1x x x f x x x⎧-+<⎪=⎨⎪⎩,若函数()y f x a =-有三个零点,则实数a 的取值范围为( ) A .3[4,1]B .3(4,1)C .(0,1)D .3(4,)+∞4.已知关于x 的方程|2|1x m -=有两个不等实根,则实数m 的取值范围是( ) A .(-∞,1]-B .(,1)-∞-C .[1,)+∞D .(1,)+∞5.若直角坐标平面内A 、B 两点满足:①点A 、B 都在函数()f x 的图象上;②点A 、B 关于原点对称,则称点()A B ,是函数()f x 的一个“姊妹点对”.点对()A B ,与()B A ,可看作是同一个“姊妹点对”,已知函数220()20xx x x f x x e⎧+<⎪=⎨≥⎪⎩,则()f x 的“姊妹点对”有( )A .0个B .1个C .2个D .3个6.若函数2()x f x x e a =-恰有3个零点,则实数a 的取值范围是( ) A .24(,)e+∞ B .24(0,)eC .2(0,4)eD .(0,)+∞7.对于函数()f x ,若在定义域内存在实数0x 满足()()00f x f x -=-,则称函数()f x 为“倒戈函数”.设()31xf x m =+-(m ∈R ,0m ≠)是定义在[]1,1-上的“倒戈函数”,则实数m 的取值范围是( ) A .2,03⎡⎫-⎪⎢⎣⎭B .21,33⎡⎤--⎢⎥⎣⎦ C .2,03⎡⎤-⎢⎥⎣⎦D .(),0-∞8.已知方程2mx e x =在(]0,8上有两个不等的实数根,则实数m 的取值范围为( )A .1ln 2,84⎛⎫ ⎪⎝⎭B .1ln 2,164⎡⎫⎪⎢⎣⎭C .3ln 22,4e ⎡⎫⎪⎢⎣⎭ D .122,4n e ⎡⎫⎪⎢⎣⎭9.已知函数()()()222,0423,46x x x f x x -⎧--≤<⎪=⎨-≤≤⎪⎩,若存在12,x x ,当12046x x ≤<≤≤时,()()12f x f x =,则()12x f x ⋅的取值范围是( ) A .[)0,1B .[]1,4C .[]1,6D .[][]0,13,810.统计学家克利夫兰对人体的眼睛详细研究后发现;我们的眼睛看到图形面积的大小与此图形实际面积的0.7次方成正比.例如:大图形是小图形的3倍,眼睛感觉到的只有0.73(约2.16)倍.观察某个国家地图,感觉全国面积约为某县面积的10倍,那么这国家的实际面积大约是该县面积的(lg 20.3010≈,lg30.4771=,lg70.8451≈)( ) A .l 8倍B .21倍C .24倍D .27倍11.函数()211f x x x=-+的零点个数为( ) A .0B .1C .2D .312.把物体放在冷空气中冷却,如果物体原来的温度为1θC ,空气的温度是0θC ,那么t 分钟后物体的温度θ(单位C )可由公式:()010kt e θθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的正常数.现有100℃的物体,放在20C 的空气中冷却,4分钟后物体的温度是60C ,则再经过( )分钟,物体的温度是40C (假设空气的温度保持不变). A .2B .4C .6D .8二、填空题13.已知函数227,03()1108,333x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若()y f x =的图象与y m =的图象有A ,B ,C ,D 四个不同的交点,交点横坐标为1234,,,x x x x ,满足1234x x x x <<<,则()()341233222x x x x --++的取值范围是________14.已知函数2()log (2)f x x =+与2()()1g x x a =-+,若对任意的1[2,6)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,则实数a 的取值范围是______.15.若关于xx m =+有两个不同实数解,则m 的取值范围是______.16.对于函数sin ,[0,2]()1(2),(2,)2x x f x f x x π∈⎧⎪=⎨-∈+∞⎪⎩现有下列结论:①任取12[2,,)x x ∈+∞,都有()()121f x f x -≤; ②函数()y f x =在[]4,5上先增后减 ③函数()()ln 1y f x x =--有3个零点:④若关于x 的方程()()0f x m m =<有且只有两个不同的实根1x ,2x ,则123x x += 其中,正确结论的序号为_______________(写出所有正确命题的序号) 17.函数()11f x x =-,()g x kx = ,若方程()()f x g x =有3个不等的实数根,则实数k 的取值范围为________.18.若方程22(1)10kx k x k +-+-=(0)k >的两根为12,x x ,且110x -<<,201x <<,则实数k 的取值范围是__________.19.函数()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,,如果方程()f x b =有四个不同的实数解1x ,2x ,3x ,4x ,则1234x x x x +++=______.20.若关于x 的方程2220x x m ---=有三个不相等的实数根,则实数m 的值为_______.三、解答题21.如图所示,河(阴影部分)的两岸分别有生活小区ABC 和DEF ,其中AB BC ⊥,EF DF ⊥,DF AB ⊥,C ,E ,F 三点共线,FD 与BA 的延长线交于点O ,测得3AB FE ==千米,74OD =千米,94DF =千米,32EC =千米,若以OA ,OD 所在直线分别为x ,y 轴建立平面直角坐标系xOy ,则河岸DE 可看成是函数1by x a=--(其中a ,b 是常数)图象的一部分,河岸AC 可看成是函数y kx m =+(其中k ,m 为常数)图象的一部分.(1)写出点A 和点C 的坐标,并求k ,m ,a ,b 的值.(2)现准备建一座桥MN ,其中M 在曲线段DE 上,N 在AC 上,且MN AC ⊥.记M 的横坐标为t .①写出桥MN 的长l 关于t 的函数关系式()l f t =,并标明定义域;(注:若点M 的坐标为0(,)t y ,则桥MN 的长l 可用公式021lk 计算)②当t 为何值时,l 取到最小值?最小值是多少?22.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:3221805040,[120,144)3120080000,[144,500)2x x x x y x x x ⎧-+∈⎪⎪=⎨⎪--∈⎪⎩且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.(1)当[200,300]x ∈时,判断该项目能否获利?如果获利,求出最大利润:如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?23.党的十九大报告明确要求继续深化国有企业改革,发展混合所有制经济,培育具有全球竞争力的世界一流企业.这为我们深入推进公司改革发展指明了方向,提供了根本遵循.某企业抓住机遇推进生产改革,从单一产品转为生产A 、B 两种产品,根据市场调查与市场预测,A 产品的利润与投资成正比,其关系如图(1);B 产品的利润与投资的算术平方根成正比,其关系如图(2)(注:所示图中的横坐标表示投资金额,单位为万元)(1)分别求出A 、B 两种产品的利润表示为投资的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?24.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年:当420x ≤≤时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.25.