10-3用样本估计总体2019高三一轮复习课件
- 格式:ppt
- 大小:1.39 MB
- 文档页数:41
第三节用样本估计总体总体分布的估计(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.知识点一频率分布直方图1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.易误提醒 (1)易把直方图与条形图混淆:两者的区别在于条形图是离散随机变量,纵坐标刻度为频数或频率,直方图是连续随机变量,连续随机变量在某一点上是没有频率的.(2)易忽视频率分布直方图中纵轴表示的应为频率组距.必记结论 由频率分布直方图进行相关计算时,需掌握下列关系式: (1)频率组距×组距=频率. (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数. [自测练习]1.某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为( )A .0.006B .0.005C .0.004 5D .0.002 5解析:由题意知,a =1-(0.02+0.03+0.04)×102×10=0.005.答案:B2.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析:设中间一组的频数为x ,依题意有x 80=14⎝⎛⎭⎫1-x 80,解得x =16,应选D. 答案:D知识点二 茎叶图 茎叶图的优点茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.易误提醒 在绘制茎叶图时,易遗漏重复出现的数据,重复出现的数据要重复记录,同时不要混淆茎叶图中茎与叶的含义.[自测练习]3.(2015·惠州模拟)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为( )A .19、13B .13、19C .20、18D .18、20解析:由茎叶图可知,甲的中位数为19,乙的中位数为13.故选A. 答案:A知识点三 样本的数字特征 1.众数、中位数、平均数 数字特征定义与求法优点与缺点众数一组数据中重复出现次数最多的数众数通常用于描述变量的值出现次数最多的数.但显然它对其他数据信息的忽视使得无法客观地反映总体特征中位数把一组数据按从小到大的顺序排列,处在中间位置的一个数据(或两个数据的平均数)中位数等分样本数据所占频率,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点平均数如果有n 个数据x 1,x 2,…,x n ,那么这n 个数的平均数x =x 1+x 2+…+x nn平均数与每一个样本数据有关,可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低2.标准差、方差(1)标准差:样本数据到平均数的一种平均距离,一般用s 表示,s = 1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)方差:标准差的平方s 2s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x 是样本平均数.易误提醒 (1)众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)平均数反映的是样本个体的平均水平,众数和中位数则反映样本中个体的“重心”.(3)实际问题中求得的平均数、众数和中位数应带上单位.必备方法 利用频率分布直方图求众数、中位数与平均数时易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.[自测练习]4.对于一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +C (i =1,2,3,…,n ),其中C ≠0,则下列结论正确的是( )A .平均数与方差均不变B .平均数变,方差保持不变C .平均数不变,方差变D .平均数与方差均发生变化解析:依题意,记原数据的平均数为x ,方差为s 2,则新数据的平均数为(x 1+C )+(x 2+C )+…+(x n +C )n =x +C ,即新数据的平均数改变;新数据的方差为1n {[(x 1+C )-(x +C )]2+[(x 2+C )-(x +C )]2+…+[(x n +C )-(x +C )]2}=s 2,即新数据的方差不变,故选B.答案:B5.(2015·高考陕西卷)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2 015=2×1 010,解得a 1=5.答案:5考点一频率分布直方图及应用|1.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x的值等于()A.0.12B.0.012C.0.18 D.0.018解析:依题意,0.054×10+10x+0.01×10+0.006×10×3=1,解得x=0.018,故选D.答案:D2.某市为了节约能源,拟出台“阶梯电价”制度,即制订住户月用电量的临界值a.若某住户某月用电量不超过a度,则按平价计费;若某月用电量超过a度,则超出部分按议价计费,未超出部分按平价计费.为确定a的值,随机调查了该市100户的月用电量,工作人员已将90户的月用电量填在了下面的频率分布表中,最后10户的月用电量(单位:度)为:18,63,43,119,65,77,29,97,52,100.(2)根据已有信息,试估计全市住户的平均月用电量(同一组数据用该区间的中点值作代表);(3)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a.