概率论中几种具有可加性的分布及其关系
- 格式:doc
- 大小:1.23 MB
- 文档页数:13
高斯分布置信度1. 什么是高斯分布高斯分布,也称为正态分布,是概率论中最重要的分布之一。
它的分布函数具有双峰性,即左右两侧的概率密度相等,且较大的概率都集中在均值附近,呈现出钟形曲线。
高斯分布广泛应用于自然科学、社会科学和工程技术等领域,是一种重要的统计模型。
例如,在物理学中,高斯分布可以用来描述测量误差;在社会科学中,高斯分布可以用来描述人口统计数据;在金融领域中,高斯分布可以用来预测股票市场变化。
2. 高斯分布的特点高斯分布的概率密度函数可以表示为:$$ f(x)=\frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2} $$其中,μ是高斯分布的均值,σ是标准差。
标准差越大,曲线越平缓;标准差越小,曲线越陡峭。
均值决定了曲线的中心位置,而标准差则决定了曲线的宽度和形状。
高斯分布具有以下几个特点:1.对称性:高斯分布呈对称性,左右两边的概率密度相等。
2.集中性:高斯分布的大部分概率密度都集中在均值附近,随着距离均值的距离增大,概率密度逐渐减小。
3. 可加性:高斯分布的加和仍然是高斯分布。
3. 高斯分布的应用——置信度在实际应用中,高斯分布常常用于计算置信度。
置信度是指给定一个样本,样本中的值与某一给定的值相差在一定范围内的概率。
在机器学习、统计分析等领域中,置信度被广泛应用于比较模型之间的区别、评估模型的预测能力等。
例如,假设我们要对一批学生进行测量,记录这批学生的身高,假设我们已知这批学生的身高分布符合高斯分布,我们可以计算这批学生的平均身高和标准差。
然后,我们可以根据样本的平均值和标准差,计算在一定的置信度下这批学生的平均身高范围。
如果我们设置置信度为95%,即我们相信平均身高值在一定范围内的概率为95%,那么我们可以计算这个范围是多少。
通常情况下,计算出来的范围为平均身高± 1.96倍标准误差,其中1.96是高斯分布的标准正态分布表中对应的概率。
大学概率论知识点总结概率论是研究随机现象数量规律的数学分支,在大学数学中占据着重要的地位。
以下是对大学概率论中一些重要知识点的总结。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,抛一枚硬币,正面朝上就是一个随机事件。
2、样本空间样本空间是随机试验的所有可能结果组成的集合。
3、事件的关系与运算包括包含、相等、并、交、差、互斥(互不相容)和对立等关系。
4、概率的定义概率是对随机事件发生可能性大小的度量。
古典概型中,概率等于有利事件的个数除以总事件的个数;几何概型中,概率等于几何度量(如长度、面积、体积等)的比值。
5、概率的性质包括非负性、规范性和可加性等。
二、条件概率与乘法公式1、条件概率在已知某个事件发生的条件下,另一个事件发生的概率称为条件概率,记作 P(B|A)。
2、乘法公式P(AB) = P(A)P(B|A)三、全概率公式与贝叶斯公式1、全概率公式如果事件组 B1,B2,,Bn 是样本空间的一个划分,且 P(Bi) > 0(i = 1, 2,, n),则对任意事件 A 有 P(A) =ΣP(Bi)P(A|Bi)2、贝叶斯公式在全概率公式的基础上,如果已知 P(A),P(Bi) 和 P(A|Bi),可以计算在事件 A 发生的条件下,事件 Bi 发生的概率 P(Bi|A)四、随机变量及其分布1、随机变量是定义在样本空间上的实值函数。
2、离散型随机变量其取值为有限个或可列个。
常见的离散型随机变量分布有:二项分布、泊松分布等。
3、连续型随机变量其取值可以是某个区间内的任意实数。
常见的连续型随机变量分布有:均匀分布、正态分布、指数分布等。
4、随机变量的分布函数F(x) = P(X <= x),具有单调不减、右连续等性质。
五、多维随机变量及其分布1、二维随机变量由两个随机变量组成。
2、联合分布函数F(x, y) = P(X <= x, Y <= y)3、边缘分布包括边缘分布函数和边缘概率密度(离散型为边缘概率分布)。
§1.4 常用的分布及其分位数1. 卡平方分布卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。
当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑ii X 2 的分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分布密度 p(z )=⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛Γ--,,00,2212122其他z e x n z n n 式中的⎪⎭⎫ ⎝⎛Γ2n =u d e u u n ⎰∞+--012,称为Gamma 函数,且()1Γ=1,⎪⎭⎫ ⎝⎛Γ21=π。
2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。
证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +,Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +,即可得到Y+Z ~2χ(n +m )。
