新北师大版数学必修5同步课件:§4-4.2 简单线性规划
- 格式:ppt
- 大小:4.35 MB
- 文档页数:47
学习资料4.2 简单线性规划学习目标核心素养1.了解目标函数、约束条件、二元线性规划问题、可行解、可行域、最优解等基本概念.(重点)2.掌握二元线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)1.通过学习与线性规划有关的概念,培养数学抽象素养.2.通过研究最优解的方法,提升数学运算能力.简单线性规划阅读教材P100~P101“例6”以上部分,完成下列问题(1)线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组)线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题①目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-错误!x+错误!,在y轴上的截距是错误!,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.②解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答"四步,即(ⅰ)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(ⅱ)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(ⅲ)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(ⅳ)答:写出答案.思考:(1)在线性约束条件下,最优解唯一吗?[提示]可能唯一,也可能不唯一.(2)若将目标函数z=3x+y看成直线方程时,z具有怎样的几何意义?[提示]由z=3x+y得y=-3x+z,z是直线在y轴上的截距.1.设变量x,y满足约束条件错误!则目标函数z=3x-y的最大值为()A.-4 B.0C.错误!D.4D[作出可行域,如图所示.联立{x+y-4=0,,x-3y+4=0,解得错误!当目标函数z=3x-y移到(2,2)时,z=3x-y有最大值4.]2.若实数x,y满足错误!则s=x+y的最小值为.2[如图所示阴影部分为可行域,由s=x+y得y=-x+s,由图可知,当直线y=-x+s与直线x+y-2=0重合时,s最小,即x=4,y=-2时,s的最小值为4-2=2.]3.如图,点(x,y)在四边形ABCD的内部和边界上运动,那么z=2x-y的最小值为.1[法一:目标函数z=2x-y可变形为y=2x-z,所以当直线y=2x-z在y轴上的截距最大时,z的值最小.移动直线2x-y=0,当直线移动到经过点A时,直线在y轴上的截距最大,即z的值最小,为2×1-1=1.法二:将点A,B,C,D的坐标分别代入目标函数,求出相应的z值,比较大小,得在A点处取得最小值为1.]4.已知点P(x,y)的坐标满足条件错误!点O为坐标原点,那么|PO|的最小值等于,最大值等于.2错误![画出约束条件对应的可行域,如图阴影部分所示,因为|PO|表示可行域上的点到原点的距离,从而使|PO|取得最小值的最优解为点A(1,1);使|PO|取得最大值的最优解为点B(1,3),所以|PO|min=2,|PO|max=错误!.]线性目标函数的最值问题【例1】的最大值为.错误![由题意画出可行域(如图所示),其中A(-2,-1),B错误!,C(0,1),由z=x+y知y=-x+z,当直线y=-x+z经过B错误!时,z取最大值错误!.]用图解法解决线性规划问题的关键和注意点,图解法是解决线性规划问题的有效方法.其关键在于平移目标函数对应的直线ax+by=0,看它经过哪个点(或哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,再注意到它的几何意义,从而确定是取最大值还是最小值.错误!1.若x ,y 满足约束条件错误!则z =x -2y 的最小值为 .-5 [画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5.]线性规划问题中的参数问题【例2】 已知变量x ,y 满足的约束条件为错误!若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.[解] 依据约束条件,画出可行域.∵直线x +2y -3=0的斜率k 1=-错误!, 目标函数z =ax +y (a >0)对应直线的斜率k 2=-a , 若符合题意,则需k 1>k 2.即-12>-a ,得a >错误!.含参数的线性目标函数问题的求解策略(1)约束条件中含有参数:此时可行域是可变的,应分情况作出可行域,结合条件求出不同情况下的参数值。
课题:二元一次不等式(组)与平面区域课型:新授课一、教材分析:本节所处的地位、特点、作用本节选自北师大教版《普通高中课程标准实验教科书》数学必修5第三章第四节第一课时内容,教学大纲对这部分内容的要求是了解二元一次不等式表示平面区域,了解线性规划的意义,并会简单的应用。