解:(1)(2)由题意,用每小组的中点值代表该小组的平均月用电量,则100户住户组成的样本的平均月用电量为10×0.04+30×0.12+50×0.24+70×0.30+90×0.25+110×0.05=65(度).用样本估计总体,可知全市居民的平均月用电量约为65度.(3)计算累计频率,可得下表:的总面积(频率)为0.75,故有0.7+(a-80)×0.012 5=0.75,解得a=84,由样本估计总体,可得临界值a为84.绘制频率分布直方图时需注意(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;(2)频率分布直方图的纵坐标是频率组距,而不是频率.考点二 茎叶图|1.如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x ,y 的值分别为( )A .2,4B .4,4C .5,6D .6,4解析:x 甲=75+82+84+(80+x )+90+936=85,解得x =6,由图可知y =4,故选D.答案:D2.(2016·长沙一模)右面的茎叶图是某班学生在一次数学测验时的成绩:根据茎叶图,得出该班男、女生数学成绩的四个统计结论,其中错误的一项是( )A .15名女生成绩的平均分为78B .17名男生成绩的平均分为77C.女生成绩和男生成绩的中位数分别为82,80D.男生中的高分段和低分段均比女生多,相比较男生两极分化比较严重解析:对于A,15名女生成绩的平均分为115×(90+93+80+80+82+82+83+83+85+70+71+73+75+66+57)=78,A正确;对于B,17名男生成绩的平均分为117×(93+93+96+80+82+83+86+86+88+71+74+75+62+62+68+53+57)=77,故B正确;对于D,观察茎叶图,对男生、女生成绩进行比较,可知男生两极分化比较严重,D正确;对于C,根据女生和男生成绩数据分析可得,两组数据的中位数均为80,C错误,故选C.答案:C使用茎叶图时,需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.考点三样本的数字特征|(2015·高考广东卷)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?[解] (1)依题意,20×(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)=1, 解得x =0.007 5.∴直方图中x 的值为0.007 5.(2)由图可知,最高矩形的数据组为[220,240), ∴众数为220+2402=230.∵[160,220)的频率之和为(0.002+0.009 5+0.011)×20=0.45,∴依题意,设中位数为y , ∴0.45+(y -220)×0.012 5=0.5. 解得y =224,∴中位数为224.(3)月平均用电量在[220,240)的用户在四组用户中所占比例为0.012 50.012 5+0.007 5+0.005+0.002 5=511,∴月平均用电量在[220,240)的用户中应抽取11×511=5(户).(1)平均数与方差都是重要的数字特征,是对总体的一种简明地描述,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)利用方差优化比较时方差越小,效果越好.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s2甲,故甲更稳定.答案:甲11.概率与统计的综合问题的答题模板【典例】(12分)(2015·高考全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频数分布表分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:[思路点拨](1)因为在频率分布直方图上,纵坐标表示的是频率与组距的比值,根据频数求出频率,进而求出频率与组距的比值,根据频率分布直方图可看出满意度评分的平均值的大小和分散程度,中间的矩形面积越高越集中,越不分散;(2)B地区可直接借助低于70分的频数10求出不满意的概率,A地区利用频率分布直方图中小矩形的面积即为频率,可求出不满意的概率,进而比较大小.[规范解答](1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(6分)(2)A地区用户的满意度等级为不满意的概率大.(7分)记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,(8分)P(C B)的估计值为(0.005+0.02)×10=0.25.(10分)所以A地区用户的满意度等级为不满意的概率大.(12分)[模板形成]分析图表、审核数据↓作出频率分布直方图↓由直方图数据分析相应问题↓利用直方图求概率,作出判断↓反思解题过程注意规范化A组考点能力演练1.(2016·邢台摸底)样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其样本方差为( )A.105B.305C. 2 D .2解析:依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=15(12+02+12+22+22)=2,即所求的样本方差为2,选D.答案:D2.10名工人某天生产同一零件,生产的零件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a解析:依题意,这些数据由小到大依次是10,12,14,14,15,15,16,17,17,17,因此a <15,b =15,c =17,c >b >a ,选D.答案:D3.