天体运动习题
- 格式:docx
- 大小:16.59 KB
- 文档页数:2
============================================================================富顺一中高一星期天辅导( 7)——物理试卷1、一个卫星绕着某一星球作匀速圆周运动,轨道半径为 R1 ,因在运动过程中与宇宙尘埃和小陨石的摩擦和碰撞,导致该卫星发生跃迁,轨道半径减小为 R2 ,如图所示,则卫星的线速度、角速度,周期的变化情况是 [ ]A. 增大,增大,减小;B. 减小,增大,增大;C. 增大,减小,增大;D. 减小,减小,减小。
2、科学家们推测,太阳系的第十颗行星就在地球的轨道上 .从地球上看,它永远在太阳背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟” .由以上信息可以推知( )A.这颗行星的公转周期与地球相等B.这颗行星的自转周期与地球相等C.这颗行星的质量与地球质量相等D.这颗行星的密度与地球密度相等3、 2012 年 10 月 25 日,我国在西昌卫星发射中心成功将一颗北斗导航卫星发射升空并送入预定转移轨道。
这是一颗地球静止轨道卫星,将与先期发射的 15 颗北斗导航卫星组网运行,形成区域服务能力。
关于这颗地球静止轨道卫星的说法正确的是A.它的周期与月球绕地球运动的周期相同 B.它在轨道上运动时可能经过北京的上空C.它运动时的向心加速度大于重力加速度 D.它运动的线速度比地球第一宇宙速度小4、(2013 浙江省嘉兴市质检)某同学设想驾驶一辆由火箭提供动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球的速度可以任意增加,不计空气阻力。
当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,下列相关说法正确的是(已知地球半径 R=6400km, g 取9.8m/s2)A. 汽车在地面上速度增加时对地面的压力增大B. 汽车速度达到 7.9km/s 时将离开地球C. 此“航天汽车”环绕地球做匀速圆周运动的最小周期为 24hD . 此“航天汽车”内可用弹簧测力计测重力的大小5、 ( 2013 陕西省西安市五校联考)如图所示, a、b 、c、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星。
天体运动训练题1.一艘在火星表面进行科学探测的宇宙飞船,在经历了从轨道1→轨道2→轨道3的变轨过程后,顺利返回地球。
若轨道1为贴近火星表面的圆周轨道,已知引力常量为G,下列说法正确的是()A.飞船在轨道2上运动时,P点的速度小于Q点的速度B.飞船在轨道1上运动的机械能大于轨道3上运动的机械能C.测出飞船在轨道1上运动的周期,就可以测出火星的平均密度D.飞船在轨道2上运动到P点的加速度大于飞船在轨道1上运动到P点的加速度2.两颗人造地球卫星做圆周运动,周期之比为TA:TB=1:8,则轨道半径之比和运动速率之比分别为:A.RA:RB=4:1,vA:vB=1:2B.RA:RB=4:1,vA:vB=2:1C.RA:RB=1:4,vA:vB=1:2D.RA:RB=1:4,vA:vB=2:13.火星被认为是太阳系中最有可能存在地外生命的行星,对人类来说充满着神奇,为了更进一步探究火星,发射一颗火星的同步卫星。
已知火星的质量为地球质量的p倍,火星自转周期与地球自转周期相同均为T,地球表面的重力加速度为g。
地球的半径为R,则火星的同步卫星距球心的距离为()A.B.C.D.4.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的,质量是地球质量的.已知地球表面的重力加速度是g,地球的半径为R,王跃在地面上能向上竖直跳起的最大高度是h,忽略自转的影响,下列说法正确的是()A.火星表面的重力加速度是gB.火星的第一宇宙速度与地球的第一宇宙速度之比为C.火星的密度为D.王跃以与在地球上相同的初速度在火星上起跳后,能达到的最大高度是h5.地球赤道上的物体随地球自转的向心加速度为,角速度为,某卫星绕地球做匀速圆周运动的轨道半径为,向心力加速度为,角速度为。
已知万有引力常量为,地球半径为。
下列说法中正确的是A.向心力加速度之比B.角速度之比C.地球的第一宇宙速度等于D.地球的平均密度6.2016年2月11日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前的预测,弥补了爱因斯坦广义相对论中最后一块缺失的“拼图”.双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由a、b两颗星体组成,这两颗星绕它们连线的某一点在万有引力作用下作匀速圆周运动,测得a星的周期为T,a、b 两颗星的距离为l、a、b两颗星的轨道半径之差为?r,(a星的轨道半径大于b星的),则()A.b星的周期为B.a星的线速度大小为C.a、b两颗星的半径之比为D.a、b两颗星的质量之比为7.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星500”的实验活动。
天体运动基础习题及答案天体运动基础习题及答案天体运动是天文学中的重要内容,它研究的是天体在空间中的运动规律。
通过对天体运动的研究,我们可以更好地了解宇宙的结构和演化。
下面是一些关于天体运动的基础习题及答案,希望对大家的学习有所帮助。
习题一:地球的自转和公转1. 地球的自转是指什么?它的周期是多久?答:地球的自转是指地球绕自身轴线旋转的运动。
它的周期是24小时。
2. 地球的公转是指什么?它的周期是多久?答:地球的公转是指地球绕太阳运动的运动。
它的周期是365.25天。
3. 地球的自转和公转对我们生活有什么影响?答:地球的自转和公转决定了昼夜的交替和季节的变化。
它们的运动使得我们能够感受到白天和黑夜的变化,同时也影响了气候的变化。
习题二:月球的运动1. 月球绕地球运动的周期是多久?答:月球绕地球运动的周期是27.3天。
2. 月球的自转周期是多久?答:月球的自转周期和它的公转周期是一样的,都是27.3天。
3. 为什么我们只能看到月球的一面?答:月球的自转周期和它的公转周期是一样的,所以我们只能看到月球的一面。
这是因为月球的自转速度和它的公转速度相同,所以它总是用同一面朝向地球。
习题三:行星的运动1. 行星的运动轨道是什么形状?答:行星的运动轨道是椭圆形的。
2. 什么是近日点和远日点?答:近日点是指行星运动轨道上离太阳最近的点,远日点是指行星运动轨道上离太阳最远的点。
3. 为什么行星在近日点运动速度比在远日点快?答:根据开普勒第二定律,行星在近日点附近运动速度较快,而在远日点附近运动速度较慢。
这是因为行星在近日点附近离太阳较近,受到的引力较大,所以运动速度较快;而在远日点附近离太阳较远,受到的引力较小,所以运动速度较慢。
通过以上习题的学习,我们对天体运动的基础知识有了更深入的了解。
天体运动的规律是复杂而又美妙的,它们揭示了宇宙的奥秘。
希望大家能够继续深入学习天文学知识,探索更多关于宇宙的奥秘。