这是《新大纲》中增加的新内容,不仅为传统的高中数学注入了新鲜的血液,而且给学生提供了学数学、用数学的机会,体现了新课程理念。
在此之前,学生已经学习了直线的方程,已掌握二元一次方程与平面直线的对应关系,同时也学习了数形结合的思想方法。
为研究二元一次不等式与平面区域的对应关系做了准备。
这一节内容,是介绍直线方程的简单应用(即简单的线性规划)的基础,起到承前启后的作用。
二、学生情况分析:1)学习者的阶段性特征:通过已教过的经验和学生已有知识基础看,对于二元一次不等式(组)与平面区域二元一次不等式(组)与平面区域的学习,关键在于弄清楚和理解掌握口诀“直线定界,取点定域”,“系数化正、左小右大”。
学生前两节学习的基础上,对不等式的理性思维能力已经有了初步形成,但存在个别差异。
2)学习者个性特征:高一(E)班是普通班,而且是高一中数学比较差的一个班级。
全班整体数学基础比较薄弱。
在讲解的过程中要做到细致,耐心。
三、教学目标分析1、知识与技能:了解二元一次不等式(组)的相关概念,能画出二元一次不等式(组)表示的平面区域,会解决简单的关于二元一次不等式(组)的实际问题;2、过程与方法:学生在学会知识的过程中,培养学生运用数学方法解决问题的能力,会准确地阐述自己的思路和观点,着重培养学生的认知能力;3、情态与价值:通过本节内容的学习,培养学生的数学应用意识,体会数学在实际问题中的重要应用,提高学习数学的兴趣;通过自主探索、合作交流,增强数学的情感体验,提高创新意识。
四、教学重点、难点和关键教学重点:从实际问题中抽象出二元一次不等式(组),会画二元一次不等式(组)表示的平面区域;教学难点:准确画出二元一次不等式(组)表示平面区域;关键:理解掌握口诀“直线定界,取点定域”,“系数化正、左小右大”。
26.简单的线性规划问题(一)教学目标 班级______ 姓名____________1.了解线性规划的基本概念.2.掌握简单的线性规划问题的一般解法.教学过程一、线性规划的相关概念.1.线性规划的相关概念.(1)约束条件:关于变量x ,y 的不等式组.(2)线性约束条件:关于x ,y 的一次不等式组.(3)目标函数:要求最值的关于x ,y 的函数解析式.(4)线性目标函数:关于x ,y 的一次解析式.(5)可行解:满足线性约束条件的解),(y x . (6)可行域:由所有可行解组成的集合.(7)最优解:使目标函数取最值的可行解.(8)线性规划问题:在线性约束条件下求线性目标函数的最值问题.2.注意事项.(1)线性约束条件必须是关于x ,y 的二元一次不等式(或等式).(2)在线性约束条件下,最优解可能不唯一.(3)最优解一定是可行解,但可行解不一定是最优解.(4)线性规划问题不一定存在可行解.二、线性规划问题.1.用线性规划求最值的一般步骤:(1)画可行域;(2)分析几何意义;(3)找最优解,求最值.2.常用几何公式:(1)截距:直线b kx y +=(斜截式)与y 轴交点的纵坐标,即当0=x 时,y 的值b .(2)斜率:2121x x y y k --=,表示),(11y x ,),(22y x 两点连线的斜率. (3)两点间的距离:221221)()(y y x x d -+-=,表示),(11y x ,),(22y x 两点间的距离. (4)点到直线的距离:2200||B A C By Ax d +++=,点),(00y x 到直线0=++C By Ax 的距离.三、例题分析:1.用线性规划求最值.32≤+y x ,例1:设变量x ,y 的线性约束条件为 32≤+y x ,求分别目标函数y x z +=1, 0≥x ,0≥y .12+=x y z ,322223+-++=y x y x z 的最大值.02≥-+y x , 作业:若实数x ,y 满足 4≤x , 求x y S -=的最小值.5≤y ,。
第3章4.2(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题(每小题5分,共20分)1.若x ,y ∈R ,且⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x ,则z =x +2y 的最小值等于( )A .2B .3C .5D .9解析: 作出可行域如图所示,目标函数y =-12x +12z则过B (1,1)时z 取最小值z min =3答案: B2.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1D.715解析: 作出可行域如图所示令z =x +y ,则y =-x +z , ∴y =-x +z 过A (4,5)时,z 取最大值z max =9.答案: A3.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则yx -1的取值范围是( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,-1)D .[1,+∞)解析: 可行域如图阴影,y x -1的几何意义是区域内点与(1,0)连线的斜率,易求得yx -1>1或yx -1<-1. 