课时7.一元一次方程及其应用
- 格式:doc
- 大小:108.50 KB
- 文档页数:3
应用一元一次方程1、相遇问题(1)A,B两地相距448km,一列慢车从A地出发,速度为60km/h,一列快车从B 地出发,速度为80km/h,两车相向而行,慢车先行28min,快车开出后多长时间两车相遇?(2)甲、乙两人分别从相距1500km的A,B两地出发,相向而行,3min后相遇,已知乙的速度是5km/s,求甲的速度。
(3)一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?2、追及问题(1)甲步行由上午6时从A地出发,于下午5时到达B地,乙骑自行车由上午10时从A地出发,于下午3时到达B地,问乙出发多长时间追上甲?(2)甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?3、航行问题及其他行程问题(1)一轮船在甲、乙两码头间往返航行,已知船在静水中的速度为7km/h,水流速度为2km/h,往返一次共用28h,求甲、乙两码头之间的距离。
(2)一艘船从甲码头到乙码头顺流而行,用了2h,又从乙码头返回甲码头逆流而行,用了2.5h,船在静水中的平均速度为27km/h,求水流的速度.(3)从甲地到乙地,长途汽车原来需要8小时,开通高速公路后,路程缩短了40千米,平均车速增加了30千米/时,需要4.5小时即可达到,求长途汽车原来行驶的速度.4、工程问题(1)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?(2)某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?5、利润问题元旦前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.(1)求甲、乙两种商品的每件进价分别是多少元?(2)该商场从厂家购进了甲、乙两种商品共50件,所用资金恰好为4400元.在销售时,甲种商品的每件售价为100元,要使得这50件商品所获利润率为20%,每件乙商品的售价为多少元?某店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按50%和40%的利润标定出售价.(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?6、方案选择问题公司推销某种产品,付给推销员每月的工资有以下两种方案:方案一:不论推销多少件,都有200元的底薪,每销售一件产品增加推销费5元;方案二:不付底薪,每销售一件产品给推销费10元.(1)推销50件产品时,应选择方案几所得工资合算?(2)推销多少件产品时,两种方案所得工资一样多?某班需要购买20本笔记本和x(x>40)支圆珠笔作为期末考试的奖品,笔记本每本8元,圆珠笔每支0.8元.现有甲、乙两家文具店可供选择,甲文具店优惠方法:买1本笔记本赠送2支圆珠笔;乙文具店优惠方法:全部商品按九折出售.(1)求单独到甲,乙文具店购买奖品,应各付多少元?(2)圆珠笔买多少支时,单独到甲文具店和单独到乙文具店购买所花的总钱数一样多?(3)若该班需要购买60支圆珠笔,则怎么样购买最省钱?写出购买方案.7、分段计费问题某市按以下规定收取每月水费:每立方米水费包括基本水费和污水处理费两部分.基本水费实行阶段收费:若每月每户不超过20立方米,则每立方米基本水费按2.2元收费;若超过20立方米则超过部分每立方米按3元收费;污水处理费每立方米均按0.3元收取.(1)若当月用水量为x(立方米),请你用含x的式子表示当月所付水费金额;(2)如果某户居民在某月所交水费的平均价为每立方米 2.8元,那么这个月每户居民共用多少立方米的水?某地出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米价1.8元;5千米后,每千米价格2.7元.(1)若某人乘坐了5千米的路程,请写出他应支付的费用.(2)若他支付了19元车费,你能算出他乘坐的路程吗?。