某创业投资公司拟投资开发某种新能源产品,估计能获得25万元1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数;②()75f x ≤恒成立;③()5xf x ≤恒成立.) (1)判断函数() 1030x f x =+是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数()()51g x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围.(参考结论:函数()()0af x x a x=+>的增区间为(,-∞、)+∞,减区间为()、()26.对于定义域为D 的函数()f x ,若同时满足下列两个条件:①()f x 在D 上具有单调性;②存在区间[],a b D ⊆,使()f x 在区间,a b 上的值域也为,a b ,则称()f x 为D 上的“精彩函数”,区间,a b 为函数()f x 的“精彩区间”.(1)判断0,1是否为函数3y x =的“精彩区间”,并说明理由;(2)判断函数()()40f x x x x=+>是否为“精彩函数”,并说明理由;(3)若函数()g x m =是“精彩函数”,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0f x =可得出2x x a =-,将问题转化为曲线2yx 与曲线y x a =-有4个交点,数形结合可求得实数a 的取值范围,进而结合判别式可判断出方程210ax x ++=的实数根个数. 【详解】由()0f x =可得出2x x a =-,作出函数2yx 与函数y x a =-的图象如下图所示:,,x a x a y x a x a x a-≥⎧=-=⎨-+<⎩,若使得函数()2f x x x a =--有4个零点,则直线y x a =-与y x a =-+均与函数2y x 的图象有两个交点, 联立2y x a y x =-⎧⎨=⎩可得20x x a -+=,1140a ∆=->,解得14a <, 联立2y x a y x =-+⎧⎨=⎩可得20x x a +-=,2140a ∆=+>,解得14a >-, 当0a =时,则()()21f x x x xx =-=-,令()0f x =,可得0x =或1x =±,此时,函数()y f x =只有3个零点,不合乎题意. 综上所述,实数a 的取值范围是11,00,44⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭. 对于二次方程210ax x ++=,140a ∆=->, 因此,关于x 的二次方程210ax x ++=有两个实根. 故选:C. 【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.2.A解析:A 【分析】分别求出函数223y x x =--和()ln 1y x =-的零点,然后作出函数223y x x =--与函数()ln 1y x =-的图象,结合函数()f x 恰有两个零点,可得出实数λ的取值范围. 【详解】解方程2230x x --=,解得11x =-,23x =,解方程()ln 10x -=,解得2x =.作出函数223y x x =--与函数()ln 1y x =-的图象如下图所示:要使得函数()()223,ln 1,x x x f x x x λλ⎧--≤⎪=⎨->⎪⎩恰有两个零点,则12λ-≤<或3λ≥.因此,实数λ的取值范围是[)[)1,23,-+∞.故选:A. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.B解析:B 【分析】画出函数21,1()1,1x x x f x x x⎧-+<⎪=⎨⎪⎩的图象,函数()y f x a =-有三个零点等价于()y f x =与y a =的图象有3个不同交点,数形结合得答案. 【详解】作出函数21,1()1,1x x x f x x x⎧-+<⎪=⎨⎪⎩的图象如图,函数()y f x a =-有三个零点,即()y f x =与y a =的图象有3个不同交点, 由图可知,实数a 的取值范围为3(4,1). 故选:B. 【点睛】方法点睛:由零点求参数范围:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.4.D解析:D 【分析】分离参数,再根据指数函数性质求出. 【详解】解:21x m -=或21x m -=-,即21x m =-,或者21x m =+, 当211x m =->-时,有一个解, 当211x m =+>时,有一个解,所以1m 时,方程|2|1x m -=有两个不等实根, 故选:D . 【点睛】考查方程根的个数问题,利用了分类讨论法,分离参数法,属于中档题.5.C解析:C 【解析】根据题意可知,“姊妹点对”满足两点:都在函数图象上,且关于坐标原点对称. 可作出函数()220y x x x =+<的图象关于原点对称的图象,看它与函数()20x y x e=≥ 交点个数即可.如图所示:当1x =时,201xe << 观察图象可得:它们有2个交点. 故答案选C点睛:本题主要考查了函数的性质运用,理解题目中两点都在函数图象上,且关于原点对称的意思,结合函数图象即可得出结果6.B解析:B 【分析】求导函数,求出函数的极值,利用函数2()xf x x e a =-恰有三个零点,即可求实数a 的取值范围. 【详解】函数2xy x e =的导数为2'2(2)x x xy xe x e xe x =+=+, 令'0y =,则0x =或2-,20x -<<上单调递减,(,2),(0,)-∞-+∞上单调递增,所以0或2-是函数y 的极值点, 函数的极值为:224(0)0,(2)4f f ee -=-==, 函数2()xf x x e a =-恰有三个零点,则实数的取值范围是:24(0,)e . 故选B. 【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.7.A解析:A 【分析】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,即存在0[1,1]x ∈-,满足00()()f x f x -=-,即02332x x m -=--+有根,即可求出答案.【详解】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,∴存在0[1,1]x ∈-满足00()()f x f x -=-,003131x x m m -∴+-=--+,002332x x m -∴=--+,构造函数00332x x y -=--+,0[1,1]x ∈-,令03x t =,1[,3]3t ∈,1122()y t t t t=--+=-+在1[,1]3单调递增,在(1,3]单调递减,所以1t =取得最大值0,13t =或3t =取得最小值43-,4[,0]3y ∴∈-,4203m ∴-<,032m ∴-<, 故选:A . 【点睛】本题考查的知识点是指数函数的性质、函数的值域,新定义“倒戈函数”,正确理解新定义“倒戈函数”的含义,是解答的关键.8.C解析:C 【分析】由题意可得方程2mx e x =在(]0,8上有两个不等的实数根,设()(]ln ,0,8xf x x x=∈,求得函数的导数和单调性,可得极值和最值,画出()y f x =的图象,可得m 的不等式,即可求解. 【详解】由题意,方程2mx e x =在(]0,8上有两个不等的实数根, 即为2ln mx x =在(]0,8上有两个不等的实数根, 即1ln 2x m x=在(]0,8上有两个不等的实数根, 设()(]ln ,0,8x f x x x =∈,则()21ln xf x x -'=, 当(,8)x e ∈时,()0f x '<,函数()f x 递减, 当(0,)x e ∈时,()0f x '>,函数()f x 递增, 所以当x e =时,函数()f x 取得最大值1e,且()ln83ln 2888f ==, 所以3ln 2182m e ≤<,解得3ln 224m e≤<,故选C.