天体运动典型例题“太空电梯”的概念最初出现在 1895 年,由康斯坦丁·齐奥尔科夫斯基提出.如今,目前世界上已知的强度最高的材料—石墨烯的发现使“太空电梯”制造成为可能,人类将有望通过“太空电梯”进入太空.设想在地球赤道平面内有一垂直于地面并延伸到太空的轻质“太空电梯” ,如图所示,假设某物体 b 乘坐太空电梯到达了图示位置并相对电梯静止,与同高度运行的卫星a 、更高处同步卫星c 相比较.下列说法正确的是( )A. a 与b 都是高度相同的人造地球卫星题型十对多星系统的考查例14 C.双星间距离一定,双星的质量越大,其转动周期越大 D.双星的质量一定,双星之间的距离越大,其转动周期越大例15B. b 的线速度小于c 的线速度C. b 的线速度等于a 的线速度D. b 的加速度大于a 的加速度宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.在浩瀚的银河系中,多数恒星都是双星系统.设某双星系统A 、B 绕其连线上的O 点做匀速圆周运动,如图所示.若 AO>OB,则( )A.星球A 的质量一定大于B 的质量B.星球A 的线速度一定小于B 的线速度2017年9月25日至9月28日期间,微信启动新界面,其画面视角从人类起源的非洲(左)变成为华夏大地中国(右).新照片由我国新一代静止轨道卫星“风云四号”拍摄,见证着科学家 15 年的辛苦和努力.下列说法正确的是( )A. “风云四号”可能经过无锡正上空B. “风云四号”的向心加速度大于月球的向心加速度C.与“风云四号”同轨道的卫星运动的动能都相等D. “风云四号”的运行速度大于7.9km/s例11题型九 赤道上物体与两类卫星的比较例12如图所示 ,某极地轨道卫星的运行轨道平面通过地球的南北两极,已知该卫星从北纬 60°的正上方按图示方向第一次运行到南纬 60°的正上方时所用时间为1h ,则下列说法正确的是( )A.该卫星的运行速度一定大于7.9km/sB.该卫星与同步卫星的运行角速度之比为 2:1C.该卫星与同步卫星的运行半径之比为 1:4D.该卫星的机械能一定大于同步卫星的机械能(多选) 如图所示 ,A 为地球同步卫星,B 为运行轨道比 A 低的一颗卫星, C 为地球赤道上某一高山山顶上的一个物体,两颗卫星及物体C 的质量都相同,关于它们的线速度、角速度、运行周期和所受到的万有引力的比较,下列关系式正确的是( )A.v B >v A >v CB.ωA >ωB >ωCC.F B >F A >F CD.T A =T C >T B例13题型十二割补法在万有引力中的应用例18有一质量为 m、半径为 R、密度均匀的球体,在距离球心O为2R的地方有一质量为m′的质点.现在从m中挖去半径为12R的球体,如图所示,白色部分为挖去后的空心,则剩余部分对m′的万有引力 F为( )A.G7mm ′32R2B.G7mm′36R2C.G23mm′100R2D.G161mm′648R2如图所示,为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道 2 运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )例20A.卫星在轨道3上运行时处于超重状态B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1 上经过 Q 点时的速率大于它在轨道2 上经过Q点时的速率D.卫星在轨道2上经过P点时的加速度小于它在轨道3上经过P点时的加速度宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对他们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆轨道运行.设每个星体的质量均为m.(1)试求第一种形式下,星体运动的线速度和周期;(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离假设地球是一半径为 R、质量分布均匀的球体,一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零,则矿井底部和地面处的重力加速度大小之比为( )A.1−dR B.1+dRC.(R−dR)2D.(RR−d)2例17例16假设地球是一半径为R、质量分布均匀的球体,设想以地心为圆心,在半径为r 处开凿一圆形隧道,在隧道内有一小球绕地心做匀速圆周运动,且对隧道内外壁的压力为零,如图所示. 已知质量分布均匀的球壳对物体的引力为零.地球的第一宇宙速度为 v₁,小球的线速度为 v₂,则等于( )A.rR B.RrC.(rR)2D.(Rr)2题型一开普勒三定律的应用问题例1人造卫星,其近地点高度为 h₁,远地点高度为 h₂,则卫星在近地点与远地点运动速率之比v₁:v₂= .(用ℎ1、ℎ2、R追表示).例2飞船沿半径为R的圆周绕地球运动其周期为T,地球半径为R₀,若飞船要返回地面,可在轨道上某点A处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在 B点相切,求飞船由A 点到B点所需要的时间?题型二万有引力的常规计算例3地球表面处的重力加速度大小为g,某行星的质量是地球质量的2倍,半径是地球半径的一半. 一个质量为m的物体(可视为质点)距该行星表面的高度等于地球半径,则该物体与行星间的万有引力大小为( )A.89mg B. mg C.43mg D.2mg题型三行星运行参量的比较例4(多选) 探索精神是人类进步的动力源泉.在向未知的宇宙探索过程中,有一宇宙飞船飞到了某行星附近,绕着该行星做匀速圆周运动,测出宇宙飞船运动的周期为 T ,线速度大小为v ,已知引力常量为 G ,则下列正确的是( )A.该宇宙飞船的轨道半径为 vT 2πB.该行星的质量为 v 3T 2GπC.该行星的平均密度为 3πGT 2D.该行星表面的重力加速度为 4π2v 2T 2题型六 对三种宇宙速度特点的考查例8下列关于三种宇宙速度的说法正确的是( )A.第一宇宙速度v=7.9km/s, 第二宇宙速度v= 11.2km/s, 则人造卫星绕地球在圆轨道上运动时的速度大于等于v ₁,小于v ₂.B.中国发射的“嫦娥”号月球探测器,其发射速度大于第三宇宙速度例9我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A.火星探测器的发射速度应大于地球的第二宇宙速度B.火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C.火星的第一宇宙速度大于地球的第一宇宙速度D.火星表面的重力加速度大于地球表面的重力加速度题型八对三类卫星特点的考查例10C.第二宇宙速度是使物体可以挣脱地球引力束缚,成为绕太阳运行的小行星的最大发射速度D.第一宇宙速度7.9km/s 是人造地球卫星绕地球做圆周运动的最大运行速度.题型七宇宙速度的计算问题如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是( )A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均小于一年C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值题型四万有引力与重力的关系例5假设火星和地球都是球体,火星的质量M₁与地球质量M₂之比M1M2=P;火星的半径R₁与地球的半径R₂之比R1R2=q,那么火星表面的引力加速度g₁与地球表面的重力加速度g ₂之比为( )A.Pq2B. pq²C.PqD. pq例6假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g₀,在赤道的大小为g;地球自转的周期为T,引力常量为G.地球的密度为( )A.3πGT2g0−gg0B.3πGT2g0g0−gC.3πGT2D.3πGT2g0g题型五中心天体的质量与密度问题例7。