一元一次方程解法教学设计(共7篇)《一元一次方程的解法》教学设计初中数学七年级上册第三章一元一次方程解法二第四课时《一元一次方程的解法》教学设计初中数学七年级上册第三章第四课时木兰县第一中学宋立业【摘要】:一元一次方程的解法创设情景,复习引入、体验实例,导入新知、分组探究,合作交流、实践操作,总结方法、教学反馈,引导小结、辨析纠错,巩固提高。
【关键词】:解方程去分母【教材分析】1.教材地位及作用:本节课知识与前面几个学段密切相连,是学习解一般的一元一次方程方法的最后一节课。
在学生知识掌握方面不仅要求学会去分母的方法,更要求掌握把前面所学的知识与之融会贯通,能够按照去分母、去括号、移项、合并同类项、系数化为1的顺序,有目的、有步骤的求一元一次方程的解,并达到灵活运用。
从而体会并掌握解一元一次方程的划归思想,提高分析和解决问题的能力。
一元一次方程是研究数学的基本工具之一,也是提高学会思维能力和分析能力、解决问题能力的重要载体。
本节课是学习一元一次方程解法的第四课时,主要内容是学习用去分母的方法解一元一次方程。
2教学目标:知识与技能:1使学生掌握用去分母的方法解决含有整数分母的一元一次方程求解问题; 2使学生能够熟练的经过去分母、去括号、移项、合并同类项、系数化为1解出方程。
过程和方法:采用实验探究学习法,让学生亲身实验、经历和体验用去分母的方法解方程的过程,总结方法和规律,并加以应用,加深学生对知识的理解和掌握。
情感态度与价值观:1通过探究性学习实验,培养学生自主探究,勇于探索和实践的学习精神; 2通过学习解方程的方法和过程,培养学生严谨、细致的学习习惯和责任感;3通过学习过程中的交流与合作,提高学生的合作意识。
教学重点和难点重点:掌握去分母的方法和依据并熟练运用难点:理解去分母的方法和依据【学生情况分析】:尽管学生已经在前面几节课学习了一些解一元一次方程的方法,在小学学段已接触过本节课所要学习的部分类容,但是去分母的原理和容易错的地方仍然是这节课需要解决的重点和难点。
七年级上册数学一元一次方程应用题的知识点主要包括以下几个方面:
1.方程的概念:了解方程的基本定义,即含有未知数的等式。
2.一元一次方程的解法:通过去分母、去括号、移项、合并同类项等步骤,将一元一
次方程化为标准形式,并求解。
3.方程的解与解集:理解方程的解是指使方程成立的未知数的值,而解集则是指所有
满足方程的未知数的值的集合。
4.实际问题的数学模型:能够将实际问题转化为数学问题,通过建立一元一次方程来
求解。
在应用题方面,通常会涉及到以下几种类型:
1.相遇问题:两个物体在某一点相遇,需要求出它们的速度和时间等参数。
2.追及问题:一个物体追赶另一个物体,需要求出追赶的速度和时间等参数。
3.利润与折扣问题:涉及到商品的利润和折扣计算,需要建立一元一次方程来求解。
4.工程的分配问题:需要分配一定量的工程任务给多个工人或机器,需要根据各自的
效率或能力进行分配,需要建立一元一次方程来求解。
总之,七年级上册数学一元一次方程应用题的知识点包括方程的概念、一元一次方程的解法、方程的解与解集以及实际问题的数学模型等。
通过掌握这些知识点,可以更好地解决实际问题。
一元一次方程的应用教案一等奖1、一元一次方程的应用教案一等奖教学目标:1、使学生会列一元一次方程解有关应用题。
2、培养学生分析解决实际问题的能力。
复习引入:1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。
这三个量的关系是:(1)__________ (2)_________ (3)_________人们常规定工程问题中的工作总量为______。
2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。
若这件工作甲用6小时完成,则甲的工作效率是_______。
讲授新课:1、例题讲解:一件工作,甲单独做20小时完成,乙单独做12小时完成。
问:甲乙合做,需几小时完成这件工作?(1)首先由一名至两名学生阅读题目。
(2)引导Ⅰ:这道题目的`已知条件是什么?Ⅰ:这道题目要求什么问题?Ⅰ:这道题目的相等关系是什么?(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。