【点睛】本题主要考查了函数与方程,以及导数在函数中的综合应用,其中解答中把方程的根转化为1ln 2x m x =在(]0,8上有两个不等的实数根,利用导数求得函数()ln x f x x =的单调性与最值是解答的关键,着重考查了转化思想,以及推理与运算能力.9.B解析:B 【详解】根据图像,当()()12f x f x =时,有()212f x ≤≤,将()1f x =代入函数()22f x x =--中,可解得11x =或13x =, 所以当()()12f x f x =时,113x ≤≤, 当[1,2]x ∈时,()f x x =,因为()()12f x f x =, 所以()()21211111x f x x f x x x x ==⋅=⋅⋅,因为1[1,2]x ∈,所以()12[1,4]x f x ⋅∈;当[2,3]x ∈时,()4f x x =-,因为()()12f x f x =, 所以()()21211111(4)(2)4x f x x f x x x x ==⋅-=--⋅+⋅,因为1[2,3]x ∈,所以()12[3,4]x f x ⋅∈; 综上所述,()12x f x ⋅的取值范围是[1,4]. 故选:B.【点睛】本题考查了分段函数与函数与方程的综合性问题,属于中档题型,当正确画出函数的图像后,重点抓住本题的一个关键的条件()12()f x f x =,这样就可以将求()12x f x ⋅的范围转化为求()11x f x ⋅的范围.10.D解析:D 【分析】根据已知条件可构造出函数关系式,进而得到0.710x =,根据对数运算法则可解方程求得近似值. 【详解】由题意可知,看到图形面积大小y 与图形实际面积x 之间满足0.7y x=∴若看到全国面积约为某县面积的10倍,则0.710x =,解得:10lg 1.437x =≈ lg 273lg3 1.43=≈ 27x ∴≈故选:D 【点睛】本题考查利用函数模型求解实际问题,关键是能够根据已知条件构造出合适的函数模型,结合对数运算性质求得结果.11.B解析:B 【分析】 令f(x)=0得211x x -+=0,所以211x x +=,再作出函数211y x y x=+=与的图像得解. 【详解】令f(x)=0得211x x -+=0,所以211x x +=,再作出函数211y x y x=+=与的图像, 由于两个函数的图像只有一个交点,所以零点的个数为1.故答案为B【点睛】(1)本题主要考查函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)零点问题的处理常用的方法有方程法、图像法、方程+图像法.12.B解析:B 【分析】根据题意将数据120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-,可得1412k e -⎛⎫= ⎪⎝⎭,再将40θ代入即可得8t =,即可得答案.【详解】由题意知:120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-得:()4602010020ke-=+-,解得1412k e -⎛⎫= ⎪⎝⎭所以当40θ时,()1440201002012t ⎛⎫ -⎪⎭=+⎝,解得:124114212t ⎛⎫== ⎛⎫ ⎝⎪⎭⎪⎭⎝, 所以8t =,所以再经过4分钟物体的温度是40C , 故选:B 【点睛】本题主要考查了指数函数的综合题,关键是弄清楚每个字母的含义,属于中档题.二、填空题13.【分析】根据题意得进而得由于故的取值范围是【详解】解:如图根据题意得满足:即关于直线对称故所以所以由于所以所以故答案为:【点睛】本题考查函数与方程的综合应用考查数形结合思想与运算求解能力是中档题本题 解析:(15,22)【分析】根据题意得122214x x +=,3410x x +=,进而得()()2334312103321142222x x x x x x -+---=+++,由于()33,4x ∈,故()()341233222x x x x --++的取值范围是(15,22).【详解】解:如图,根据题意得12,x x 满足:1227270x x -+-=,即122214x x +=.34,x x 关于直线5x =对称,故3410x x +=,所以4310x x =-,()33,4x ∈所以()()()()23343331210333721141422222x x x x x x x x --+----=+=+++,由于()33,4x ∈,()()3232321540,031x x x -=--+∈-+,所以()233120121,8x x --+∈所以()()()()()233433312103337211414215,222222x x x x x x x x -+-----++=+=+∈故答案为:(15,22) 【点睛】本题考查函数与方程的综合应用,考查数形结合思想与运算求解能力,是中档题.本题解题的关键在于根据题意作图得122214x x +=,3410x x +=,()33,4x ∈,故将问题转化为求2331102142x x -+-+,()33,4x ∈的值域问题.14.【分析】由对数函数的性质可得转化条件为由二次函数的图象与性质即可得解【详解】因为所以即函数的图象开口朝上对称轴为①当函数在上单调递增所以即所以解得;②当时函数在上单调递减所以即所以解得;③当时所以解解析:1,222,3⎡⎡⎤-⎣⎣⎦【分析】由对数函数的性质可得()123f x ≤<,转化条件为()2max 3g x ≥、()2min 2g x ≤,由二次函数的图象与性质即可得解. 【详解】因为1[2,6)x ∈,所以()()()126f f x f ≤<即()123f x ≤<,函数2()()1g x x a =-+的图象开口朝上,对称轴为x a =,①当0a ≤,函数()g x 在[0,2]上单调递增,所以()()()202g g x g ≤≤, 即()2221,45g x a a a ⎡⎤∈+-+⎣⎦,所以22124530a a a a ⎧+≤⎪-+≥⎨⎪≤⎩,解得10a -≤≤;②当2a ≥时,函数()g x 在[0,2]上单调递减,所以()()()220g g x g ≤≤, 即()22245,1g x a a a ⎡⎤∈-++⎣⎦,所以22452132a a a a ⎧-+≤⎪+≥⎨⎪≥⎩,解得23a ≤≤;③当01a <≤时,()()22max 245g x g a a ==-+,()()2min 12g x g a ==<,所以245301a a a ⎧-+≥⎨<≤⎩,解得02a <≤④当12a <<时,()()22max 01g x g a ==+,()()2min 12g x g a ==<,所以21312a a ⎧+≥⎨<<⎩2a ≤<;综上,实数a的取值范围是1,22,3⎡⎡⎤-⎣⎣⎦. 故答案为:1,22,3⎡⎡⎤-⎣⎣⎦.【点睛】解决本题的关键是将条件转化为()2max 3g x ≥、()2min 2g x ≤,结合二次函数的图象与性质讨论即可得解.15.【分析】先由题中条件得到方程在上有两个不同实数解且对任意恒成立分别求出的范围进而可得出结果【详解】由得且即且因为关于的方程有两个不同实数解所以方程在上有两个不同实数解且对任意恒成立令则函数在区间上有 解析:2,⎡⎣【分析】先由题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,分别求出m 的范围,进而可得出结果.