1.人造地球卫星做半径为r ,线速度大小为v 的匀速圆周运动。
当其角速度变为原来的24倍后,运动半径为_________,线速度大小为_________。
【解析】由22Mm Gm r rω=可知,角速度变为原来的24倍后,半径变为2r ,由v r ω=可知,角速度变为原来的24倍后,线速度大小为22v 。
【答案】2r ,22v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为0N,已知引力常量为G,则这颗行星的质量为A .2GNmv B.4GNmvC .2GmNv D.4GmNv【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有R v m M G 2/2/R m =,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则 N M G =2Rm ,解得M=GN4mv ,B 项正确。
【答案】B3.如图所示,在火星与木星轨道之间有一小行星带。
假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。
下列说法正确的是 A.太阳对小行星的引力相同B.各小行星绕太阳运动的周期小于一年C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于 地球公转的线速度值【答案】C 【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有C 项对。
4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g=10 m/s 2,空气阻力不计)(1)求该星球表面附近的重力加速度g ′.(2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.答案 (1)2 m/s2 (2)1∶80解析 (1)在地球表面竖直上抛小球时,有t =g 02v ,在某星球表面竖直上抛小球时,有5t ='20g v所以g ′=g51=2 m/s2(2)由G801)41(51',,22222=⨯====地星地星所以得gR R g M M G gR M mg R Mm 5.关于卡文迪许扭秤实验对物理学的贡献,下列说法中正确的是 ( )A .发现了万有引力的存在B .解决了微小力的测定问题C .开创了用实验研究物理的科学方法D .验证了万有引力定律的正确性6.假设地球是一半径为R.质量分布均匀的球体。
专题10 天体运动目录题型一 开普勒定律的应用 ........................................................................................................................................ 1 题型二 万有引力定律的理解 (2)类型1 万有引力定律的理解和简单计算.......................................................................................................... 3 类型2 不同天体表面引力的比较与计算.......................................................................................................... 3 类型3 重力和万有引力的关系 ......................................................................................................................... 3 类型4 地球表面与地表下某处重力加速度的比较与计算 .............................................................................. 4 题型三 天体质量和密度的计算 .. (5)类型1 利用“重力加速度法”计算天体质量和密度 .......................................................................................... 5 类型2 利用“环绕法”计算天体质量和密度 ...................................................................................................... 6 类型3 利用椭圆轨道求质量与密度 ................................................................................................................. 7 题型四 卫星运行参量的分析 (8)类型1 卫星运行参量与轨道半径的关系........................................................................................................ 8 类型2 同步卫星、近地卫星及赤道上物体的比较 ...................................................................................... 10 类型3 宇宙速度 ............................................................................................................................................... 11 题型五 卫星的变轨和对接问题 (12)类型1 卫星变轨问题中各物理量的比较........................................................................................................ 