2、练习:有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?此题的处理方法:Ⅰ:先由一名学生阅读题目;Ⅰ:然后由两名学生板演;2、一元一次方程的应用教案一等奖教学目标:一、知识与技能:1、熟练运用列方程解应用题的一般步骤列方程;2、让学生学会列一元一次方程解决与行程有关的实际问题。
二、过程与方法:1、借助“线段图”分析行程问题中的数量关系,从而将实际问题转化为数学问题,体会转化等数学思想方法;2、通过列方程解决实际问题,培养学生发现问题、提出问题的能力。
激发学生的求知欲。
三情感态度与价值观:1、在列一元一次方程解决与行程有关的实际问题过程中,让学生感知生活中的实际问题与数学的关系。
七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。
方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。
)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。
学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。
方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。
[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。
②在移项时,学生常会犯一些错误,如移项忘记变号等。
这时,教士不要急于求成,而要引导学生反思自己的解题过程。
必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。
5.小结回顾:学生谈本节课的收获与体会。
师强调:移项法则。
七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
苏科版数学七年级上册第四章一元一次方程—应用教教学设计一. 教材分析苏科版数学七年级上册第四章一元一次方程是初中学段数学的重要内容,主要介绍一元一次方程的概念、解法及其应用。
本章内容通过实际问题引出一元一次方程,使学生感受数学与实际的联系,培养学生的逻辑思维能力。
教材从生活实例出发,让学生经历从实际问题中抽象出方程的过程,理解方程的意义,掌握一元一次方程的解法,并能够应用于实际问题的解决。
二. 学情分析七年级的学生已具备了一定的逻辑思维能力和抽象思维能力,但对于一元一次方程的概念和解法还是初次接触。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出方程,理解方程的意义,掌握解法,并能够应用于实际问题的解决。
同时,七年级的学生学习积极性较高,善于合作交流,可以充分利用这一特点,开展合作学习活动。
三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够将实际问题抽象为一元一次方程,并运用方程解决实际问题。
3.培养学生的逻辑思维能力和合作交流能力。
四. 教学重难点1.一元一次方程的概念及其应用。
2.一元一次方程的解法,特别是解方程的步骤和注意事项。
五. 教学方法1.情境教学法:通过生活实例引入一元一次方程,使学生感受数学与实际的联系。
2.引导发现法:引导学生从实际问题中抽象出方程,培养学生的抽象思维能力。
3.合作学习法:学生进行小组讨论,共同解决问题,培养学生的合作交流能力。
4.实践操作法:让学生通过实际操作,加深对一元一次方程解法的理解。
六. 教学准备1.教学PPT:制作涵盖一元一次方程的概念、解法及应用的教学PPT。
2.教学素材:准备一些实际问题,用于引导学生从实际问题中抽象出方程。
3.练习题:准备一些一元一次方程的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生从实际问题中抽象出方程,引出一元一次方程的概念。
2.呈现(10分钟)讲解一元一次方程的概念,解释方程的意义,并通过PPT展示一元一次方程的解法。