【详解】x m =+得()224x x m -=+且240x -≥, 即222240x mx m ++-=且22x -≤≤,因为关于x x m =+有两个不同实数解,所以方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,令()22224f x x mx m =++-,[]2,2x ∈-,则函数()f x 在区间[]22-,上有两不同零点, 因为函数()22224f x x mx m =++-是开口向上,对称轴为x m =-的二次函数,因此只需()()()2220204840f f m m ⎧-≥⎪⎪≥⎨⎪∆=-->⎪⎩,解得m -<<又0x m +≥对任意[]2,2x ∈-恒成立,所以m x ≥-对任意[]2,2x ∈-恒成立, 因此只需2m ≥综上,2m ≤<故答案为:2,⎡⎣. 【点睛】 关键点点睛:求解本题的关键在于根据题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,(一定要注意0x m +≥),转化为一元二次方程根的分布问题求解即可.16.①②③④【分析】当时函数的最大值为最小值为所以任取都有恒成立故①正确;函数先增后减故②正确;根据图象知函数有3个零点故③正确;根据图象知根据对称性知故④正确【详解】函数当时函数的最大值为最小值为所以解析:①②③④ 【分析】当[2,)x ∈+∞时,函数()f x 的最大值为12,最小值为12-,所以任取12[2,,)x x ∈+∞,都有()()121f x f x -≤恒成立,故①正确;()1sin 4f x x π=,函数先增后减,故②正确;根据图象知,函数有3个零点,故③正确;根据图象知112m -<<-,根据对称性知123x x +=,故④正确.【详解】函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,当[2,)x ∈+∞时,函数()f x 的最大值为12,最小值为12-,所以任取12[2,,)x x∈+∞,都有()()121f x f x-≤恒成立,故①正确;当[]4,5x∈,[]40,1x-∈,故()()()1114sin4sin444f x f x x xππ=-=-=,函数先增后减,故②正确;令()()ln10y f x x=--=,即()()ln1f x x=-,同②,计算得到()[](](]sin,0,21sin,2,421sin,4,64x xf x x xx xπππ⎧⎪∈⎪⎪=∈⎨⎪⎪∈⎪⎩,画出函数图象,如图所示:根据图象知,函数有3个零点,故③正确;()()0f x m m=<有且只有两个不同的实根12,x x,根据图象知112m-<<-,根据对称性知123x x+=,故④正确;故答案为:①②③④.【点睛】方法点睛:函数零点问题的处理常用的方法有:(1)方程法:直接解方程得到函数的零点;(2)图像法:直接画出函数的图象得解;(3)方程+图像法:令()0f x=重新构造两个函数,数形结合分析得解.17.【分析】作出函数的图象及与函数的图象求出相切时的值即可得答案;【详解】分别作出函数的图象即当与相切时方程有3个不等的实数根两函数图象有3个交点由图可知时符合题意故答案为:【点睛】利用数形结合思想作出解析:4k>【分析】作出函数()11f xx=-的图象及与函数()g x kx=的图象,求出相切时k的值即可得答案;【详解】分别作出函数的图象,即21101kx kx kx x -=⇒-+=- 当()g x kx =与()11f x x =-相切时, 24040k k k k ⎧∆=-=⇒=⎨≠⎩,, 方程()()f x g x =有3个不等的实数根,∴两函数图象有3个交点,由图可知4k >时符合题意, 故答案为:4k >.【点睛】利用数形结合思想,作出两函数的图象,首先找到临界位置,即相切位置.18.【分析】将方程的根转化为函数零点问题再利用零点存在性定理求解【详解】由题知方程的两根为且故设则有故答案为:【点睛】本题考查二次函数根的分布问题需要学生熟悉二次函数的图像性质解决此类问题时常结合零点存解析:3(,1)4【分析】将方程的根转化为函数零点问题,再利用零点存在性定理求解. 【详解】由题知方程22(1)10kx k x k +-+-=(0)k >的两根为12,x x ,且110x -<<,201x <<,故设()f x =22(1)1kx k x k +-+-,(0)k >则有(1)2210103(0)10114(1)221034f k k kf k k kf k k kk⎧⎪-=-++->>⎧⎪⎪=-<⇒<⇒<<⎨⎨⎪⎪=+-+->⎩⎪>⎩,故答案为:3(,1)4.【点睛】本题考查二次函数根的分布问题,需要学生熟悉二次函数的图像性质,解决此类问题时常结合零点存在性定理解决.19.【分析】作出的图象可得和的图象有四个不同的交点不妨设交点横坐标由关于原点对称关于点对称即可得到所求的和【详解】作出的图象方程有四个不同的实数解等价为和的图象有四个不同的交点不妨设交点横坐标为且由关于解析:4【分析】作出()f x的图象,可得()y f x=和y b=的图象有四个不同的交点,不妨设交点横坐标1234x x x x<<<,由1x,2x关于原点对称,3x,4x关于点()2,0对称,即可得到所求的和.【详解】作出()()2121x xf xx x⎧≤⎪=⎨->⎪⎩,,的图象,方程()f x b=有四个不同的实数解,等价为()y f x=和y b=的图象有四个不同的交点,不妨设交点横坐标为1x,2x,3x,4x且1234x x x x<<<,由1x,2x关于原点对称,3x,4x关于点()2,0对称,可得12=0x x+,344x x+=,则12344x x x x +++=, 故答案为:4 【点睛】本题主要考查了函数方程的转化思想,考查数形结合的思想以及对称性的运用,属于中档题.20.3【解析】令则由题意可得函数与函数的图象有三个公共点画出函数的图象如图所示结合图象可得要使两函数的图象有三个公共点则答案:3解析:3 【解析】令()222f x x x =--,则由题意可得函数()y f x =与函数y m =的图象有三个公共点.画出函数()222f x x x =--的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则3m =. 答案:3三、解答题21.(1)3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫⎪⎝⎭,43k =,2m =-,4a =,3b =;(2)①19()94,[0,3]54f t t t t ⎛⎫=--∈ ⎪-⎝⎭;②52t =,min ()1f t =. 【分析】(1)根据题中给的边长,得到点,A C 的坐标,并代入直线,求,k m ,由点,D E 的坐标代入函数1b y x a =--,求,a b 的值;(2)①由(1)可知点43,1M t t ⎛⎫- ⎪-⎝⎭,利用点到直线的距离求()l f t =,②定义域下利用基本不等式求最值. 【详解】(1)由题意得:4OF BC ==,OA EC =,∴3,02A ⎛⎫⎪⎝⎭,9,42C ⎛⎫⎪⎝⎭,把3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭代入y kx m =+得302942k m k m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得43k =,2m =-. ∵70,4D ⎛⎫ ⎪⎝⎭,()3,4E ,把70,4D ⎛⎫ ⎪⎝⎭,()3,4E 代入1b y x a =--得3433b a b a ⎧=⎪⎪⎨⎪=⎪-⎩,解得:4a =,3b =.(2)①由(1)得:M 点在314y x =--上,∴43,1M t t ⎛⎫- ⎪-⎝⎭,[0,3]t ∈, ∴桥MN 的长l为341219()(94),[0,3]54l f t t t t t --+===--∈-; ②由①得:1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦ 194(4)754t t ⎡⎤=----⎢⎥-⎣⎦, 而40t -<,904t <-,∴94(4)124t t ---≥=-, 当且仅当94(4)4t t --=--时即52t =时,“=”成立,∴min 1()12715f t =-+=. 