2. t 分布 若X 与Y 相互独立,且X ~N(0,1),Y ~2χ(n ),则Z =nY X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n nn ΓΓ+2121+-⎪⎪⎭⎫ ⎝⎛+n n z 。
请注意:t 分布的分布密度也是偶函数,且当n>30时,t分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。
这时, t 分布的分布函数值查N(0,1)的分布函数值表便可以得到。
3. F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~2χ(m ), 则Z=mY n X的分布称为第一自由度等于n 、第二自由度等于m 的F 分布,记作Z ~F (n , m ),它的分布密度 p(z)=⎪⎪⎪⎩⎪⎪⎪⎨⎧>++-⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛+Γ∙。
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。
以下是对概率论与数理统计知识点的超详细总结。
一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
随机事件通常用大写字母 A、B、C 等来表示。
(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。
(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。
2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。
3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。
4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。
5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。
6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。
(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。
2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。
3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。
概率论第⼗四章概率论初步重要知识点第⼗四章概率论初步第⼀节事件与概率⼀、随机事件和样本空间在研究⾃然界和⼈类社会时,⼈们可观察到各种现象,按它是否带有随机性将它们划分为两类。
⼀类是在⼀定条件下必然会发⽣的现象,称这类现象为确定性现象。
例如苹果从树上掉下来总会落到地上,三⾓形的内⾓和⼀定为180o。
另⼀类现象是在⼀定条件可能出现也可能不出现的现象,称这类现象为随机现象。
例如掷⼀枚质地均匀的硬币时,它可能出现正⾯向上,也可能出现反⾯向上等。
对于随机现象的⼀次观察,可以看作是⼀次试验,如果某种试验满⾜以下条件:(1)试验可在相同条件下重复地进⾏;(2)每次试验的结果可能不⽌⼀个,并且能事先确定试验的所有可能的结果; (3)每次试验的结果事先不可预测,称这种试验为随机试验。
随机试验的每⼀个可能的结果,称为基本事件,它们的全体,称作样本空间,通常⽤字母Ω表⽰。
样本空间的元素即基本事件,有时也称作样本点,常⽤ω表⽰。
例1、⼀次掷两颗骰⼦,观察每颗的点数解:Ω=}654321,|),{(、、、、、j i j i =其中()j i ,表⽰第⼀颗掷出i 点,第⼆颗掷出j 点,显然, Ω共有36个样本点。
例2、⼀个盒⼦中有⼗个完全相同的球,分别标以号码1021、、、Λ从中任取⼀球, 解:令 {}i i 取出球的号码为=则}1021{、、、Λ=Ω称样本空间Ω的某⼀⼦集为⼀个随机事件,简称事件,通常⽤⼤写英⽂字母A 、B 、C ……表⽰。
如在例2中, A={}取出球的标号为奇数因为Ω是所有基本事件所组成,因⽽在任⼀次试验中,必然要出现Ω中的某⼀些基本事件ω,即Ω∈ω,也即在试验中,Ω必然会发⽣,⼜⽤Ω来代表⼀个必然事件。
相应地,空集φ可以看作是Ω的⼦集,在任意⼀次试验中,不可能有φω∈,即φ永远不可能发⽣,所以φ是不可能事件。
我们可⽤集合论的观点研究事件,事件之间的关系与运算如下:(1)包含如果在⼀次试验中,事件A 发⽣必然导致事件B 发⽣,则称事件B 包含事件A ,记为B A ?由例2,{}5球的标号为=B ,则A B ?(2)等价如果B A ?同时A B ?,则称事件A 与事件B 等价,记为A=B 。
伽马分布推导
伽马分布是一种连续概率分布,它在统计学和概率论中占有重要地位。
伽马分布通常用于描述正数随机变量的分布情况,特别是当这些随机变量呈现偏态分布时。