第四章一元一次方程课标要求:(1)能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型;(2)会解一元一次方程;(3)能根据具体问题的实际意义,检验结果是否合理.课时1 从问题到方程(1)一、教材分析:1.学习目标:知识与技能:学会用方程描述问题中数量之间的相等关系.过程与方法:通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型.情感、态度与价值观:初步认识方程与现实世界的密切联系,感受数学的价值.2.重、难点:理解题意,寻求数量间的等量关系并列出方程.二、教材处理:1.情景创设:(1)天平称球(或硬币、铅笔等),见课本P114.(2)排球联赛,某队胜多少场?见课本P114.……建议根据实际情况,创设较多的与学生生活相关的实际问题,以激发学生学习兴趣.2.学生活动、意义建构、数学理论:用天平演示实验后,学生思考问题一:可以用什么方法解决这个问题?问题二:你是如何解决这个问题的?借助方程能否解,怎样解?对排球队胜多少场的问题,学生思考问题一:猜一猜,该队胜了多少场?问题二:可以用什么方法解决这个问题?(尝试法;枚举法;列方程等)问题三:设该队胜了x场,能用方程来解吗?如何解?从而揭示课题——从问题到方程.3.数学运用:例1(补):见教师教学参考资料“某校七年级共有216名师生参加某次活动,用一辆面包车和若干辆客车接送,已知这一辆面包车只能坐16人,还需用多少辆40座的客车?”学生思考一:设用x辆40座的客车,则客车能接送多少人?学生思考二:列方程,等量关系是什么?师提供正确的解题格式“设还需用x辆40座的客车.根据题意,得40x+16=216”.变式训练一:用四辆轿车和若干辆客车接送,已知一辆轿车只能坐4人,还需用多少辆40座的客车?变式训练二:用轿车和客车共9辆车接送,已知一辆轿车只能坐4人,还需用多少辆轿车和多少辆40座的客车?……思维拓展见课本P115试一试;也可补充题,见教师教学参考资料……习题处理,见课本P115练一练1,2,3.学生说清每小题的等量关系式,而后师小结.建议补充一些能借用一元一次方程来解的简单的实际问题,如行程问题、工程问题、形积问题、商品销售问题等,介绍一些名词,为后面的学习作一铺垫,但一定要控制难度.4.回顾反思:(1)本课只是要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程是作为刻画现实世界模型的重要意义,建立方程思想.为第3单元作铺垫,对本章知识的学习起到提纲挈领的作用.(2)教学时,要在调动学生的积极性和激发他们的学习兴趣上下工夫.课时2 从问题到方程(2)一、教材分析:1.学习目标:知识与技能:通过对具体实际生活问题的分析,进一步学会根据实际问题的意义设未知数并列出方程,了解一元一次方程的概念.过程与方法:经历把实际问题抽象出数学问题的过程,体会方程是人们分析、解决实际问题的有效工具.情感、态度与价值观:进一步领会方程与现实生活间的密切联系,感受数学建模思想的应用.2.重、难点:分析问题,探寻等量关系列一元一次方程.二、教材处理:1.情景创设:(1)列车提速问题,见课本P115.生活背景:从1997年到2004年,我国共进行了5次列车提速.(2)见教师教学参考资料手机通讯话费付费方式2.学生活动、意义建构、数学理论:结合问题情景,思考:解决这个问题的关键是什么?题中涉及哪些量?这些量之间的关系如何?你能找出表示问题意义的相等关系吗?用方程怎样表达?方法一:用直接未知数.设甲、乙两城市间的路程为x km,相等关系:提速前的运行时间-提速后的运行时间=缩短时间.方法二:用间接未知数.设提速前列车从甲地到乙地的运行时间为x 小时,相等关系:提速前的运行速度×运行时间=提速后的运行速度×运行时间,即80x=100(x-3).建议只让学生多一些方法,但不要讲的太多.3.数学运用:例1(补):某班学生39人到公园划船,共租用9艘船,每艘大船可坐5人,每艘小船可坐3人,每艘船都坐满.问:大船、小船各租了多少艘?教学时可以先让学生尝试和探索,然后交流.而后概括从实际问题到方程一般要经历的过程:找出表示问题意义的相等关系,设未知数(通常用x、y等),用含未知数的代数式表示题中相关的量,根据相等关系列方程.