【点睛】关键点点睛:本题考查函数应用题,函数模型的应用,基本不等式求最值. 本题的关键是最后一问,函数的变形,1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦,只有变形成这种形式,才能用基本不等式求最值.22.(1)不能获利,政府每月至少需要补贴5000元才能使该项目不亏损,(2)400【分析】(1)先确定该项目获得的函数,再利用配方法确定不会获利,从而可求政府每月至少需要补贴的费用;(2)确定食品残渣的每吨的平均处理成本函数,分别求出分段函数的最小值,即可求得结论【详解】解:(1)当[200,300]x ∈时,该项目获利为S ,则2211200(20080000)(400)22S x x x x =--+=--, 所以当[200,300]x ∈时,0S <,因此该项目不会获利,当300x =时,S 取得最大值5000-,所以政府每月至少需要补贴5000元才能使项目不亏损,(2)由题意可知,生活垃圾每吨的平均处理成本为21805040,[120,144)3180000200,[144,500)2x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩, 当[120,144)x ∈时,21(120)2403y x x =-+, 所以当120x =时,y x取得最小值240; 当[144,500)x ∈时,1800002002002002y x x x =+-≥=,当且仅当1800002x x =,即400x =时,y x取得最小值200, 因为240200>,所以当每月处理量为400吨时,才能使每吨的平均处理成本最低【点睛】关键点点睛:此题考查基本不等式在最值问题中的应用,函数模型的选择与应用,考查函数模型的构建,考查函数的最值,解题的关键是根据题意确定函数关系式,属于中档题23.(1)A 产品的利润为1()(0)2f x x x =≥,B产品的利润为()0)g x x =≥;(2)A 产品投入6万元,B 产品投入4万元时取得最大利润,最大利润为7万元.【分析】 (1)由题设1()f x k x =,()g x k =(2)列出企业利润的函数解析式21()(10)10)y f x g x x x =+-=+≤≤换元法求得函数最值得解.【详解】(1)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元 由题设1()f x k x =,()g x k =,由图知()21f =,故112k =,又(4)4g =,∴22k =. 从而1()(0)2f x x x =≥,()0)g x x =≥.(2)设A 产品投入x 万元,则B 产品投入10x -万元,设企业利润为y 万元21()(10)10)y f x g x x x =+-=+≤≤令t =21(2)7(02y t t =--+≤≤ 当2t =时,max 7y =,此时6x =.【点睛】函数最值问题中函数表达式中若含有根式,通常采用换元法求解函数最值.24.(1)()()2,04,15,420,82x x N v x x x N **⎧≤<∈⎪=⎨-+≤≤∈⎪⎩;(2)当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大为252千克/立方米. 【分析】 (1)由题意:当04x ≤<时,()2v x =.当420x ≤时,设()v x ax b =+,()v x ax b =+在[4,20]是减函数,由已知得20042a b a b +=⎧⎨+=⎩,能求出函数()v x . (2)依题意并由(1),22,04,*()12,420,*85x x x N f x x x x x N ≤<∈⎧⎪=⎨-+≤≤∈⎪⎩,根据分段函数的性质求出各段的最大值,再取两者中较大的即可,由此能求出结果.【详解】解:(1)由题意:当04x ≤<时,()2v x =.当420x ≤≤时,设()v x ax b =+,显然()v x ax b =+在[4,20]是减函数,由已知得20042a b a b +=⎧⎨+=⎩, 解得18a =-,52b =, 故函数**2,04,()15.420,82x x N v x x x x N ⎧≤<∈⎪=⎨-+≤≤∈⎪⎩ (2)依题意并由(1)得22,04,*()12,420,*85x x x N f x x x x x N ≤<∈⎧⎪=⎨-+≤≤∈⎪⎩, 当04x ≤<时,()f x 为增函数,且()4428f =⨯=.当420x ≤≤时,22121()(10)12.5858f x x x x =-+=--+, ()(10)12.5max f x f ==.所以,当020x ≤≤时,()f x 的最大值为12.5.当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为12.5千克/立方米.【点睛】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.25.(1)函数模型()1030x f x =+,不符合公司要求;详见解析;(2)[]1,2. 【分析】(1)研究函数()1030x f x =+的单调性与值域,验证该函数是否满足题中三个要求,即可得出结论;(2)先求出函数()y g x =的最大值()()max 1600405g x g a ==-,由40575a -≤求出实数a 的范围,在利用参变量分离法求出满足()5x g x ≤恒成立时实数a 的取值范围,由此可得出实数a 的取值范围.【详解】(1)对于函数模型()1030x f x =+, 当[]25,1600x ∈时,函数()y f x =是单调递增函数,则()()160075f x f ≤≤显然恒成立,若函数()5x f x ≤恒成立,即10305x x +≤,解得60x ≥,则()5x f x ≤不恒成立, 综上所述,函数模型()1030x f x =+,满足基本要求①②,但是不满足③, 故函数模型()1030x f x =+,不符合公司要求;(2)当[]25,1600x ∈时,()()51g x a =≥单调递增,∴函数()y g x =的最大值为()16005405g a ==-,由题意可得40575a -≤,解得2a ≤.设()55x g x =≤恒成立,2255x a x ⎛⎫∴≤+ ⎪⎝⎭恒成立,即225225x a x ≤++, 对于函数2251252525x y x x x ⎛⎫=+=+ ⎪⎝⎭,由题意可知,该函数在25x =处取得最小值,即min 252522525y =+=,2224a ∴≤+=,1a ≥,12a ∴≤≤. 因此,实数a 的取值范围是[]1,2. 【点睛】本题考查函数模型的选择,本质上就是考查函数基本性质的应用,同时也考查了函数不等式恒成立问题,在求解含单参数的不等式恒成立问题,可充分利用参变量分离法转化为函数最值问题来求解,考查分析问题与解决问题的能力,属于中等题.26.(1)是“精彩区间”,理由见解析;(2)不是“精彩函数”,理由见解析;(3)1744m -<≤- 【分析】 (1)先判断函数3y x =是否满足“精彩函数”的条件,从而可判断0,1是否为函数3y x=的“精彩区间”;(2)判断函数()()40f x x x x=+>是否满足“精彩函数”的条件即可; (3)由()g x 是“精彩函数”,可知()g x x =至少存在两个不等的实数解,可转化为()222140x m x m -++-=有两个不等的实数根,两实根都不小于4-和m ,结合二次函数的性质,求出m 的取值范围.【详解】(1)由题意,3y x =是R 上的增函数,易知3y x =在0,1上的值域为0,1,所以函数3y x =是“精彩区间”,0,1是该函数的“精彩区间”.(2)不是精彩函数,证明如下:因为函数()()40f x x x x =+>在区间()0,2上单调递减,在区间2,上单调递增, 所以函数()4f x x x =+在定义域0,上不单调,不满足“精彩函数”的第一个条件, 所以函数()()40f x x x x=+>不是“精彩函数”.(3)由题意,函数()g x m =的定义域为[)4,-+∞,且()g x 在定义域上为单调递增函数,因为函数()g x m 是“精彩函数”m x =至少存在两个不等的实数解, 方程整理得()222140x m x m -++-=, 所以该方程有两个不等的实数根,设为12,x x ,不妨设21x x >,则214x x >≥-,。