13 类型2 卫星的对接问题 ................................................................................................................................... 14 题型六 天体的“追及”问题 ....................................................................................................................................... 15 题型七 星球稳定自转的临界问题 .......................................................................................................................... 17 题型八 双星或多星模型 (17)类型1 双星问题 ............................................................................................................................................. 18 类型2 三星问题 ............................................................................................................................................... 19 类型4 四星问题 .. (20)题型一 开普勒定律的应用【解题指导】1.行星绕太阳运动的轨道通常按圆轨道处理.2.由开普勒第二定律可得12Δl 1r 1=12Δl 2r 2,12v 1·Δt ·r 1=12v 2·Δt ·r 2,解得v 1v 2=r 2r 1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.3.开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同,且该定律只能用在同一中心天体的两星体之间.【例1】(2022·山东潍坊市模拟)中国首个火星探测器“天问一号”,已于2021年2月10日成功环绕火星运动。
天体运动试题及答案1. 请简述开普勒第一定律的内容。
答案:开普勒第一定律,也称为椭圆定律,指出所有行星围绕太阳运动的轨道都是椭圆形状,太阳位于椭圆的一个焦点上。
2. 根据开普勒第三定律,行星公转周期与其轨道半长轴的关系是怎样的?答案:开普勒第三定律,也称为调和定律,表明所有行星绕太阳公转周期的平方与它们轨道半长轴的立方成正比。
3. 描述牛顿万有引力定律的主要内容。
答案:牛顿万有引力定律指出,宇宙中任何两个物体之间都存在引力,其大小与两物体的质量的乘积成正比,与它们之间的距离的平方成反比。
4. 请解释什么是地球的公转和自转。
答案:地球的公转是指地球围绕太阳的运动,周期大约为一年。
地球的自转是指地球围绕自己的轴线旋转,周期大约为一天。
5. 简述潮汐现象是如何产生的。
答案:潮汐现象是由于地球、月球和太阳的引力作用,导致地球上的海水周期性地涨落。
6. 为什么我们通常看不到月球的背面?答案:月球的自转周期与公转周期相同,这种现象称为潮汐锁定,因此我们总是看到月球的同一面。
7. 描述地球在太阳系中的位置。
答案:地球是太阳系中的第三颗行星,位于金星和火星之间。
8. 请解释什么是日食和月食。
答案:日食是指月球位于地球和太阳之间,遮挡住太阳的现象;月食是指地球位于太阳和月球之间,地球的阴影遮挡住月球的现象。
9. 简述恒星和行星的区别。
答案:恒星是能够通过核聚变产生能量的天体,而行星是围绕恒星运行的较小天体,不能产生能量。
10. 请解释什么是黑洞。
答案:黑洞是一种天体,其质量极大,引力极强,以至于连光都无法逃逸,因此无法直接观测到。
高一物理专题训练:天体运动一、单选题1.如图所示,有两个绕地球做匀速圆周运动的卫星.一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,;另一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,.关于这些物理量的比例关系正确的是( )A.B.C.D.【答案】D2.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为() A.1B.k2C.kD.【答案】C3.假设火星和地球都是球体,火星的质量与地球质量之比,火星的半径与地球半径之比,那么火星表面的引力加速度与地球表面处的重力加速度之比等于(忽略行星自转影响)A.B.C.D.【答案】B4.土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径约1。
2×106 km,土星的质量约为A .5×1017 kgB .5×1026 kgC .7×1033 kgD .4×1036 kg【答案】B5.有一质量为M 、半径为R 、密度均匀的球体,在距离球心O 为2R 的地方有一质量为m 的质点.现从M 中挖去半径为12R 的球体,如图所示,则剩余部分对m 的万有引力F 为( )A .2736GMm R B .278GMm R C .218GMm R D .2732GMm R 【答案】A6.已知地球的质量是月球质量的81倍,地球半径大约是月球半径的4倍,不考虑地球、月球自转的影响,以上数据可推算出 [ ]A .地球表面的重力加速度与月球表面重力加速度之比为9:16B .地球的平均密度与月球的平均密度之比为9:8C .靠近地球表面沿圆轨道运动的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9D .靠近地球表面沿圆轨道运行的航天器的线速度与靠近月球表面沿圆轨道运行的航天器的线速度之比约为81:4【答案】C7.中新网2018年3月4日电:据外媒报道,美国航空航天局(NASA)日前发现一颗名为WASP-39b 的地外行星,该行星距离地球约700光年,质量与土星相当,它白天温度为776.6摄氏度,夜间也几乎同样热,因此被科研人员称为“热土星"。