思维拓展见课本P116试一试,P116练一练1.习题见课本P117及教师教学参考资料等.……最后,学生观察所列方程的特点,归纳得出一元一次方程的概念,再举出几个类似的方程.建议结合导学与评价,补充练习.4.回顾反思:(1)把实际问题抽象为数学问题,再从数学问题到列出方程.关键在于弄清题意,恰当地巧设未知数,找出问题中的相等关系.(2)设元设得巧,方程列得妙;设元设得好,方程列的得快.一般问什么则设什么,有时设未知的另一个量来求也较方便.(3)解题时,找出问题中的相等关系,要深刻理解题意,把握题中隐含条件及内在联系(如题中等量关系语句、量与量之间的关系).(4)学有余力的同学鼓励其解方程(小学根据逆运算原理),对一般同学不作要求.课时3 解一元一次方程(等式的基本性质)一、教材分析:1.学习目标:知识与技能:了解与一元一次方程有关的概念,掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程.过程与方法:经历数值代入计算的过程,领会方程的解和解方程的意义.知道求方程的解就是将方程变形为x=a 的形式.情感、态度与价值观:强调检验的重要性,养成检验反思的好习惯.2.重、难点:比较方程的解和解方程的异同;归纳等式的性质;利用性质解方程.二、教材处理:1.情景创设:(1)见课本P118“如何解2x+1=5”.通过填表尝试,即采用枚举这一合情推理的方法找出满足方程的未知数的值,得出方程的解和解方程的概念.(2)见华东师大版七(下)P4由用天平测物,联想到等式的几种变形.探索得出:如果我们在两边盘内同时添上(或取下)相同质量的物体,可以看到天平依然平衡,得x+2=5→x=5-2,3x=2x+2→3x-2x=2;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡,得2x=6→x=6÷2.学生归纳等式的性质.2.学生活动、意义建构、数学理论:出示问题情景(1)后,学生考虑:怎样求方程中的未知数的值?分别将1、2、3、4、5代入方程,哪一个值能使方程成立?学生做课本P118试一试,教师讲授方程的解和解方程的概念.引入问题情景(2)后,鼓励学生说出各自不同的想法,相互交流、补充,逐步引导启发学生归纳等式的性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;等式的性质2:等式两边都乘以(或除以)同一个数(除数不为零),所得结果仍是等式. 等式的性质比较抽象,教学时不必在理论上作过多的展开,重在问题情景②探索的过程,可多举例讨论.3.数学运用:处理完问题情景(1)(2),学生阅读课本P118—119,进一步熟悉学习内容,思考:比较方程的解和解方程的异同?(方程的解是使方程成立的未知数的值;解方程是求方程解的过程,是一个等价变形过程,而求方程的解就是将方程变形为x=a的形式).出示例1 解下列方程:(1)x+5=2;(2)-2x=4.引导学生自己尝试运用等式的基本性质解方程,说清楚每一步的依据,交流解题方法.教师提供正确的解题格式.强调检验方法及检验的必要性.习题训练:(1)以下变形是否正确?(2)说明变形的依据?(3)解方程,如课本P120练一练1,教师教学参考资料例题等.思维拓展:(1)求作一个方程,使它的解为-1;(2)简单应用题如课本P120练一练2.4.回顾反思:(1)小学阶段利用加减法、乘除法互为逆运算的方法解方程,学生印象深刻,教学时鼓励学生运用等式的性质来求,但不强求.(2)解方程后,虽不要书面检验,但要求学生培养检验反思的好习惯.(3)注意等式的性质中的“都”和“同”:“都”表示两边均要变形,“同”表示两边要作一样的变形.(4)简单介绍等式的另两条性质:对称性与传递性.课时4 解一元一次方程(移项)一、教材分析:1.学习目标:知识与技能:会应用移项、合并同类项法则解一些简单的一元一次方程.过程与方法:通过具体的实例感知、归纳移项法则,进一步探索方程的解法.情感、态度与价值观:进一步认识解方程的基本变形,感悟解方程过程中的转化思想.2.重、难点:移项法则的归纳与应用.二、教材处理:1.情景创设:开门见山,专题训练.