第四章《牛顿运动定律》单元检测题满分100分,时间90分钟.一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.在谷物的收割和脱粒过程中,小石子、草屑等杂物很容易和谷物混在一起,另外谷有瘪粒,为了将它们分离,湖北农村的农民常用一种叫“风谷”的农具即扬场机分选,如图所示,它的分选原理是()A.小石子质量最大,空气阻力最小,飞的最远B.空气阻力对质量不同的物体影响不同C.瘪谷物和草屑质量最小,在空气阻力作用下,反向加速度最大,飞的最远D.空气阻力使它们的速度变化率不同2.如图所示,图乙中用力F取代图甲中的m,且F=mg,其余器材完全相同,不计摩擦,图甲中小车的加速度为a1,图乙中小车的加速度为a2.则()A.a1=a2B.a1>a2 C.a1<a2D.无法判断3.静止在光滑水平面上的物体受到水平力F1、F2作用,F1、F2随时间变化的规律如图所示,第1s内物体保持静止,则()A.第2s内加速度减小,速度增大B.第3s内加速度减小,速度增大C.第4s内加速度减小,速度增大D.第5s末速度和加速度都为零4.直升机悬停在空中向地面投放装有救灾物资的箱子,如图所示.设投放初速度为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态.在箱子下落过程中,下列说法正确的是()A.箱内物体对箱子底部始终没有压力B.箱子刚从飞机上投下时,箱内物体受到的支持力最大C.箱子接近地面时,箱内物体受到的支持力比刚投下时大D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来”5.质量为m的金属盒获得大小为v0的初速度后在水平面上最多能滑行s距离,如果在盒中填满油泥,使它的总质量变为2m,再使其以v0初速度沿同一水平面滑行,则它滑行的最大距离为()A.s2B.2s C.s4D.s6.如图所示,一油罐车在车的尾部有一条金属链条,以防止静电.当油罐车沿水平方向做匀加速直线运动时,金属链条的尾端离开了地面,若链条很细,各环节之间的摩擦不计,且链条质量不是均匀分布的(越往下越细),则在油罐车沿水平面做匀加速直线运动时(在下图中,链条上端连在车尾端,汽车向右运动).链条的形态是下列哪一种.()7.某人在静止的湖面上竖直上抛一小铁球,小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中.不计空气阻力,取向上为正方向,在如图所示的v-t图象中,最能反映小球运动过程的是()8.如下图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点,今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法中正确的是()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B到C一直减速运动D.物体在B点所受合力为零9.几位同学为了探究电梯起动和制动时的运动状态变化情况,他们将体重计放在电梯中,一位同学站在体重计上,然后乘坐电梯从1层直接到10层,之后又从10层直接回到1层.用照相机进行了相关记录,如图所示.图1为电梯静止时体重计的照片,图2、图3、图4和图5分别为电梯运动过程中体重计的照片.根据照片推断正确的是()A.根据图2推断电梯一定处于加速上升过程,电梯内同学可能处于超重状态B.根据图3推断电梯一定处于减速下降过程,电梯内同学可能处于失重状态C.根据图4推断电梯可能处于减速上升过程,电梯内同学一定处于失重状态D.根据图5推断电梯可能处于加速下降过程,电梯内同学一定处于超重状态10.一辆运送沙子的自卸卡车装满了沙子,沙子和卡车车厢底部材料的动摩擦因数为μ2,沙子之间的动摩擦因数为μ1,车厢的倾斜角用θ表示(已知μ2>μ1)则()A.要顺利地卸干净全部沙子,应满足tanθ>μ2B.要顺利地卸干净全部沙子,应满足sinθ>μ2C.只卸去部分沙子,车上还留有一部分,应μ1<tanθ<μ2D.只卸去部分沙子,车上还留有一部分,应μ1<sinθ<μ2二、填空题(共3小题,共16分.)11.(4分)表内为某同学利用光电门研究小车在斜面上运动时通过某点的速度情况,请将表格填写完整.体现了物理学中用物体在某处极短时间内的________来等效替代瞬时速度的思想方法.12.(6分)某同学用下图所示装置测定重力加速度(已知打点频率为50Hz)(1)实验时下面的步骤先后顺序是________.A.释放纸带B.打开打点计时器(2)打出的纸带如下图所示,可以判断实验时重物连接在纸带的________端.(选填“左”或“右”).(3)已知纸带上记录的点为打点计时器打的点,打点计时器在打C点时物体的瞬时速度大小为________m/s,所测得的重力加速度大小为________m/s2.(4)若当地的重力加速度数值为9.8m/s2,请列出测量值与当地重力加速度的值有差异的一个原因__________________________________________.13.(6分)某同学为估测摩托车在水泥路上行驶时所受的牵引力,设计了下述实验:将输液用的500 mL玻璃瓶装适量水后,连同输液管一起绑在摩托车上,调节输液管的滴水速度,刚好每隔1.00 s滴一滴.该同学骑摩托车,先使之加速至某一速度,然后熄火,让摩托车沿直线滑行.下图为某次实验中水泥路面上的部分水滴(左侧为起点)的图示.设该同学的质量为50 kg,摩托车质量为75 kg,g=10 m/s2,根据该同学的实验结果可估算:(1)摩托车加速时的加速度大小为________ m/s2.(2)摩托车滑行时的加速度大小为________ m/s2.(3)摩托车加速时的牵引力大小为________ N.三、论述、计算题(本题共4小题,共44分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)14.(10分)在微型汽车的随车工具中,有一种替代“液压千斤顶”的简单机械顶,其结构如图所示,AB、BC、CD、DA为四根相同的钢管,A、B、C、D四点用铰链相连接,BD为一螺栓,其螺母在D点外侧,此“顶”在工作时,不断拧紧D外螺母,使BD间距离变小,从而使AC间距离增大,以达到顶起汽车一个轮子的目的.若某微型汽车重1.2t,在修理汽车的一个轮胎时,将汽车的这个轮子顶起,在轮子刚好离地时,AB、BC成120°角,求此时钢管的作用力约多大?(假设轮子被顶起时A端受到的压力等于车的重力,取g=10m/s2).15.(11分)直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角θ1=45°,直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角θ2=14°(如图所示),如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M.(取重力加速度g=10m/s2,sin14°≈0.242,cos14°≈0.970)16.(11分)(山东潍坊09模拟)如图甲所示,水平传送带顺时针方向匀速运动.从传送带左端P先后由静止轻轻放上三个物体A、B、C,物体A经t A=9.5s到达传送带另一端Q,物体B经t B=10s到达传送带另一端Q,若释放物体时刻作为t=0时刻,分别作出三物体的速度图象如图乙、丙、丁所示,求:(1)传送带的速度v0=?