天体运动21.“嫦娥一号”探月卫星沿地月转移轨道直奔月球,在距月球表面200km的P点进行第一次变轨后被月球捕获,先进入椭圆轨道I绕月飞行,如图所示,之后,卫星在P点又经过两次变轨,最后在距月球表面200km的圆形轨道III上绕月球做匀速圆周运动,对此,下列说法正确的是A. 卫星在轨道III上运动的速度小于月球的第一宇宙速度B. 卫星在轨道III上运动的周期比在轨道I上打C. 卫星在轨道III上运动到P点的加速度等于沿轨道I运动到P点的加速度D. I、II、II三种轨道运行相比较,卫星在轨道I运行的机械能最大2.三颗人造地球卫星绕地球作匀速圆周运动,如图所示,已知mA=m BC,则三个卫星的【】A. 线速度关系是:V A > V B = V CB. 周期关系是:T A < T B = T CC. 向心力大小关系是:F A = F B < F CD. 半径与周期的关系是:==3.把太阳系各行星的运动近似看作匀速圆周运动,则离太阳越远的行星()A. 周期越小B. 线速度越小C. 角速度越小D. 加速度越小4.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于P点,轨道2、3相切于Q点如图所示,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是()A. 卫星在轨道3上的速率小于在轨道1上的速率B. 卫星在轨道3上的角速度大于在轨道1上的角速度C. 卫星在轨道1具有的机械能小于它在轨道2具有的机械能D. 卫星在轨道2上经过Q点时的加速度等于它在轨道3上经过Q点时的加速度5.如图所示,a、b、c是地球大气层外圆形轨道上运动的三颗卫星,a和b质量相等且小于c的质量,则A. b所需向心力最小B. b、c的周期相同且大于a的周期C. b、c的向心加速度大小相等,且大于a的向心加速度D. c加速可追上同一轨道上的b,b减速可等候同一轨道上的c6.如图,甲、乙两颗卫星以相同的轨道半径分别绕质量为M和2M的行星做匀速圆周运动,下列说法正确的是( ) A. 甲的向心加速度比乙的小 B. 甲的运行周期比乙的小 C. 甲的角速度比乙大 D. 甲的线速度比乙大7.地球半径为6400km,一颗卫星在地球表面附近环绕地球做匀速圆周运动,地球表面处的重力加速度为g=9.8m/s2。
物理试题天体运动及答案一、选择题(每题2分,共10分)1. 以下哪项不是开普勒描述的行星运动定律?A. 行星沿椭圆轨道绕太阳运动B. 行星绕太阳运动的角速度是恒定的C. 行星绕太阳运动的周期的平方与轨道半长轴的立方成正比D. 行星与太阳的连线在相等时间内扫过的面积相等2. 根据牛顿的万有引力定律,两个物体之间的引力大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比。
以下哪个选项正确描述了这一定律?A. 引力与两物体质量的乘积成正比,与距离的平方成正比B. 引力与两物体质量的乘积成反比,与距离的平方成反比C. 引力与两物体质量的乘积成正比,与距离的平方成反比D. 引力与两物体质量的乘积成反比,与距离的平方成正比3. 地球的自转周期大约是24小时,这导致了什么现象?A. 季节变化B. 潮汐现象C. 昼夜交替D. 地球的公转4. 月球绕地球公转的周期大约是27.3天,这与地球自转周期的不同步导致了什么现象?A. 季节变化B. 潮汐现象C. 月食D. 日食5. 根据牛顿的第二定律,以下哪个选项正确描述了力与加速度的关系?A. 力与加速度成正比B. 力与加速度成反比C. 力与加速度成正比,与质量成反比D. 力与加速度成反比,与质量成正比二、填空题(每题2分,共10分)1. 地球绕太阳公转的轨道近似为_________。
2. 根据开普勒第三定律,行星绕太阳运动的周期的平方与轨道半长轴的立方成正比,这个定律也被称为_________定律。
3. 牛顿的万有引力定律公式为_________,其中G是引力常数,m1和m2是两个物体的质量,r是它们之间的距离。
4. 地球的自转轴与公转轨道平面的夹角称为_________,其大小约为23.5°。
5. 潮汐现象是由于_________和_________之间的引力作用造成的。
三、简答题(每题5分,共10分)1. 简述牛顿的万有引力定律及其在天体运动中的应用。
物理天体运动试题及答案一、选择题1. 以下哪项是描述天体运动的物理定律?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 牛顿万有引力定律答案:D2. 地球绕太阳公转的周期大约是:A. 24小时B. 365天C. 1年D. 12个月答案:B3. 以下哪项不是开普勒行星运动定律的内容?A. 行星沿椭圆轨道绕太阳运动B. 行星公转周期的平方与轨道半长轴的立方成正比C. 行星公转速度与轨道半径成反比D. 行星公转速度与轨道半径成正比答案:D二、填空题4. 地球的自转周期是____小时。
答案:245. 地球绕太阳公转的轨道形状是____。
答案:椭圆三、简答题6. 简述牛顿万有引力定律的主要内容。
答案:牛顿万有引力定律指出,任何两个物体之间都存在引力,其大小与两物体质量的乘积成正比,与两物体间距离的平方成反比。
7. 描述一下地球的自转和公转对我们的生活有什么影响。
答案:地球的自转导致了昼夜交替和时间的差异,而地球的公转则导致了季节的变化和太阳高度角的变化。
四、计算题8. 已知地球质量为5.97×10^24千克,月球质量为7.34×10^22千克,地月平均距离为3.84×10^8米。
根据万有引力定律,计算地月之间的引力大小。
答案:根据万有引力定律,F = G * (m1 * m2) / r^2,其中G为万有引力常数,取值6.674×10^-11 N(m/kg)^2。
代入数值计算得:F = 6.674×10^-11 * (5.97×10^24 * 7.34×10^22) /(3.84×10^8)^2F ≈ 2×10^20 N五、论述题9. 论述开普勒行星运动定律对天文学和物理学的影响。
答案:开普勒行星运动定律揭示了行星运动的规律,不仅为天文学提供了精确的行星位置预测方法,也为牛顿后来提出万有引力定律奠定了基础。
天体运动练习题一、选择题1. 下列关于天体运动的说法,正确的是:A. 地球自转的方向是自西向东B. 地球公转的方向是自东向西C. 月球绕地球转动的周期为24小时D. 太阳系共有九大行星2. 在开普勒定律中,第一定律描述的是:A. 行星轨道为圆形B. 行星轨道为椭圆形,太阳位于椭圆的一个焦点上C. 行星轨道速度恒定D. 行星轨道半径与公转周期成正比二、填空题1. 地球自转的周期约为____小时,地球公转的周期约为____天。
2. 太阳系中,距离太阳最近的行星是____,距离太阳最远的行星是____。
3. 开普勒第三定律表明,行星公转周期的平方与其轨道半长轴的立方成____比。
三、判断题1. 地球自转产生的现象是昼夜更替。
()2. 所有行星的轨道都是完全相同的椭圆。
()3. 月球绕地球转动的速度始终不变。
()四、简答题1. 简述地球自转和公转的方向。
2. 请列举开普勒定律的三个主要内容。
3. 为什么地球上有季节变化?五、计算题1. 已知地球公转周期为365天,轨道半长轴为1个天文单位,求地球轨道的偏心率。
2. 一颗行星的轨道半长轴为2个天文单位,公转周期为1440天,求该行星的轨道偏心率。
3. 月球绕地球转动的周期为27.3天,求月球轨道的平均半径。
六、综合题1. 分析地球自转和公转产生的地理现象。
2. 试述太阳系八大行星的排列顺序及其特点。
3. 结合实际,解释为什么地球上的昼夜温差较大。
七、应用题1. 假设地球公转速度突然增加一倍,会对地球的气候和生态系统产生哪些影响?2. 如果月球停止绕地球转动,地球上的潮汐现象会发生哪些变化?3. 请设计一个实验方案,验证开普勒第二定律(面积定律)。
八、分析题1. 分析太阳系中行星轨道的形状与太阳的位置关系,并解释其原因。