解方程(写出解答过程中的第一步):(1)x+2=7→;(2)3+2x=1+x→;(3)-x+3=-2→;(4)2x-3=1→;(5)-2x+9=-5→;(6)3+4x=1-2x→.2.学生活动、意义建构、数学理论:结合上面问题与课本P120例2,P121例3,让学生尝试解答,讨论辨析,观察方程的变形,并叙述这种变形规律,得出移项法则.3.数学运用:课本P120例2,P121例3的教学处理:先让学生自主探求,师发问:解方程4x-15=9时,能否直接把等式左边的-15改变符号移到等式右边?方程4x-15=9与4x=9+15的差别在哪儿?解方程2x=5x-21时,能否直接把等式右边的5 x改变符号移到等式左边?为什么?指导学生在例2、例3解方程的过程中发现规律,结合两例课本云图说明及卡通人的介绍,引出这种方程的变形是移项.学生自主总结出移项法则——移项要变号. 牢记:从等式左边移到等式右边的项要变号;从等式右边移到等式左边的项也要变号.“叛变”了嘛!建议补充什么是多项式的项,未知项,常数项?用移项法解方程须注意:(1)目标明确,解方程目标是把方程变形为x=a的形式;(2)移项时,要移谁,移到哪?(3)怎样移项?方法一是利用加、减法互逆运算这一关系;方法二是利用等式的性质;方法三是移项法则.用课本P121例4来进一步熟悉移项法则在解方程中的运用.注意解题步骤的规范化.习题训练:(1)以下移项变形是否正确?(2)解方程,如课本P122练一练1,2等.思维拓展,解简单的应用题,如课本P122练一练3或补充一些题.4.回顾反思:(1)学生从利用逆运算解方程到用移项法则解方程要有个过程,不宜操之过急.在移项时,学生常犯的错误是忘记变号,这主要是学生不熟悉移项法则,要对照等式的性质逐渐来理解.(2)解例题时要不拘泥于课本上的解法,追求解题策略的多样化.另外,注意解题格式的规范化和检验的必要性.(3)合并同类项法则学生可能已淡忘,适时进行整式的加减法的专项训练.教训:不要求学生“-x+2x=(-1+2)x=1x=x”谨小慎微,步子小了,也会拌自己的脚.(4)以练促讲,以练代讲.当堂检测,即时反馈.课时5 解一元一次方程(去括号)一、教材分析:1.学习目标:知识与技能:会应用去括号、移项、合并同类项、系数化为1的方法解一些简单的一元一次方程.过程与方法:经历探索用去括号的方法解方程的过程,进一步熟悉方程的变形,弄清楚每步变形的依据.情感、态度与价值观:初步掌握解方程的一般步骤,培养学生的概括能力和耐心、细致的学习态度..2.重、难点:去括号法则在解方程中的熟练应用.二、教材处理:1.情景创设:(1)小明说:“我姐姐今年的年龄是我去年的年龄的2倍少6,”已知姐姐今年20岁,问小明今年几岁?(2)见教师教学参考资料,即课本P116试一试.2.学生活动、意义建构、数学理论:学生分析:情景(1)是配平问题.若取小明今年为x岁,则依据下面的等量关系式列方程:姐姐今年的年龄=小明去年年龄的2倍-6.得2(x-1)-6=20.情景(2)得方程:x+2(30-x)=50.师提出问题,如何解方程?用上节课的知识能不能求解?有什么困难?如何去掉这个方程中的括号?谈谈你的想法.学生讨论,教师把话题引到课本较为简单的例5上(见下面数学运用),引出去括号.3.数学运用:学生讨论:解方程P122例5 -3(x+1)=9教师充分让学生活动起来,畅所欲言,说出如何变形为x=a的形式.(生:利用乘除法互为逆运算;利用等式的基本性质;利用乘法分配律;利用去括号的方法等等)前两种方法实际上是把x+1看作一个整体;后两种方法只是整理方程的左边,实则去括号.师生一道解方程例5、情景问题(1)、(2).总结:根据乘法分配律和去括号法则(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号)去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,,记住去括号后括号内各项都变号.习题训练:解方程,如课本P122练一练1,P113练一练2等.思维拓展,解简单的应用题,如课本P123练一练3或补充一些题,如含小括号、中括号、大括号的方程(这方面课本安排几乎没有,只限浅显问题,教师不必深究).4.