(2)传送带的长度l=?(3)物体A、B、C与传送带间的摩擦因数各是多大?(4)物体C从传送带左端P到右端Q所用的时间t c=?17.(12分)为了安全,在公路上行驶的汽车之间应保持必要的距离(如下图所示),已知某高速公路的最高限速v =120 km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)为t=0.50 s,刹车时汽车受到阻力的大小F为汽车重力的0.40倍,该高速公路上汽车间的距离s至少应为多少?(取重力加速度g=10 m/s2)答案:1、D解析:由题意知,小石子、实谷粒和瘪谷及草屑在离开“风谷”机时具有相等的初速,空气阻力可视为相差不大,但小石子和实谷粒的质量较大,而质量是惯性的惟一量度,则在飞行过程中,小石子质量最大,速度变化率最小,飞得最远;而瘪谷物质量最小,速度变化率最大,飞得最近.2、C3、C4、答案:C解析:因为箱子所受的阻力与速度的平方成正比,箱子刚开始下落时处于完全失重状态,随着下落速度的增大,其所受的阻力增大,物体对底部的压力增大,所以C对,A、B、D错.5、答案:D解析:设金属盒与水平面间的动摩擦因数为μ,未装油泥有-μmg=ma ①-v20=2as ②装满油泥后有:-μ2mg=2m·a′③-v20=2a′·s′④解①②③④可得:s′=s6、B7、答案:C解析:小球在空中上升阶段和下降阶段所受到的合外力相同,所以加速度也相同;小球进入水中至进入淤泥之前,受到重力和水的阻力,向下运动的加速度小于重力加速度即速度—时间图象的斜率减小;进入淤泥之后,受到的阻力大于球的重力,小球做匀减速直线运动,所以正确的选项为C.8、答案:C解析:因为速度变大或变小取决于速度方向与加速度方向的关系(当a与v同向时,v变大;当a与v反向时,v变小),而加速度由合力决定,所以要分析v、a的大小变化,必须先分析物体受到的合力的变化.物体在A点时受两个力作用,向右的弹力kx和向左的摩擦力F′.合力F合=kx-F′,物体从A→B过程中,弹力由大于F′减至零,所以开始一段合力向右,中途有一点合力为零,然后合力向左,而v一直向右,故先作加速度越来越小的加速运动,在A→B中途有一点加速度为零,速度达最大,接着做加速度越来越大的减速运动.物体从B→C过程中,F合=F′为恒力,向左,所以继续做加速度不变的匀减速运动.9、C10、答案:AC解析:沙子在车厢底部匀速滑动或恰能静止平衡时,有mg sinθ=μ2mg cosθ,则tanθ=μ2,即当tanθ>μ2时,沙子会全部从车厢里滑下.若要沙子部分滑卸,则应tanθ<μ2,且tanθ>μ1,故选A、C项.11、答案:0.31平均速度12、答案:(1)BA(2)左(3)1.17m/s9.75m/s2(4)纸带与打点计时器的摩擦;空气阻力13、答案:(1)3.79(2)0.19(3)498解析:由题中上图可知:Δx1=15.89 m-8.31 m=2a1T2Δx2=12.11 m-4.52 m=2a2T2所以a=a1+a22=3.79 m/s2.(2)由题中下图可知:Δx ′1=10.17 m -9.79 m =2a ′1T 2 Δx ′2=9.98 m -9.61 m =2a ′2T 2 所以a ′=a ′1+a ′22=0.19 m/s 2(3)由牛顿第二定律知: 加速阶段:F -f =ma 减速阶段:f =ma ′其中m =50 kg +75 kg =125 kg 解得牵引力F =498 N.14、答案:6.9×103N解析:设钢管的作用力为F T ,对A 端受力分析如图所示,A 端受三个力而平衡:两管的作用力F T 和车对A 端的压力F ,这三个力的合力为零,则两管的作用力F T 的合力等于压力F =mg ,由几何关系得F T =mg /2cos30°=33mg =6.9×103N.15、答案:4.5×103kg解析:直升机取水前,水箱受力平衡T 1sin θ1-f =0① T 1cos θ1-mg =0② 由①②得f =mg tan θ1③ 直升机返回,由牛顿第二定律 T 2sin θ2-f =(m +M )a ④ T 2cos θ2-(m +M )g =0⑤由④⑤得,水箱中水的质量M =4.5×103kg16、答案:(1)4m/s (2)36m (3)0.4;0.2;0.0125 (4)24s解析:(1)传送带速度为:v 0=4m/s (2)以B 的图象为例,l =v 02t 1+v 0t 2即:l =36m(3)μmg =ma a =μg A :a 1=4m/s 2 μ1=0.4 B :a 2=2m/s 2 μ2=0.2 C :l =v c2t c 得:t c =24sa 3=v c t c =18 μ3=180=0.0125(4)t c =24s17、答案:156 m解析:司机发现前车停止,在反应时间t =0.50 s 内仍做匀速运动,刹车后摩擦阻力提供刹车时的加速度,使车做匀减速直线运动,达前车位置时,汽车的速度应为零.当汽车速度达到v =120 km/h =1003m/s 时 反应时间内行驶距离x 1=v t =1003×0.5 m =503m 刹车后的加速度a =-F m =-0.40mgm =-4 m/s 2 由公式v 21-v 20=2ax 知0-(1003)2=-2×4x 2 得刹车过程的位移x 2=1 2509m所以公路上汽车间距离至少为s =x 1+x 2=156 m.。
必修1第四单元《发展社会主义市场经济》检测题一、单项选择题1.位于某地区的甲、乙两市水资源拥有量差别较大。
缺水的乙市出资2亿元向甲市买了5000万立方米水资源的永久使用权,用以解决本市水资源供不应求的问题,这也使甲市获得了相应的收益。
水资源的市场调节有利于()A.提高资源配置效率B.调整区域经济结构C.发挥政府调控作用D.推动区域经济增长2.目前,我国网络购物人数已超1.2亿,个人网上购物销售额超过社会商品零售额的1%,但网络购物中的各种陷阱却层出不穷,阻碍了商品的正常交易。
要从根本上解决此问题,就需要()A.实施网店实名制B.消费者量入为出,适度消费C.建立健全社会信用制度D.坚持网购市场在公有制中的主体地位看下边的漫画。
据此回答第3~4题。
3.漫画中的乳品企业添加超标三聚氰胺谋取暴利的行为体现了市场调节具有的弱点()A.自发生B.盲目性C.滞后性D.灵活性4.该漫画给我们的启示是()A.国家应直接管理企业,才能保证国民经济的健康发展B.宏观调控应以市场机制充分发挥作用为基础C.市场经济的健康发展,需要加强国家的宏观调控D.只有以宏观调控为基础,才能使社会主义市场经济健康发展5.国家统计局数据显示,2009年,我国空调产量8078.2万台,已经成为世界上空调产量最大的国家,全球市场有70%的产品产自中国。
其中产销量位居前列的主要是国有企业和集体企业。
这反映了我国市场经济()A.坚持公有制的主体地位B.能够实行强有力的宏观调控C.以共同富裕为根本目标D.追求企业利益最大化6.“十一五”期间,我国经济增长8%的目标一直没有改变,而每年宏观调控政策的侧重点却不断变化,从“又快又好”到“又好又快”,从“好字优先”到“保增长”,再到“好字当头”,这表明()A.宏观调控政策必须每年变化一次B.我国国民经济发展速度不可超过8%C.宏观调控政策要根据客观经济发展状况适时调整D.宏观调控的唯一目标是促进经济增长7.2010年7月5日,国家发展改革委印发《2010年早籼稻最低收购价执行预案》的通知要求,对违反收购价执行预案的部门将按照《价格法》、《粮食流通管理条例》等有关规定进行查处。
这体现了国家宏观调控的_____()①经济手段②法律手段③行政手段④道德手段A.①②B.②③C.①③D.②④8.2010年7月2日,中国国家信息中心经济预测部主任范剑平称,中国将在2015年之前逐步取消钢铁和有色金属及其产品的出口退税,此举( )①有利于限制相关行业产能并减少能源消耗和碳排放②将导致钢铁企业亏损③将减少财政支出④有利于刺激钢铁企业改进技术,提高钢铁产品价值A.①②B.②③C.①③D.②④9.2010年7月5日,中国汽车产业蓝皮书《2010中国汽车产业发展报告》正式发布。