伽马分布的参数包括形状参数α和尺度参数β,这两个参数共同决定了分布的形状和尺度。
伽马分布的推导可以从其概率密度函数开始。
伽马分布的概率密度函数具有一个复杂的数学形式,它涉及伽马函数,这是一个与阶乘密切相关的特殊函数。
伽马函数定义为从0到正无穷大的积分,积分内部是t的α-1次方乘以e的-t次方的函数。
这个函数在α为正数时收敛,并且具有许多有用的性质。
通过伽马函数,我们可以定义伽马分布的概率密度函数。
这个函数的形式为f(x|α,β),其中x是随机变量,α和β是分布的参数。
函数的具体形式包括一个常数项,这个常数项是β的α次方除以伽马函数在α处的值,乘以x的α-1次方乘以e的-βx次方。
这个函数在x大于0时有定义,并且其积分从0到正无穷大等于1,满足概率密度函数的定义。
伽马分布的推导还可以从其性质入手。
伽马分布具有可加性,即多个独立且服从伽马分布的随机变量之和仍然服从伽马分布。
此外,伽马分布还与许多其他分布密切相关,如指数分布、卡方分布和贝塔分布等。
这些关系使得伽马分布在统计建模和推断中具有广泛的应用。
总之,伽马分布是一种重要的连续概率分布,其推导可以从概率密度函数和性质入手。
通过深入了解伽马分布的数学形式和性质,我们可以更好地理解和应用这种分布在各种实际场景中的作用。
概率论与数理统计复习概率论与数理统计复习一、概率论的基本概念:1、事件的运算律:交换律:,;结合律:,;分配律:,;德·摩根法则:,;减法运算:。
2、概率的性质:性质1;性质2(有限可加性)当个事件两两互不相容时,;性质3对于任意一个事件,;性质4当事件满足时,,;性质5对于任意两个随机事件,;性质6对于任意一个事件;性质7(广义加法法则)对于任意两个事件,。
3、条件概率:在已知发生的条件下,事件的概率为:()。
注意:所有概率的性质对条件概率依然适用,但使用公式必须在同一条件下进行。
4、全概率公式与贝叶斯公式:设个事件构成样本空间的一个划分,是一个事件,当()时,全概率公式:;贝叶斯公式:当时,,。
应用全概率公式和贝叶斯公式计算事件的概率或其在已知条件下的条件概率时,关键的问题是找到一个完备事件组,使得能且仅能与之一同时发生,然后运用古典概型、概率的加法和乘法法则计算出和,,并套用全概率公式或贝叶斯公式即可。
若一个较复杂的事件是由多种“原因”产生的样本点构成时,多考虑用全概率公式,而这些样本点就构成一个完备事件组;若已知试验结果而要追查“原因”时,往往使用贝叶斯公式,这些“原因”的全体即是所求的完备事件组。
5、随机事件的独立性:事件独立性的结论:(1)事件与独立;(2)若事件与独立,则与,与,与中的每一对事件都相互独立;(3)若事件与独立,且,,则,;(4)若事件相互独立,则;(5)若事件相互独立,则。
注意:(1)事件相互独立只要求满足,而事件互斥(互不相容)只要求,这两个概念前一个与事件的概率有关,后一个与事件有关,两者之间没有必然的联系;(2)如果事件相互独立,则与不相关,反之一般不成立。
(3)对于任意个随机事件,相互独立则两两独立,反之未必;(4)对于任意个相互独立的随机事件,它们中任意一部分事件的运算结果(和、差、积、逆等)与其他一部分事件或它们的运算结果都相互独立,如:与,与,与都相互独立;6、贝努利概型与二项概率公式:设一次试验中事件发生的概率为,则重贝努利试验中,事件恰好发生次的概率为,。
χ2分布、t 分布、F 分布与正态分布间的关系曾珍;张宇【摘要】随机变量的概率分布是概率论和数理统计教学中的最基本的概念,χ2分布、t分布、F分布、正态分布是重要的分布,它们之间存在的一定相互关系。
本文根据中心极限定理、Wallis公式和求极限的方法证明了χ2分布、t分布、F分布在某种情况下都收敛于正态分布;并用数据模拟的方法对此进行了进一步验证。
%The probability distribution of random variables is the most basic concept in probability theory and mathematical statistics teaching, it is also important to distribution.The relationship exists between them.It was proved χ2 distribution, t distribution and F distribution converge to the standard normal distribution by CLT, Wallis and limit theorem , respectively, Which in further proved by data simulation.【期刊名称】《湖北师范学院学报(自然科学版)》【年(卷),期】2015(000)003【总页数】5页(P62-66)【关键词】χ2 分布;t分布;F分布;正态分布【作者】曾珍;张宇【作者单位】湖北师范学院数学与统计学院,湖北黄石 435002;湖北师范学院数学与统计学院,湖北黄石 435002【正文语种】中文【中图分类】O211.4χ2分布、t分布、F分布与正态分布间的关系曾珍,张宇(湖北师范学院数学与统计学院,湖北黄石435002)摘要:随机变量的概率分布是概率论和数理统计教学中的最基本的概念,χ2分布、t分布、F分布、正态分布是重要的分布,它们之间存在的一定相互关系。