(2015·高考全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关解析:根据柱形图易得选项A ,B ,C 正确,2006年以来我国二氧化硫年排放量与年份负相关,选项D 错误.故选D.答案:D4.(2015·高考山东卷)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:由题中茎叶图,知x 甲=26+28+29+31+315=29,s 甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2] =3105; x 乙=28+29+30+31+325=30,s 乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2] = 2.所以x 甲<x 乙,s 甲>s 乙,故选B. 答案:B5.(2016·内江模拟)某公司10个销售店某月销售某产品数量(单位:台)的茎叶图如下:分组成[11,20),[20,30),[30,40]时,所作的频率分布直方图是( )解析:本题考查统计.利用排除法求解.由直方图的纵坐标是频率/组距,排除C 和D ;又第一组的频率是0.2,直方图中第一组的纵坐标是0.02,排除A ,故选B.答案:B6.(2015·郑州二检)已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m 、n 的比值mn =________.解析:由茎叶图可知甲的数据为27、30+m 、39,乙的数据为20+n 、32、34、38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m =3.由此可以得出甲的平均数为33,所以乙的平均数也为33,所以有20+n +32+34+384=33,所以n =8,所以m n =38.答案:387.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679解析:由数据表可得出乙班的数据波动性较大,则其方差较大,甲班的数据波动性较小,其方差较小,其平均值为7,方差s 2=15(1+0+0+1+0)=25.答案:258.(2015·高考湖北卷)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 解析:(1)0.1×1.5+0.1×2.5+0.1×a +0.1×2+0.1×0.8+0.1×0.2=1,解得a =3; (2)区间[0.5,0.9]内的频率为1-0.1×1.5-0.1×2.5=0.6,则该区间内购物者的人数为10 000×0.6=6 000.答案:(1)3 (2)6 0009.甲、乙两人参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图.(1)指出学生乙成绩的中位数;(2)现要从中选派一人参加数学竞赛,你认为应该派哪位学生参加? 解:(1)依题意知,学生乙成绩的中位数为83+852=84.(2)派甲参加比较合适,理由如下:x 甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85,x 乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 2甲=35.5,s 2乙=41,∵x 甲=x 乙,且s 2甲<s 2乙,∴甲的成绩比较稳定.10.(2016·唐山统考)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m 名学生进行体育测试.根据体育测试得到了这m 名学生的各项平均成绩(满足100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到频率分布直方图(如图).已知测试平均成绩在区间[30,60)内有20人.(1)求m 的值及中位数n ;(2)若该校学生测试平均成绩小于n ,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?解:(1)由频率分布直方图知第1组,第2组和第3组的频率分别是0.02,0.02和0.06, 则m ×(0.02+0.02+0.06)=20,解得m =200.由直方图可知,中位数n 位于[70,80)内,则0.02+0.02+0.06+0.22+0.04(n -70)=0.5,解得n =74.5.(2)设第i (i =1,2,3,4,5,6,7)组的频率和频数分别为p i 和x i ,由图知,p 1=0.02,p 2=0.02,p 3=0.06,p 4=0.22,p 5=0.40,p 6=0.18,p 7=0.10,则由x i =200×p i ,可得x 1=4,x 2=4,x 3=12,x 4=44,x 5=80,x 6=36,x 7=20, 故该校学生测试平均成绩是x=35x1+45x2+55x3+65x4+75x5+85x6+95x7200=74<74.5,所以学校应该适当增加体育活动时间.B组高考题型专练1.(2015·高考陕西卷)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123C.137 D.167解析:由扇形统计图可得,该校女教师人数为110×70%+150×(1-60%)=137.故选C.答案:C2.(2015·高考湖南卷)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,故运动员人数为4.答案:43.(2015·高考江苏卷)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 解析:由平均数公式可得这组数据的平均数为4+6+5+8+7+66=6.答案:64.(2015·高考全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2. P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.。