报告指出,2009年,在宏观经济复苏和一系列汽车消费政策刺激的双重推动下,中国汽车产业取得了惊人成就,产销量超过美国跃居世界第一。
随着市场的发展,产业结构也开始出现变化。
这说明()①行政手段是国家宏观调控的首选②社会主义市场经济的发展离不开国家的宏观调控③发挥宏观调控的作用有利于实现其目标④宏观调控在资源配置中偶尔发挥基础性作用A.①②B.①③C.②③D.③④10.社会主义市场经济之所以要加强宏观调控,是因为()①宏观调控是社会主义市场经济所特有的②要弥补市场调节的不足③我国社会主义性质决定的④社会主义公有制和共同富裕目标的要求A.①②③B.①②④C.①③④D.②③④11.发展低碳经济是建设节约型社会的重要元素,是一场关系到人与自然和谐相处的“社会革命”。
建设节约型社会要求()①禁止一切资源消耗过多的企业发展②我国全面提升产业结构,大力发展循环经济③企业走新型工业化道路④公民个人发扬艰苦奋斗、勤俭节约的精神A.①②③B.①②④C.①③④D.②③④12.我们要在21世纪头20年,集中力量,全面建设惠及十几亿人口的更高水平的小康社会。
下列哪些经济现象体现这一目标()①工业化基本实现②国内市场总体规模位居世界前列③生态环境良好④居民收入相等A.①②③B.①②④C.①③④D.②③④13.国务院总理温家宝多次表示,目前,人民生活总体上达到小康,但收入分配差距拉大的趋势还未根本扭转,今后,我们将进一步采取措施,缩小差距,在分配上“更加注重公平”。
这体现了()①我国经济建设以科学发展观为指导②社会主义的本质③国家注重宏观调控的方向④社会主义市场经济的根本目标A.①B.①②C.②③④D.①②③④14.2010年是实现“十一五”节能减排目标的决战之年,国家发改委强调要大力宣传节能的重要性、艰巨性,动员全民的力量参与节能工作。
继续深入开展节能减排进企业、进机关、进学校、进社区、进军营等活动,积极倡导节能的生产、生活方式和消费模式。
这样做有利于()①实现经济发展的速度、结构、质量和效益的统一②实现经济发展方式由粗放型向集约型转变③积极促进区域经济协调发展④贯彻落实科学发展观A.①②③B.①②④C.①③④D.②③④15.进入21世纪以来,越来越多的国家竞相开发和应用空间系统,太空部门的发展催生了新兴的“太空经济”。
即包括各种太空探索和太空活动所创造的产品、服务和市场,如空间技术与产品、卫星应用、空间科学、太空通讯、太空旅游、太空医疗、航天及太空文化产业、航天支援与保障服务以及其他相关产业等。
“太空经济”可以()①促进产业结构优化升级②提高人民生活水平③使航天工业成为我国的优势产业④提高产品的科技含量A.①②③B.②③④C.①②④D.①③④16.经过60年的大规模建设和调整,我国产业层次不断升级,结构不断优化,关系趋向合理。
1952年,我国三次产业比重分别为51%、20.8%、28.2%,2009年调整为10.6%、46.8%和42.6%,产业结构的现代化特征越来越明显。
我国不断优化产业结构,有利于()①促进资源合理配置②提高经济发展的质量和效益③促进国民经济又好又快发展④实现经济增长向依靠第一、第二、第三产业协同带动A.①B.①②C.①②③D.①②③④17.由美国引发的金融危机直到现在阴影仍然存在,对世界金融稳定和全球经济增长带来的威胁仍未全部消除。
这一事实给我国发展对外经济关系的警示有()①必须把独立自主、自力更生作为本国发展的根本基点②要减少与发达国家的经贸往来③在发展对外经济关系时要防范风险、趋利避害④加强多边经济合作、有效解决贸易争端A.①②B.①③C.②④ D.③④18.我国实行对外开放,发展对外经济关系与独立自主、自力更生的关系表述错误的是()A.我国实行对外开放,必须始终坚持独立自主、自力更生的原则B.实行对外开放是增强自力更生能力的重要途径C.我国坚持独立自主、自力更生为主,对外开放为辅D.独立自主、自力更生是在立足于自身发展的基础上实行对外开放19.在2010年南非世界杯上,虽然中国队与南非世界杯无缘,但“中国制造”却并未缺席这届世界杯。
除了“普天同庆”和“呜呜祖啦”以外,南非世界杯周边随处可见来自中国的产品,例如:哨子、国旗、假发、手环、头巾、座椅等。
这主要体现了()A.信息全球化B.贸易全球化C.资本全球化D.科技全球化20.我国2009年全年进出口总额2.2万亿美元,全年实际利用外商直接投资900亿美元。
非金融类企业对外直接投资和对外工程承包营业额分别达433亿美元和777亿美元。
这体现了提高开放型经济水平要做到()A.大力发展生产力B.创新利用外资方式,优化利用外资结构C.创新对外投资和合作的方式D.把“引进来”和“走出去”更好地结合起来21.中国企业“走出去”战略是中国经济和企业自身发展的需要,也是顺应经济全球化的要求。
中国企业实施“走出去”战略()①可以采用到境外办厂、承包工程、劳务输出等形式②必须坚持独立自主、自力更生原则③应当遵守和利用通行的国际规则,维护自身利益④要坚持以质取胜,培育自己的名牌,树立我国在国际上的良好形象A.①②③B.①②④C.②③④D.①②③④22.读表:2010内容2006年年机电类产品占外贸出口的比重20%50%高新技术产品占外贸出口的比重13%20%上述表格的内容反映出我国在“十一五”期间将( )①在对外开放中坚持出口多元化战略②调整出口产品结构,加快外贸增长方式转变③把扩大对外贸易作为推动经济增长的主要动力④实施科教兴国战略,增加高附加值产品出口A.①②③B.②③C.③④D.②④23.现在,跨国公司500强中有80%以上在中国投资开展业务,跨国公司在中国发展的新趋势表现出以占领与扩大在华市场作为对我国的主要投资取向。
下列选项中对跨国公司理解正确的是( )①它是指在本国拥有一个总部,并在其他国家或其他地区拥有子公司的国际性企业②经济全球化是通过跨国公司实现的③跨国公司推动了国际分工水平的提高④跨国公司的最大利益是实现经济全球化A.①②③B.①②④C.①③④D.②③④24.我国对外贸易总额(单位:亿美元)图表数据表明,改革开放以来我国()①在世界市场上的商品具有竞争优势②对外贸易支出大于收入②已成为世界贸易强国④对外贸易迅速发展A.①②B.①④C.③④D.①③25.2010年7月18日,光明食品集团旗下光明乳业发布公告称,拟出资3.82亿元人民币认购新西兰Synlait Milk公司2602万股新增普通股。
认购完成后,光明乳业将获得后者51%的股权。
这表明()A.我国经济发展应立足于国外B.我国企业参与国际合作与竞争C.我国企业拓宽利用外资的渠道D.我国的先进技术进入国际市场二、非选择题26.随着新能源汽车政策的出台,业内人士表示,充电站的发展“钱”景,已不可限量,电动汽车时代将‘呼啸而至’。
正是在这样的预期下,2010年5月以来,山东、天津、泉州、杭州、绍兴、柳州……从沿海到内陆各地,宣布进入充电站建设的省市已达10个之多。
目前,国家电网、南方电网、中石化和中海油等四大央企相继投入了充电站布局的争夺战中,还有众多民营企业也加入争夺行列。
据估算,电动汽车同样里程所耗电费是石油的三分之一,按成品油终端每年过万亿的营业规模计算,充电站的营业规模每年有望达到千亿元,但每个充电站平均投资约300万元,若兴建100座,需花费3亿元。
全国乘用车联合会副秘书长崔东树对此现象提醒说,应慎对充电站投资热。
“充电站的建设已经如火如荼,各方都在跑马圈地,抢占资源,但是目前已真正建设好充电站的各大城市中,来充电的车辆还没几辆。
”(1)运用市场经济相关知识简要分析材料中出现企业争夺战现象的原因及结果。
(2)从宏观调控角度为新能源汽车充电站产业的科学发展提供几点建议。
27.中共中央、国务院于2010年7月5日~6日在北京召开西部大开发工作会议。
国家主席胡锦涛发表重要讲话时强调,深入实施西部大开发战略是实现全面建设小康社会宏伟目标的重要任务,事关我国改革开放和社会主义现代化建设全局。