答案: B4.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m =( )A .-2B .-1C .1D .2解析: 令z =x +y ,则y =-x +z 斜率为-1的直线向上平移时z 逐渐增大则过直线2x -y -3=0与x -my +1=0的交点时z 取到最大值联立⎩⎪⎨⎪⎧2x -y -3=0x -my +1=0可得:y =52m -1,x =3m +12m -1x +y =3m +62m -1=9 解得:m =1. 答案: C二、填空题(每小题5分,共10分)5.已知⎩⎪⎨⎪⎧ x ≥1,x -y +1≤0,2x -y -2≤0,则x 2+y 2的最小值是________.解析: 画出⎩⎪⎨⎪⎧x ≥1x -y +1≤02x -y -2≤0所表示的平面区域如图所示:由⎩⎪⎨⎪⎧x -y +1=0,x =1,解得A (1,2).而x 2+y 2表示阴影部分的点到原点的距离的平方,由图可知A 点到原点的距离为5,∴x 2+y 2的最小值为5.答案: 56.线性目标函数z =3x +2y ,在线性约束条件⎩⎪⎨⎪⎧x +y -3≥02x -y ≤0y ≤a下取得最大值时的最优解只有一个,则实数a 的取值范围是________.解析:作出线性约束条件⎩⎪⎨⎪⎧x +y -3≥02x -y ≤0y ≤a表示的平面区域,如图中阴影部分所示.因为取得最大值时的最优解只有一个,所以目标函数对应的直线与平面区域的边界线不平行,根据图形及直线的斜率,可得实数a 的取值范围是[2,+∞).答案: [2,+∞)三、解答题(每小题10分,共20分)7.设z =2x +y ,此函数解析式中变量x 、y 满足下列条件:⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,求z 的最大值和最小值.针对上述问题,请指出该问题中的目标函数、可行解、可行域以及最优解.解析: 作出二元一次不等式组⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1所表示的平面区域(如图所示),即为可行域;z =2x +y 即为目标函数;阴影部分内的每一组(x ,y )均为可行解.考虑z =2x +y ,将它变形为y =-2x +z ,这是斜率为-2,随z 变化的一族平行直线,z 是直线在y 轴上的截距,当直线截距最大时,z 的值最大.在直线与平行域相交的条件下,即在满足约束条件时目标函数z =2x +y 取得最大值;当直线截距最小时,z 的值最小,即在满足约束条件时目标函数z =2x +y 取得最小值.由图可见,当直线z =2x +y 经过可行域上的A 点时,截距最大,即z 最大.解方程组⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得A 的坐标为(5,2).所以z max =2×5+2=12.当直线z =2x +y 经过可行域上的点B 时,截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=0,x =1.得B 的坐标为(1,1).所以z min =2x +y =2×1+1=3.故使z =2x +y 取得最大值的最优解为(5,2),取得最小值的最优解为(1,1).8.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥02x -y -5≤0x +y -4≥0,求z =|x +2y -4|的最大值.解析: 先作出不等式组表示的平面区域,而目标函数的几何含义为该区域内的点到直线x +2y -4=0的距离的5倍.当然也可观察绝对值内代数式的符号.方法一:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5, 即其几何含义为该平面区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=02x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max =21.方法二:由图可知,区域内的点都在直线x +2y -4=0的上方,显然此时有x +2y -4>0,于是目标函数等价于z =x +2y -4,即转化为一般的线性规划问题.显然当直线经过点B 时,目标函数取得最大值为z max =21.尖子生题库☆☆☆9.(10分)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0y ≥0x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,求a 的值.解析: ∵x +2y +3x +1=1+2(y +1)x +1,而y +1x +1表示点(x ,y )与(-1,-1)连线的斜率,易知a >0,所以作出可行域如图所示,由题知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0-(-1)3a -(-1)=13a +1=14⇒a =1.。