第二讲 用样本估计总体知识梳理·双基自测 知识梳理知识点一 用样本的频率分布估计总体分布 (1)频率分布表与频率分布直方图频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,从中可以看到整个样本数据的频率分布情况.绘制频率分布直方图的步骤为:①_求极差__;②_决定组距与组数__;③_将数据分组__;④_列频率分布表__;⑤_画频率分布直方图__.(2)频率分布折线图顺次连接频率分布直方图中_各小长方形上端的中点__,就得到频率分布折线图. (3)总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,它能提供更加精细的信息. 知识点二 茎叶图(1)茎叶图中茎是指_中间__的一列数,叶是从茎的_旁边__生长出来的数.(2)茎叶图的优点是可以_保留__原始数据,而且可以_随时__记录,这对数据的记录和表示都能带来方便.知识点三 样本的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x =_x 1+x 2+…+x nn__,反映了一组数据的平均水平.(4)标准差: s =_1n[x 1-x2+x 2-x2+…+x n -x2]__,反映了样本数据的离散程度.(5)方差:s 2=_1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]__,反映了样本数据的离散程度.重要结论(1)若一组数据x i (i =1,2,…,n)的平均数为x -,方差为s 2,则数据组ax i +b(i =1,2,…,n ,a ,b 为常数)的平均数为a x -+b ,方差为a 2·s 2.(2)频率分布直方图与众数、中位数与平均数的关系 ①最高的小长方形底边中点的横坐标即是众数.②中位数左边和右边的小长方形的面积和是相等的,均为12.③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ ) (6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( × ) 题组二 走进教材2.(P 81A 组T1改编)已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( B )A .95,94B .92,86C .99,86D .95,91[解析]由茎叶图可知,此组数据由小到大排列依次76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B .3.(P 7T1)如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有_25__人.[解析]100×(0.5×0.5)=25(人).题组三走向高考4.(2020·新课标Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为( C )A.0.01 B.0.1C.1 D.10[解析]∵样本数据x1,x2,…,x n的方差为0.01,∴根据任何一组数据同时扩大几倍方差将变为平方倍增长,∴数据10x1,10x2,…,10x n的方差为:100×0.01=1,故选C.5.(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( B )A.10 B.18C.20 D.36[解析]直径落在区间[5.43,5.47)的频率为(6.25+5)×0.02= 0.225,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.225×80 =18个,故选B.考点突破·互动探究考点一频率分布直方图——自主练透例1 (1)(2021·江西赣州十四县联考)中央电视台播出《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:组号分组频数频率第1组[160,165) 0.100笫2组[165,170) ①第3组[170,175) 20 ②第4组[175,180) 20 0.200第5组[180,185) 10 0.100合计100 1.00(ⅰ)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示).(ⅱ)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3,4,5组中用分层抽样抽取5名选手进入第二轮面试,则第3,4,5组每组各抽取多少名选手进入第二轮面试?(ⅲ)在(ⅱ)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官A面试,求第4组至少有一名选手被考官A面试的概率.(2)(2021·福建漳州质检)2018年9月的台风“山竹”对我国多个省市的财产造成重大损害,据统计直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的损失数据分成五组:[0,2 000],(2 000,4 000],(4 000,6 000],(6 000,8 000],(8 000,10 000](单位:元),得到如图所示的频率分布直方图.(ⅰ)试根据频率分布直方图估计该地区每个农户的损失(同一组中的数据用该区间的中点值代表);(ⅱ)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户损失超过4 000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8 000元的农户数为X,求X的分布列和数学期望.