2. 试比较地球自转和公转速度的变化对地球表面温度的影响。
3. 从天体运动的角度,分析地球极地地区和赤道地区气候差异的原因。
九、论述题1. 论述地球自转和公转在天文学和地理学中的意义。
问题1:会讨论重力加速度g随离地面高度h的变化情况。
例1、设地球表面的重力加速度为g,物体在距地心4R(R是地球半径)处,由于地球的引力作用而产生的重力加速度g,,则g/g,为A、1;B、1/9;C、1/4;D、1/16。
问题2:会用万有引力定律求天体的质量。
通过观天体卫星运动的周期T和轨道半径r或天体表面的重力加速度g和天体的半径R,就可以求出天体的质量M。
例2、已知地球绕太阳公转的轨道半径r=1.49⨯1011m, 公转的周期T=3.16⨯107s,求太阳的质量M。
例3、(抛体运动与万有引力)宇航员在一星球表面上的某高处,沿水平方向抛出一小球。
经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。
若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L。
已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。
求该星球的质量M。
问题3:会用万有引力定律求卫星的高度。
通过观测卫星的周期T和行星表面的重力加速度g及行星的半径R可以求出卫星的高度。
例4、已知地球半径约为R=6.4⨯106m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约m.(结果只保留一位有效数字)。
问题4:会用万有引力定律计算天体的平均密度。
通过观测天体表面运动卫星的周期T,,就可以求出天体的密度ρ。
例5、如果某行星有一颗卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的密度为多少?例6、一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?问题5:会用万有引力定律推导恒量关系式。
例7、行星的平均密度是ρ,靠近行星表面的卫星运转周期是T,试证明:ρT2是一个常量,即对任何行星都相同。
例8、设卫星做圆周运动的轨道半径为r,运动周期为T,试证明:23Tr是一个常数,即对于同一天体的所有卫星来说,23Tr均相等。
问题6. 宇宙空间站上的“完全失重”问题例9. 假定宇宙空间站绕地球做匀速圆周运动,则在空间站上,下列实验不能做成的是:A、天平称物体的质量B、用弹簧秤测物体的重量C、用测力计测力D、用水银气压计测飞船上密闭仓内的气体压强E、用单摆测定重力加速度F、用打点计时器验证机械能守恒定律问题7. “双星”“三星”问题例10. 天文学中把两颗距离比较近,又与其它星体距离比较远的星体叫做双星,双星的间距是一定的。
天体运动基础单元测试题【天体运动基础单元测试题】一、选择题1. 黄道和赤道的关系是:A. 黄道是赤道的垂直平分线B. 黄道是赤道的倾斜角C. 黄道与赤道相交成90°角D. 黄道是赤道的偏移线2. 下列哪颗行星具有最大的自转速度?A. 木星B. 土星C. 金星D. 水星3. 天体运动的周期受哪些因素影响?A. 质量B. 半径C. 引力D. 所有选项都正确4. 以下哪个现象是由于地球公转引起的?A. 白昼和黑夜的交替B. 月相的变化C. 地震的发生D. 日食和月食5. 天体运动中的“北极星”实际上是哪颗星?A. 天狼星B. 伏羲C. 北辰D. 天权二、填空题6. __________指的是天体绕其轴线旋转一周所需的时间。
7. 太阳系中最大的行星是__________。
8. __________是地球上任意一点上空垂直向上所指的方向。
三、简答题9. 请解释地球自转和公转的概念及其对人类生活的影响。
地球自转是指地球绕自身轴线旋转一周所需的时间,约为24小时。
这导致了地球的白昼和黑夜的交替,影响了生物的生活节奏,人类可以通过白天工作、黑夜休息。
地球自转还形成了地球上的经度和标准时间的概念。
地球公转是指地球绕太阳运行一周所需的时间,约为365.25天。
地球公转导致了季节的变化和日食、月食的发生。
季节的变化影响了农作物的生长和人类的生活习惯,而日食、月食则是天文学的重要现象。
10. 请解释为什么北极星在夜空中位置相对固定不变,并说明利用北极星导航的原理。
北极星在夜空中位置相对固定不变是因为它在天球上的位置接近地球的北极点,并且离观测者的纬度角度相对固定。
由于地球自转的效果,北极星相对于地球上的观测者来说几乎保持不动。
利用北极星导航的原理是基于北极星的位置稳定性,观测者可以通过观察北极星与地平线的角度来确定自己所处的纬度。
通过测量北极星与地平线的角度,观测者可以确定自己所处的纬度,并据此进行导航和定位。
天体运动练习题一、选择题1. 根据开普勒第三定律,如果一个行星的轨道半径是另一个行星的4倍,那么它的公转周期是另一个行星的多少倍?A. 1倍B. 2倍C. 8倍D. 16倍2. 下列哪个天体是太阳系内最大的行星?A. 火星B. 木星C. 土星D. 地球3. 地球的自转周期是多少小时?A. 12小时B. 24小时C. 48小时D. 72小时4. 以下哪个选项是描述地球公转轨道的形状?A. 圆形B. 椭圆形C. 抛物线D. 双曲线5. 太阳系中,哪个行星的自转速度最快?A. 金星B. 火星C. 水星D. 木星二、填空题6. 根据开普勒第一定律,所有行星绕太阳的轨道都是_________。
7. 地球的公转轨道的偏心率大约是_________。
8. 月球绕地球公转的周期大约是_________天。
9. 太阳系中,距离太阳最近的行星是_________。
10. 地球的自转轴与公转轨道平面的倾角大约是_________度。
三、简答题11. 简述开普勒的行星运动三定律。
12. 为什么我们不能在地球上看到月球的背面?13. 描述地球的公转和自转对季节变化的影响。
四、计算题14. 已知火星的轨道半径是地球轨道半径的1.5倍,如果地球的公转周期是365.25天,计算火星的公转周期。
五、论述题15. 论述太阳系的形成过程及其对行星轨道和特性的影响。
六、案例分析题16. 假设你是一名天文学家,你观察到一颗新发现的系外行星,它的轨道周期是4地球年。
根据开普勒第三定律,估算这颗行星的轨道半径,并讨论可能的气候条件。
七、实验设计题17. 设计一个实验来模拟地球的自转和公转,并解释如何通过实验观察到季节的变化。
八、综合应用题18. 假设你是一名宇航员,正在执行前往火星的任务。
请描述在火星上可能遇到的环境挑战,并提出相应的解决方案。
九、开放性问题19. 考虑到天体运动的复杂性,你认为未来的天文学研究将如何利用人工智能技术来解决现有问题?十、创新思维题20. 如果你有机会设计一个全新的太阳系模型,你将如何安排各个行星的位置和特性,以支持人类在其他行星上的居住?请提供你的设计理念和科学依据。