第 ×× 次课 2学时本次课教学重点:常用的统计量 本次课教学难点:总体,简单随机样本,统计量的概念。
本次课教学内容:第五章 数理统计的基础知识 第一节 数理统计的基本概念 教学组织: 一、引言在前五章中我们学习了概率论的基本内容,因为随机变量及其所伴随的概率分布全面描述了随机现象的统计规律性,所以在概率论的许多问题中,概率分布通常都是已知的,或者假设是已知的,而一切计算与推理都是在此基础上得出来的。
然而,实际情况往往并非如此。
一个随机现象所服从的分布概型可能完全不知道,或者只知道其概型而不知其分布函数中所含的参数。
例如,某工厂生产的灯泡的寿命服从什么分布是不知道的。
再如,某厂生产的一件产品是合格品还是不合格品,我们知道它服从两点分布,但其参数p 却不知道。
那么怎样才能知道一个随机现象的分布或其参数呢?这就是数理统计所要解决的一个首要问题。
为了获得灯泡的寿命分布,我们从所有的灯泡中抽出一部分进行观察与测试以取得相关信息,从而做出推断。
由于观察和测试是随机现象,依据有限个观察与测试对整体所做出的推断不可能绝对准确,这个不确定性我们用概率来表达。
数理统计学的基本问题就是依据观测或试验所取得的有限信息对整体做出推断,每个推断必须伴有一定的概率来表明其可靠程度。
这种伴有一定概率的推断称为统计推断。
二、总体与随机样本 1、总体在数理统计中,我们往往研究有关对象的某一数量指标(如灯泡的寿命这一数量指标)。
为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。
我们把研究对象的全体所构成的一个集合称为总体,总体中的每个对象称为个体。
总体中所包含的个体的个数称为总体的容量。
容量有限的总体称为有限总体,容量无限的总体称为无限总体。
例如,考察某批灯泡的质量,如这一批灯泡共有5000只,每个灯泡的寿命是一个可能的观察值,是一个个体。
所有5000只灯泡的寿命是一个有限总体。
欢迎共阅概率论知识点总结第一章随机事件及其概率第一节基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件样本点样本空间包含关系相等关系事件的和记为A ∪事件的积事件的差互斥事件对立事件=⋂B A (1(2(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C)A(B ∪C)=(A∩B)∪(A∩C)=AB ∪AC(4)对偶律(摩根律):B A B A ⋂=⋃B A B A ⋃=⋂第二节事件的概率概率的公理化体系:(1)非负性:P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时当AB=Φ时P(A ∪B)=P(A)+P(B)(3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节古典概率模型1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A的概率为2落在区域把μ. ,,则称A 、总结:1.3.第二章一维随机变量及其分布第二节分布函数分布函数:设X 是一个随机变量,x 为一个任意实数,称函数}{)(x X P x F ≤=为X 的分布函数。
如果将X 看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X 落在区间],(x -∞内的概率 分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F第三节离散型随机变量离散型随机变量的分布律:设k x (k=1,2,…)是离散型随机变量X 所取的一切可能值,称k k p x X P ==}{为离散型随机变量X 的分布律,也称概率分布.当离散性随机变量取值有限且概率的规律不明显时,常用表格形式表示分布律。
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1 几种常见的具有可加性的分布 (1)1.1 二项分布 (2)1.2 泊松分布(Possion分布) (3)1.3正态分布 (4)1.4 伽玛分布 (6)1.5 柯西分布 (7)1.6 卡方分布 (7)2 具有可加性的概率分布间的关系 (8)2.1 二项分布的泊松近似 (8)2.2 二项分布的正态近似 (9)2.3 正态分布与泊松分布间的关系 (10)2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11)3 小结 (12)参考文献 (12)致谢 (13)概率论中几种具有可加性的分布及其关系摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论.