[解析](1)(ⅰ)第1组的频数为100×0.100=10,所以①处应填的数为100-(10+20+20+10)=40, 从而第2组的频率为40100=0.400.②处应填的数为1-(0.1+0.4+0.2+0.1)=0.200. 频率分布直方图如图所示.(ⅱ)因为第3,4,5组共有50名选手,所以利用分层抽样在50名选手中抽取5名选手进入第二轮面试时,每组抽取的人数分别为:第3组:2050×5=2,第4组:2050×5=2,第5组:1050×5=1,所以第3,4,5组分别抽取2人,2人,1人进入第二轮面试. (ⅲ)记“第4组至少有一名选手被考官A 面试”为事件A , 则P(A)=C 12C 13+C 22C 25=710. ⎝ ⎛⎭⎪⎫或P A =1-P A -=1-C 23C 25=710 (2)(ⅰ)记每个农户的平均损失为x -元,则x -=1 000×0.3+3 000×0.4+5 000×0.18+7 000×0.06+9 000×0.06=33 601;(ⅱ)由频率分布直方图,可得损失超过 4 000元的农户共有(0.000 09+0.000 03+0.000 03)×2 000×50=15(户),损失超过8 000元的农户共有0.000 03×2 000×50=3(户),随机抽取2户,则X 的可能取值为0,1,2; 计算P(X =0)=C 212C 215=2235,P(X =1)=C 112C 13C 215=1235,P(X =2)=C 23C 215=135.所以X 的分布列为:X0 1 2P2235 1235 135数学期望为E(X)=0×2235+1×1235+2×135=25.名师点拨应用频率分布直方图时的注意事项用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)频率分布直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.〔变式训练1〕(1)(2021·安徽“皖南八校”摸底)某校高三年级有400名学生,在一次数学测试中,成绩都在[80,130](单位:分)内,其频率分布直方图如图,则这次测试数学成绩不低于100分的人数为_220__.(2)(2021·山西适应性考试)某病毒引起的肺炎的潜伏期平均为7天左右,短的约2~3天,长的约10~14天,甚至有20余天.某医疗机构对400名确诊患者的潜伏期进行统计,整理得到以下频率分布直方图.根据该直方图估计:要使90%的患者显现出明显病状,需隔离观察的天数至少是( C )A .12B .13C .14D .15[解析] (1)根据频率分布直方图知: (2a +0.04+0.03+0.02)×10=1⇒a =0.005; 计算出数学成绩不低于100分的频率为: (0.03+0.02+0.005)×10=0.55;所以这次测试数学成绩不低于100分的人数为0.55×400=220人.(2)由题可知,第一,二,三,四,五组的频率分别为0.16,0.4,0.32,0.08,0.04. 因为前三组的频率和为0.88, 故要使90%的患者显现出明显病状,则需隔离观察的天数至少是:13+0.9-0.880.02=14,故选C .考点二 茎叶图——师生共研例2 (多选题)(2021·四川省乐山市调研改编)胡萝卜中含有大量的β-胡萝卜素,摄入人体消化器官后,可以转化为维生素A ,现从a ,b 两个品种的胡萝卜所含的β-胡萝卜素(单位mg)得到茎叶图如图所示,则下列说法正确的是( ABD )A .x a <x bB .a 的方差大于b 的方差C .b 品种的众数为3.31D .a 品种的中位数为3.27 [解析] 由茎叶图得:b 品种所含β-胡萝卜素普遍高于a 品种, ∴x a <x b ,故A 正确;a 品种的数据波动比b 品种的数据波动大, ∴a 的方差大于b 的方差,故B 正确; b 品种的众数为3.31与3.41,故C 错误; a 品种的数据的中位数为:3.23+3.312=3.27,故D 正确.名师点拨茎叶图的绘制及应用(1)茎叶图的绘制需注意:①“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;②重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.(2)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.〔变式训练2〕(2019·山东)如图所示的茎叶图记录了甲,乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 与y 的值分别为( A )A .3,5B .5,5C .3,7D .5,7[解析] 甲组数据的中位数为65,由甲、乙两组数据的中位数相等,得y =5.又甲、乙两组数据的平均值相等,∴15×(56+65+62+74+70+x)=15×(59+61+67+65+78),∴x =3.故选A . 考点三 样本数字特征——多维探究 角度1 样本数字特征与频率分布直方图例3 (1)如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( B )A .12.5,12.5B .12.5,13C .13,12.5D .13,13[解析] 由频率分布直方图可知,众数为10+152=12.5,因为0.04×5=0.2,0.1×5=0.5,在频率分布直方图中,中位数左边和右边的面积相等,所以中位数在区间[10,15)内.设中位数为x ,则(x -10)×0.1=0.5-0.2,解得x =13.角度2 样本数字特征与茎叶图(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:⎪⎪⎪897 74 0 1 0 x 9 1则7个剩余分数的方差为_367__.