1.若知道太阳地某一颗行星绕太阳运转地轨道半径为r ,周期为T ,引力常量为G ,则 可求得( B)A .该行星地质量B .太阳地质量C .该行星地平均密度D .太阳地平均密度2.有一星球地密度与地球地密度相同,但它表面处地重力加速度是地面表面处重力加速度地4倍,则该星球地质量将是地球质量地(D )A .14B .4倍C .16倍D .64倍3.火星直径约为地球直径地一半,质量约为地球质量地十分之一,它绕太阳公转地轨道半径约为地球绕太阳公转半径地1.5倍.根据以上数据,下列说法中正确地是(AB )A .火星表面重力加速度地数值比地球表面小B .火星公转地周期比地球地长C .火星公转地线速度比地球地大D .火星公转地向心加速度比地球地大4.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常量为G , 那么该行星地平均密度为(B )A .GT 23πB .3πGT 2C .GT 24πD .4πGT 25.为了对火星及其周围地空间环境进行监测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为h 1和h 2地圆轨道上运动时, 周期分别为T 1和T 2.火星可视为质量分布均匀地球体,且忽略火星地自转影响,引力常 量为G .仅利用以上数据,可以计算出( A )A .火星地密度和火星表面地重力加速度B .火星地质量和火星对“萤火一号”地引力C .火星地半径和“萤火一号”地质量D .火星表面地重力加速度和火星对“萤火一号”地引力6.设地球半径为R ,a 为静止在地球赤道上地一个物体,b 为一颗近地绕地球做匀速圆 周运动地人造卫星,c 为地球地一颗同步卫星,其轨道半径为r.下列说法中正确地是( D )A .a 与c 地线速度大小之比为r RB .a 与c 地线速度大小之比为R rC .b 与c 地周期之比为r RD .b 与c 地周期之比为R r R r7.2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他地第一次太空行走标志着中国航天事业全新时代地到来.“神舟七号”绕地球做近似匀速圆周运动,其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动地轨道半径为2r ,则可以确定 ( AB )A .卫星与“神舟七号”地加速度大小之比为1∶4B .卫星与“神舟七号”地线速度大小之比为1∶ 2C .翟志刚出舱后不再受地球引力D .翟志刚出舱任务之一是取回外挂地实验样品,假如不小心实验样品脱手,则它将做 自由落体运动8.一物体静置在平均密度为ρ地球形天体表面地赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( .D )A .⎝⎛⎭⎫4π3Gρ12B .⎝⎛⎭⎫34πGρ12C .⎝⎛⎭⎫πGρ12D .⎝⎛⎭⎫3πGρ129.如图1所示,图1a 、b 是两颗绕地球做匀速圆周运动地人造卫星,它们距地面地高度分别是R 和2R(R 为地球半径).下列说法中正确地是(CD )A .a 、b 地线速度大小之比是2∶1B .a 、b 地周期之比是1∶2 2C .a 、b 地角速度大小之比是36∶4D .a 、b 地向心加速度大小之比是9∶410.一个半径是地球3倍、质量是地球36倍地行星,它表面地重力加速度是地面重力加速度地( A ).【1.5】(A )4倍(B )6倍(C )13.5倍(D )18倍11.两颗人造地球卫星,它们质量地比m 1:m 2=1:2,它们运行地线速度地比是v 1:v 2=1:2,那么( ABCD ).【1.5】(A )它们运行地周期比为8:1(B )它们运行地轨道半径之比为4:1(C )它们所受向心力地比为1:32(D )它们运动地向心加速度地比为1:1612.土星周围有许多大小不等地岩石颗粒,其绕土星地运动可视为圆周运动.其中有两个岩石颗粒A 和B 与土星中心地距离分别为r A =8.0×104km 和r B =1.2×105km ,忽略所有岩石颗粒间地相互作用.(结果可用根式表示)(1)求岩石颗粒A 和B 地线速度之比.(2)土星探测器上有一物体,在地球上重为10N ,推算出它在距土星中心3.2×105km 处 受到土星地引力为0.38N .已知地球半径为6.4×103km ,请估算土星质量是地球质量地多少倍?.(1)万有引力提供岩石颗粒做圆周运动地向心力,所以有G Mm r 2=m v 2/r .故v =GM r所以v A v B =r B r A = 1.2×105km 8.0×104km =62.(2)设物体在地球上重为G 地,在土星上重为G 土,则由万有引力定律知:G 地=G M 地m R 2地,G 土=G M 土m R 2土xHAQX又F 万=G M 土m r 2,故G 土R 2土=F 万r 2 所以M 土M 地=G 土R 2土G 地R 2地=F 万r 2G 地R 2地=0.38×(3.2×105)210×(6.4×103)2=95.13.中子星是恒星演化过程中地一种可能结果,它地密度很大.现有一中子星,观测到它地自转周期为T =130s .问该中子星地最小密度应是多少才能维持该星体地稳定,不致因自转而瓦解?(计算时星体可视为均匀球体,万有引力常量G =6.67×10-11m 3/(kg ·s 2))设中子星地密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处地小块物体质量为m ,则有GMm R 2=mω2R ,ω=2πT ,M =43πR 3ρ由以上各式得ρ=3πGT 2 代入数据解得ρ=1.27×1014kg/m 3版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.Emxvx 。
第三讲知识点梳理一、开普勒三大定律1、第一:2、第二:3、第三:二、万有引力定律三、万有引力和重力的关系四、解决天体问题的两条主线1、万有引力等于重力2、万有引力提供向心力五、“开三”推导及比例问题速算1、开普勒第三定律的推导2、比例问题速算六、三大宇宙速度1、第一宇宙速度2、第二宇宙速度3、第三宇宙速度七、卫星问题1、近地卫星2、同步卫星(六一定)3、赤道表面物体、近地卫星和同步卫星向心加速度大小比较八、卫星的对接及对接1、卫星对接2、卫星变轨九、双星问题经典习题练习一、选择题1、关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2、理论和实践证明,开普勒定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用。