关键词概率分布可加性相互独立特征函数Several Kinds of Probability Dstribution and its Relationship withAdditiveAbstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-squaredistribution and gamma distribution.Article discusses the nature of all kinds of distribution and itsproof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation,Di mo - Laplace's central limit theorem, and so on, has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等.1 几种常见的具有可加性的分布在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]:①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(⋅⋅⋅===ζ和.,,1,0,)(n k b k P k ⋅⋅⋅===ξ则ξζϑ+=的概率分布列可表示为.2,1,0,)()()(0⋅⋅⋅==-====-==∑∑k b a i k P i P k P i k ki i ki ξζϑ②连续场合的卷积公式 设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是)(),(y f x f ξζ,则它们的和ξζϑ+=的密度函数如下.)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ )2(其证明如下:ξζϑ+=的分布函数是dxdy y f x f z f z F zy x )()()()(ξζϑξζ⎰⎰≤+=≤+={}dx x f dy y f xz )()(ζξ⎰⎰+∞∞--∞-=.)()(dx x f x z F ζξ-=⎰+∞∞-其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζϑ+=的密度函数: .)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ 即证.在概率分布可加性的证明中,除了卷积公式,我们常用的证明方法还有利用随机变量的特征函数.下面我们来讨论一下这几种具有可加性的分布及其可加性证明的过程中卷积公式和特征函数的应用. 1.1 二项分布1.1.1 二项分布),(p n B 的概念如果记ζ为n 次伯努利试验中成功(记为事件A )的次数,则ζ的可能取值为0,1,2,……,n.记p 为事件A 发生的概率,则,)(p A p =(p A ),1p -=记为.q 即.1p q -=因n 次伯努利试验的基本结果可以记作 ѡ=(w 1,w 2,…ѡn ),w i 或为A 或为A ,这样的w 共有2n 个,这2n 个样本点w 组成了样本空间Ω.下求ζ的分布列,即求事件{ζk =}的概率.若某个样本点 ѡ=(w 1,w 2,…ѡn )∈{k =ζ},意味着w 1,w 2,…ѡn 中有k 个A ,k n -个A ,由独立性即可得:P (ζ).)1(k n k p p --=而事件{ζ=k }中这样的w 共有⎪⎭⎫⎝⎛n k 个,所以ζ的分布列为)(k P =ζ=⎪⎭⎫ ⎝⎛n k p k(1-p )k n -,.,1,0n k ⋅⋅⋅⋅⋅⋅=此分布即称为二项分布,记作),(~p n B ζ.且我们易验证其和恒为.1.也就是kn k nk n k p p -=-⎪⎭⎫ ⎝⎛∑)1(0=[]n p p )1(-+1=. n=1时,二项分布),(p n B 称为两点分布,有时也称之为10-分布. 二项分布的图像具有以下特点:①二项分布的图像形状取决于n 和p 的大小,随着p 的增加,分布图高峰逐渐右移. ②当5.0=p 时,图像是对称的. 1.1.2 二项分布的可加性定理 1.1.1设),,(~),,(~p m B p n B ξζ而且ξζ,相互独立,记,ξζϑ+=则有).,(~p m n B +ϑ证明 因,ξζϑ+=所以易知ϑ可以取m n +⋅⋅⋅2,1,0等1++m n 个值.根据卷积公式)1(,事件{}k =ϑ的概率可以表示为 )()()(0i k P i P k P ki -====∑=ξζϑi k m i k mi k i n i ki n i p p p p +----=-⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛=∑)1()1(0.)1(0⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-=-+∑m i k ki n i km n k p p 又因.0⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=∑mn k m i k ki n i 所以.,1,0,)1()(m n k p p k P k m n km n k +⋅⋅⋅=-⎪⎭⎫ ⎝⎛==-++ϑ也就是说,).,(~p m n B +ϑ即证! 1.2 泊松分布(Possion 分布)与二项分布一样,泊松分布也是一种离散分布,许多随机现象,特别是社会现象与物理学中的一些随机现象都服从于泊松分布.