[解析] 由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4,∴s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.角度3 样本数字特征的计算(3)(2021·湖北武汉、襄阳、荆门、宜昌四地六校考试联盟联考)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s 2为( C )A .52B .3C .72D .4[解析] 设某7个数据分别为a 1,a 2,…,a 7, 则由题意得a 1+a 2+…+a 7=5×7=35, (a 1-5)2+(a 2-5)2+…+(a 7-5)2=4×7=28, 加入新数据5后的平均数x -=35+58=5,方差s 2=a 1-52+a 2-52+…+a 7-52+5-528=288=72.故选C .名师点拨平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数,中位数,众数描述其集中趋势,方差和标准差描述其波动大小.〔变式训练3〕(1)(角度1)某小区共有1 000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为_155__,平均数为_156.8__.(2)(角度2)(2021·陕西西安八校联考)在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( B )A .89 54.5B .89 53.5C .87 53.5D .89 54(3)高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x 1,x 2,x 3,…,x 100,它们的平均数为x -,方差为s 2:其中扫码支付使用的人数分别为3x 1+2,3x 2+2,3x 3+2,…,3x 100+2,它们的平均数为x -′,方差为s′2,则x -′,s′2分别为( C )A .3x -+2,3s 2+2 B .3x -,3s 2C .3x -+2,9s 2D .3x -+2,9s 2+2[解析] (1)中位数为:150+(170-150)×0.10.02×20=155.该组数据的平均数为x =0.005×20×120+0.015×20×140+0.020×20×160+0.005×20×180+0.003×20×200+0.002×20×220=156.8.(2)由题可知,中位数为:87+912=89,先求平均数:x -=78+79+84+86+87+87+91+94+98+98+99+9912=90,S 2=112[(-12)2+(-11)2+(-6)2+(-4)2+(-3)2+(-3)2+12+42+82+82+92+92]=53.5,故中位数为:89,方差为53.5,故选:B .(3)显然x -′=3x -+2,而每个数据上都加上或减去相同数不影响方差,但每个数据都乘以a ,则方差变为原方差的a 2倍,故选C .考点四 折线图——师生共研例4 (多选题)(2021·河南顶级名校模拟改编)如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论不正确的是( BCD )A .连续三天日平均温度的方差最大的是7日,8日,9日三天B .这15天日平均温度的极差为15 ℃C .由折线图能预测16日温度要低于19 ℃D .由折线图能预测本月温度小于25 ℃的天数少于温度大于25 ℃的天数[解析] A 选项,日平均温度的方差的大小取决于日平均温度的波动的大小,7,8,9三日的日平均温度的波动最大,故日平均温度的方差最大,正确;B 选项,这15天日平均温度的极差为18 ℃,B 错;C 选项,由折线图无法预测16日温度是否低于19 ℃,故C 错误;D 选项,由折线图无法预测本月温度小于25 ℃的天数是否少于温度大于25 ℃的天数,故D 错误.故选B 、C 、D .名师点拨折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.〔变式训练4〕(多选题)甲乙两名同学在本学期的六次考试成绩统计如图,甲乙两组数据的平均值分别为x -甲、x -乙,则( BC )A .每次考试甲的成绩都比乙的成绩高B .甲的成绩比乙稳定C .x -甲一定大于x -乙D .甲的成绩的极差大于乙的成绩的极差[解析] 第二次考试甲的成绩比乙低,A 错;由图可知甲的成绩比乙的成绩波动小,B 正确,D 错;甲的平均成绩显然比乙的平均成绩高,C 正确;故选B 、C .名师讲坛·素养提升 高考与频率分布直方图例5 (2021·安徽省池州市期末)高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].其中a ,b ,c 成等差数列且c =2a ,物理成绩统计如表.(说明:数学满分150分,物理满分100分)分组 [50,60) [60,70) [70,80) [80,90) [90,100]频数6920105(1)根据频率分布直方图,请估计数学成绩的平均分; (2)根据物理成绩统计表,请估计物理成绩的中位数;(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人.记X 为抽到两个“优”的学生人数,求X 的分布列和期望值.[解析] (1)根据频率分布直方图得, (a +b +2c +0.024+0.020+0.004)×10 =1, 又因a +c =2b ,c =2a ,解得a =0.008,b =0.012,c =0.016, 故数学成绩的平均分x -=85×0.04+95×0.12+105×0.16+115×0.2+125×0.24 +135×0.16+145×0.08=117.8(分),(2)总人数50分,由物理成绩统计表知,中位数在成绩区间[70,80), 所以物理成绩的中位数为75分.