下面对于开普勒第三定律的公式,下列说法正确的是:()A.公式只适用于轨道是椭圆的运动B.式中的K值,对于所有行星(或卫星)都相等C.式中的K值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关D.若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离3、如图所示,椭圆为某行星绕太阳运动的轨道,A、B分别为行星的近日点和远日点,行星经过这两点时的速率分别为v A和v B;阴影部分为行星与太阳的连线在相等时间内扫过的面积,分别用S A和S B表示.根据开普勒第二定律可知()A.v A>v BB.v A<v BC.S A>S BD.S A<S B4、如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对小行星的引力相同B.各小行星绕太阳运动的周期小于一年C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值5、如图,a、b两颗人造地球卫星分别在如图所示的两个不同的轨道上运行,下列说法中正确的是()A.a卫星的运行速度比第一宇宙速度大B.b卫星的运行速度较小C.b卫星受到的向心力较大6、探测器绕月球做匀速圆周运动,变轨后在周期较大的轨道上仍做匀速圆周运动,则变轨后与变轨前相比()A.轨道半径变小B.向心加速度变小C.线速度变大D.角速度变大7、天宫一号是中国第一个目标飞行器,已于2011年9月29日21时16分3秒在酒泉卫星发射中心发射成功,它的发射标志着中国迈入中国航天“三步走”战略的第二步第二阶段.21时25分,天宫一号进入近地点约200公里,远地点约346.9公里,轨道倾角为42.75度,周期为5382秒的运行轨道.由此可知()A.天宫一号在该轨道上的运行周期比同步卫星的运行周期长B.天宫一号在该轨道上任意一点的运行速率比同步卫星的运行速率小C.天宫一号在该轨道上任意一点的运行加速度比同步卫星的运行加速度小D.天宫一号在该轨道上远地点距地面的高度比同步卫星轨道距地面的高度小8、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A.1:81 B.1:27 C.1:9 D.1:39、宇航员在地球表面,以一定初速度竖直上抛一小球,测得小球从抛出到返回的时间为t;若他在某星球表面以相同的初速度竖直上抛同一小球,小球从抛出到返回时间为25t。
3.已知地球的同步卫星的轨道半径约为地球半径的6.0倍,根据你知道的常识,可以估算出地球到月球的距离,这个距离最接近( ) A .地球半径的40倍 B .地球半径的60倍 C .地球半径的80倍 D .地球半径的100倍10据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77°赤道上空的同步轨道.关于成功定点后的“天链一号01星”,下列说法正确的是 A.运行速度大于7.9 km/s B.离地面高度一定,相对地面静止 C.绕地球运行的角速度比月球绕地球运行的角速度大 D.向心加速度与静止在赤道上物体的向心加速度大小相等4.宇航员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部的最低点,静止一质量为m 的小球(可视为质点),如图所示,当给小球水平初速度υ0时,刚好能使小球在竖直平面内做完整的圆周运动。
已知圆弧轨道半径为r ,月球的半径为R ,万有引力常量为G 。
若在月球表面上发射一颗环月卫星,所需最小发射速度为( ) A .Rr r550υB .Rr r520υC .Rr r50υD .Rr r5520υ3.(6分)(2015•红河州模拟)“神舟”五号载人飞船在绕地球飞行的第五圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知飞船的质量为m ,地球半径为R , A . 等于mg (R+h ) B . 小于mg (R+h ) C . 大于mg (R+h ) D . 等于mgh 7(2015沈阳质量检测 ).为了探测x 星球,总质量为1m 的探测飞船载着登陆舱在以该星球中心为圆心的圆轨道上运动,轨道半径为1r ,运动周期为1T 。
随后质量为2m 的登陆舱脱离飞船,变 轨到离星球更近的半径为2r 的圆轨道上运动,则A .x 星球表面的重力加速度211214T r g π= B .x 星球的质量213124GT r M π=C .登陆舱在1r 与2r 轨道上运动时的速度大小之比122121r m r m v v = D .登陆舱在半径为2r 轨道上做圆周运动的周期131322T r r T = 答案:BD5. (2015北京房山期末) GPS 导航系统可以为陆、海、空三大领域提供实时、全天候和全球性的导航服务,它是由周期约为12h 的卫星群组成。
高一物理
总分60分时间45分钟一单项选择题(每项6分,共42分)
1.对于万有引力定律的表述式,下面说法中正确的是()A.公式中G为引力常量,它是由实验测得的,而不是人为规定的
B..当r趋近于零时,万有引力趋于无穷大
C.. m1与m2受到的引力大小总是相等的,方向相反,是一对相互作用力D.. m1与m2受到的引力总是大小相等的,而与m1、m2是否相等无关
2.关于万有引力定律的适用范围,下列说法中正确的是( )
A.只适用于天体,不适用于地面物体
B.只适用于球形物体,不适用于其他形状的物体
C.只适用于质点,不适用于实际物体
D.适用于自然界中任意两个物体之间
3.A、B两颗行星,质量之比为MA/MB=p,半径之比为RA/RB=q,则两行星表面的重力加速度为( )
A、p/q
B、pq2
C、p/q2
D、pq
4.由于某种原因,人造地球卫星的轨道半径减小了,那么,卫星的()A.速率变大,周期变大
B.速率变小,周期变大
C.速率变大,周期变小
D.速率变小,周期变小
5.2011年8月12日,我国在西昌卫星发射中心,将巴基斯坦通信卫星1R (Paksat-1R)成功送入地球同步轨道,发射任务获得圆满成功.关于成功定点后的“1R”卫星,下列说法正确的是()
A.运行速度大于第一宇宙速度,小于第二宇宙速度
B.离地面的高度一定,相对地面保持静止
C.绕地球运动的周期比月球绕地球运行的周期大
D.向心加速度与静止在赤道上物体的向心加速度大小相等
6.关于人造地球卫星及其中物体的超重和失重问题,下列说法正确的是()
①在发射过程中向上加速时产生超重现象
②在降落过程中向下减速时产生失重现象
③进入轨道时作匀速圆周运动,产生失重现象
④失重是由于地球对卫星内物体的作用力减小而引起的
A.①③
B.②③
C.①④
D.②④
7. 如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火将卫星送入椭圆轨道2,然后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q点,2、3相切于P点,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是()
A.卫星在轨道3上的速率大于在轨道1上的速率
B.卫星在轨道3上的角速度小于在轨道1上的角速度
C.卫星在轨道1上经过Q点时的速率大于它在轨道2上经过Q点时的速率
D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度姓名_____________ 班级_______________
8.某人站在星球上以速度v。
竖直上抛一物体,经t秒后物体落回手中,已知星球半径为
R,现将此物沿星球表面平抛,要使其不再落回星球,则抛出的速度至少为多少9.我国已启动“登月工程”,计划2010年左右实现登月飞行.设想在月球表面上,宇航员测出小物块自由下落h高度所用的时间为t.当飞船在靠近月球表面圆轨道上飞行时,测得其环绕周期是T,已知引力常量为G.根据上述各量试求:
⑴月球表面的重力加速度;
⑵月球的质量。