泊松分布可作为描述大量试验中稀有事件出现次数的概率分布的数学模型. 1.2.1 泊松分布的概率分布列泊松分布的概率分布如下所示: 2,1,0,!)(===-k e k k P kλλζ…,其中λ大于0,记作)(~λζP .对于泊松分布而言,它的参数λ即是期望又是它的方差:λλλλλλλλλλ==-==-+∞=---+∞=∑∑e e k eek kE k k k k11)!1(!)(.又因, λλλλλ-+∞=-+∞=∑∑-==e k kek kE k kkk 1022)!1(!)( =[]λλ-+∞=-+-∑e k k kk )!1(1)1(1=∑∑+∞=--+∞=---+-11222)!1()!2(k k k k k e k eλλλλλλ=λλ+2故ζ的方差为22))(()()(ζζζE E Var -==λλλλ=-+22 1.2.2泊松分布的可加性定理 1.2.1 设随机变量)(~),(~2211λζλζP P ,且21,ζζ相互独立,则).(~2121λλζζ++P 证明 此处⋅⋅⋅=====--,2,1,0,!)(,!)(212211k e k k P ek k P k k λλλζλζ根据卷积公式)1(,有 21)!(!)(20121λλλλζζ---=-⋅==+∑e i k ei k P i k ki iik i ki i k i k k e -=+-∑-=210)()!(!!!21λλλλ .,1,0,!)()(2121⋅⋅⋅=+=+-k e k k λλλλ 所以).(~)(2121λλζζ++P 即证!同样我们可以利用特征函数对其进行证明,此处不再赘述. 1.3 正态分布1.3.1 正态分布的定义[6]定义1.3 对于已经给定的两个常数μ和σ>0,定义函数222/)(,21)(σμσμπσ--=x e x p ),(+∞-∞∈x )1( 它含有两个参数μ和σ.显然的,)(,x p σμ取正值.我们称密度函数为)(,x p σμ的分布为正态分布,记作),(2σμN ,它的分布函数记为dt ex F xt ⎰∞---=222)(,21)(σμσμπσ ),(+∞-∞∈x正态分布的密度函数的图像是一条钟形曲线,中间高两边低,而且关于μ=x 对称,在此处)(,x p σμ取最大值.21πσ我们称μ为该正态分布的中心,在μ=x 附近取值的可能性比较大,在σμ±=x 处有拐点.若将μ固定,改变σ的取值,则σ越大,曲线峰顶越低,图像较为平坦;σ越小,曲线封顶越高,图像较为陡峭.因此正态密度函数的尺度由σ确定,故称σ为尺度参数.同样的,将σ固定,而去改变μ的值,会发现图像沿x 轴平移而并不改变形状,也就说明该函数的位置由μ决定,故称其为位置参数.当1,0==σμ时的正态分布称为标准正态分布,记作)1,0(N .它的密度函数记为)(u ϕ,分布函数记为)(u Φ.则有),(,21)(2/2+∞-∞∈=-u e u u πϕ),(,21)(2/2+∞-∞∈=Φ⎰∞--u dt e u utπ1.3.2 一般正态分布的标准化对于正态分布族{},0),,(;),(2>+∞-∞∈=℘σμσμN标准正态分布)1,0(N 只是其中一个成员.其实在应用中很少有随机变量恰好服从标准正态分布,可是一般正态分布均可以利用线性变换转变成标准正态分布.所以一切与正态变量有关的事件的概率均可通过标准正态分布分布求取.定理1.3.1 如果随机变量),(~σμN Y ,则)1,0(~/)(N Y X σμ-=,其中X 为标准正态变量.证明 记Y 与X 的分布函数分别为)(y F Y 和)(x F X ,易知).()()()(x F x Y P x Y P x X P x F Y X σμσμσμ+=+≤=⎩⎨⎧⎭⎬⎫≤-=≤=因为正态分布函数严格递增而且处处可导,所以如果记Y 和X 的密度函数分别是)(y p Y 和)(x p X ,会有,21)()()(2/2μπσσμσμ-=⋅+=+=e x p x F dx d x p Y Y X 由此即得,).1,0(~N Y X σμ-= 即证. 对于标准正态随机变量),1,0(~N X X 的数学期望为,21)(2/2dx xe X E x ⎰+∞∞--=π 因被积函数2/2)(x xex h -=为奇函数,故上述积分值为0,也就是说.0)(=X E而对于一般正态变量),(~2σμN Y ,如果满足X Y σμ+=,由数学期望的线性性质则可得到.0)(μσμ=⨯+=Y E所以我们可以知道正态分布),(2σμN 的数学期望即为其参数μ. 因为dx e x X E X E X Var x ⎰+∞∞--=-=2/222221))(()()(π⎰+∞∞---=)(212/2x e xd π}{⎰+∞∞--∞+∞--+-=dx e xe x x 2/2/22|21π.1221212/2===⎰+∞∞--πππdx e x 且X Y σμ+=,由方差的性质.)()(2σσμ=+=x Var Y Var也就是说,正态分布的方差即是其另一个参数.2σ 1.3.3 正态分布的可加性定理1.3.2 设随机变量而且X 和Y 彼此独立,且),,(~),,(~222211σμσμN Y N X 则有。