(3)数学成绩为“优”的同学有4人,物理成绩为“优”有5人,因为至少有一个“优”的同学总数为6名同学,故两科均为“优”的人数为3人,故X 的取值为0、1、2、3.P(X =0)=C 33C 36=120,P(X =1)=C 13C 23C 36=920,P(X =2)=C 23C 13C 36=920,P(X =3)=C 33C 36=120,所以分布列为:X 0 1 2 3 P120920920120∴期望值为E(X)=0×120+1×920+2×920+3×120=32.名师点拨(1)通过统计图可以很清楚地表示出各部分数量同总数之间的关系. (2)准确理解频率分布直方图的数据特点是解题关键. 〔变式训练5〕(2019·高考全国Ⅲ卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).[解析](1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。
课时作业1.(2022·毛坦厂中学月考)一个容量为32的样本,已知某组样本的频率为0.375,则该组样本的频数为( )A.4 B.8C.12 D.16【答案】 C2.(2022·西藏拉萨中学月考)某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为( )A.0.5 B.0.75C.1 D.1.25【解析】 四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.5+13.5+13.5+11.54=12.5,故四个小队积分的方差为14[(11.5-12.5)2×2+(13.5-12.5)2×2]=1,故选C.【答案】 C3.(2022·龙岩质检)党的十八大以来,脱贫攻坚取得显著成绩.2013年至2016年4年间,累计脱贫5 564万人,2017年各地根据实际进行创新,精准、高效地完成了脱贫任务.某地区对当地3 000户家庭的2017年所的年收入情况调查统计,年收入的频率分布直方图如图所示,数据(单位:千元)的分组依次为[20,40),[40,60),[60,80),[800,100],则年收入不超过6万的家庭大约为( )A.900户B.600户C.300户D.150户【解析】 由频率分布直方图可得年收入不超过6万的家庭的概率为:(0.005+0.01)×20=0.3,所以年收入不超过6万的家庭大约为:3 000×0.3=900,故选A.【答案】 A4.(2022·江苏模拟)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为( )A.48 B.52C.60 D.70【解析】 由题意可知,这些用户中,用电量落在区间[150,250]内的频率为1-(0.002 4+0.003 6+0.002 4+0.001 2)×50=0.52,所以用电量落在区间[150,250]内的户数为100×0.52=52,故选D.【答案】 D5.(多选) (2022·江苏模拟)已知数据x1,x2,…,x n的平均数为,标准差为s,则( ) A.数据x21,x2,…,x2n的平均数为,标准差为s2B.数据2x1,2x2,…,2x n的平均数为,标准差为2sC.数据x1+2,x2+2,…,x n+2的平均数为x+2,方差为s2D.数据2x1-2,2x2-2,…,2x n-2的平均数为-2,方差为2s2【解析】 取x1=1,x2=3,则=2,x21=1,x2=9,=5,故,A错误;数据2x1,2x2,…,2x n的平均数为2x,标准差为2s,B正确;数据x1+2,x2+2,…,x n+2的平均数为x+2,方差为s2,C正确;数据2x1-2,2x2-2,…,2x n-2的平均数为2x-2,方差为4s2,D错误.故选BC.【答案】 BC6.(多选)(2022·石家庄五校联考)下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法错误的是( )A.私人类电动汽车充电桩保有量增长率最高的年份是2018年B.公共类电动汽车充电桩保有量的中位数是25.7万台C.公共类电动汽车充电桩保有量的平均数为23.12万台D.从2017年开始,我国私人类电动汽车充电桩占比均超过50%【解析】 私人类电动汽车充电桩保有量增长率最高的年份是2016年,A错误;这5次统计的公共类电动汽车充电桩保有量的中位数是21.4万台,B错误;因为4.9+14.1+21.4+30+44.7=23.02,故C项错误,D项显然正确.故选:ABC.5【答案】 ABC7.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其平均数和方差分别为x 和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的平均数和方差分别为( )【解析】 因为每个数据都加上100,所以平均数也增加100,而离散程度应保持不变,即方差不变.【答案】 D8.(2022·宁夏长庆中学)某校为了了解全校高中学生十一小长假参加实践活动的情况,抽查了100名学生,统计他们假期参加实践活动的时间,绘成的频率分布直方图如图所示,估计这100名学生参加实践活动时间的中位数是( )A.7.2 B.7.16C.8.2 D.7【解析】 因为在频率分布直方图中,中位数两侧的面积相等,所以0.04×2+0.12×2+(x-6)×0.15=0.5,可解出x=7.2,故选A.【答案】 A9.(2022·泉州质检)已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为,方差为s2,则( )【解析】 分别根据数据的平均数和方差的计算公式,求得x,s2的值,即可得到答案.由题意,可得=70×50+80-60+70-9050=70,设收集的48个准确数据分别记为x1,x2, (x48)则75=150[(x1-70)2+(x2-70)2+…+(x48-70)2+(60-70)2+(90-70)2]=150[(x1-70)2+(x2-70)2+…+(x48-70)2+500],s2=150[(x1-70)2+(x2-70)2+…+(x48-70)2+(80-70)2+(70-70)2]=150[(x1-70)2+(x2-70)2+…+(x48-70)2+100]<75,所以s2<75.故选A.【答案】 A10.(多选)(2022·重庆模拟)2020年12月31日,我国第一支新冠疫苗“国药集团中国生物新冠灭活疫苗”获得国家药监局批准附条件上市,保护率为79.34%,中和抗体阳转率为99.52%,该疫苗将面向全民免费.所谓疫苗的保护率,是通过把人群分成两部分,一部分称为对照组,即注射安慰剂;另一部分称为疫苗组,即注射疫苗来进行的.当从对照组和疫苗组分别获得发病率后,就可以计算出疫苗的保护率=(对照组发病率-疫苗组发病率)/对照组发病率×100%.关于注射疫苗,下列说法正确的是( )A.只要注射了新冠疫苗,就一定不会感染新冠肺炎B.新冠疫苗的高度阳转率,使得新冠肺炎重症感染的风险大大降低C.若对照组10 000人,发病100人;疫苗组2 000人,发病80人,则保护率为60% D.若某疫苗的保护率为80%,对照组发病率为50%,那么在1 000个人注射了该疫苗后,一定有1 000个人发病【解析】 显然选项A错误,对于选项B:新冠疫苗的阳转率高说明有高滴度的抗体,当感染新冠肺炎后,肺炎症状将会大大降低,进而减少重症率,所以选项B正确,对于选项C:由保护率的计算公式可得:对照组和疫苗组的发病率分别为1%,0.4%,代入可得保护率为60%,所以选项C正确,对于选项D:虽然根据公式算出样本中疫苗组的发病率为10%,但实际是否会发病是随机事件,所以选项D错误.【答案】 BC11.样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为________.【解析】 由题意知15(a+0+1+2+3)=1,解得a=-1,所以样本方差为s2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.【答案】 212.(2022·西城一模)在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是________.【解析】 不能确定甲乙两校的男女比例,故①不正确;因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故②正确;因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系,故③正确.【答案】 ②③13.(2022·顺德二模)为了解某市公益志愿者的年龄分布情况,有关部门通过随机抽样,得到如图的频率分布直方图.(1)求a的值,并估计该市公益志愿者年龄的平均数(同一组中的数据用该组区间的中点值作代表);(2)根据世界卫生组织确定新的年龄分段,青年是指年龄15~44岁的年轻人.据统计,该市人口约为300万人,其中公益志愿者约占总人口的40%.试根据直方图估计该市青年公益志愿者的人数.【解】 (1)∵(0.005+0.01+0.02+a+0.025+0.01)×10=1,∴a=0.03该市公益志愿者的平均年龄:=20×0.05+30×0.1+40×0.2+50×0.3+60×0.25+70×0.1=49(2)由频率分布直方图可得年龄15~44岁的频率为:(0.005+0.01+0.02×910)×10=0.33,∴估计该市青年公益志愿者的人数为:300×40%×0.33=39.6(万) 14.(2022·临沂三模)某地教育主管部门对所管辖的学校进行年终督导评估,为了解某学校师生对学校教学管理的满意度,分别从教师和不同年级的学生中随机抽取若干师生,进行评分(满分100分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:满意度评分低于 60分 60分到 79分 80分到 89分 90分及 以上 满意度等级 不满意基本 满意满意 非常满意 已知满意度等级为基本满意的有136人.(1)求表中a 的值及不满意的人数;(2)从等级为不满意师生中按评分分层抽取6人了解不满意的原因,并从6人中选取2人担任整改监督员,求2人中恰有1人评分在[40,50)的概率;(3)若师生的满意指数不低于0.8,则该校可获评“教学管理先进单位”,根据你所学的统计知识,判断是否能获奖,并说明理由.(注:满意指数=满意程度的平均分100) 【解】 (1)由频率和为1,得(0.002+0.004+0.014+0.020+a +0.025)×10=1,解得a =0.035,设不满意的人数为x ,则(0.002+0.004)∶(0.014+0.020)=x ∶136, 解得x=24;(2)按评分分层抽取6人,应在评分在[40,50)的师生中抽取2人,分别记作A、B,在评分在[50,60)的师生中抽取4人,分别记为c、d、e、f,从这6人中选2人的所有基本事件为AB、Ac、Ad、Ae、Af、Bc、Bd、Be、Bf、cd、ce、cf、de、df、ef共15种,其中恰有1人评分在[40,50)包含的基本事件为Ac、Ad、Ae、Af、Bc、Bd、Be、Bf共8种,记“2人中恰有1人的评分在[40,50)”为事件A,则P(A)=8 15;(3)师生的满意指数为1100×(45×0.02+55×0.04+65×0.14+75×0.2+85×0.35+95×0.25)=0.807;师生的满意指数不低于0.8,可获评“教学管理先进单位”.。