回顾反思:(1)注意解法的灵活性,不要过分强求学生按固定格式来解,可适当引导学生找出较好的解题方法和书写过程.(2)学生去括号时错误之处:数字系数漏乘某一项;乘后各项符号的确定不准确.(3)系数化为1时,注意不要和移项搞混,建议整数和小数系数可用除法,分数系数可改用乘法.课时6 解一元一次方程(去分母)一、教材分析: 1.学习目标:知识与技能:知道解一元一次方程的一般步骤,能灵活运用去分母、去括号、移项、合并同类项、系数化为1等五大步骤解一元一次方程.过程与方法:巩固方程解法,经历求解过程,能体会到解法应根据具体方程本身特点而定.情感、态度与价值观:体会化归思想——把复杂变简单,将未知变已知的作用,体会数学的应用价值. 2.重、难点:利用“去分母”将方程作变形处理. 二、教材处理: 1.情景创设:毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯,请告诉我,有多少名学生在你的学校里听你讲课?” 毕达哥拉斯回答说:“我的学生,现在有21在学习数学,41在学习音乐,71沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名? 2.学生活动、意义建构、数学理论:由情景问题入手,引导学生审清题意,根据等量关系:学生总数的21+学生总数的41+学生总数的71+3=学生总数列出方程.即设毕达哥拉斯的学生有x 名,由题意得x /2+x /4+x /7+3=x .学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较.(生:①先移项再合并同类项;②先合并同类项后移项;③两边同时乘以28,56,84……) 学生比较上述方法,判断选择,引入——去分母. 3.数学运用:结合情景问题的解法,师生互动处理课本P 123例7、例8.反馈矫正学生出现的问题,让学生展开讨论,发现解答时出错之处.去分母时须注意:(1)确定各分母的最小公倍数;(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体.建议进行专项训练,如23x -,-23x -乘以6,8……概括解一元一次方程一般步骤,强调变形时各步易出现错误的内容.习题练习:见课本P 124练一练1,2,3 思维拓展:见课本P 124议一议2.02x --5.01 x =3;又如03.01.0x -7.02.09.0x-=1 (提示:分子、分母是小数、分数的可以首先利用分数的基本性质将其化为整数系数,然后再解方程.) 4.回顾反思:(1)回顾去分母注意事项,见上面数学运用.(2)本课时蕴涵的数学思想方法主要是化归思想.解方程的过程就是通过去分母、去括号、移项、合并同类项、(未知数)系数化为1等步骤,把一个一元一次方程逐步转化为x =a 的形式.这是一个等量变形的过程,也是一个化归的过程.(3)具体解方程时,可根据具体情况,有些步骤可能用不上;有些步骤可以前后顺序颠倒;有时还可以省略一些步骤,以使运算简化.课时7 用方程解决问题(配料问题)一、教材分析: 1.学习目标:知识与技能:大致了解用方程解决问题的一般步骤和方法,明确其关键是找出能表示实际问题全部含义的相等关系.过程与方法:经历活动和思考、交流与讨论、分析解决问题等过程,体会数学的应用价值.情感、态度与价值观:经历“问题情景——建立数学模型——解释、应用与拓展”的过程,感悟数学建模思想. 2.重、难点:寻找等量关系. 二、教材处理: 1.情景创设:冰淇淋配料问题,见课本P 126. 2.学生活动、意义建构、数学理论:借用课本中两个卡通人的对话,学生思考:(1)如果用算术解法你能解出结果吗?如何求?(2)若用方程求解,如何设未知数?等量关系式是什么?(3)如果在三色冰淇淋中,咖啡色、红色和白色配料比是2∶3∶5,那么如何设未知数?学生在教师指导下完成问题,了解解法步骤:理解题意,找出一个能表示实际问题全部含义的相等关系,分析解答过程,设未知数,再根据相等关系列出方程,解这个方程,并写出答案.在设未知数和作出解答时,应注意量的单位.3.数学运用:课本P127问题1:分析:根据题中关键语句“做这批桌子,恰好用去木材3.8m3”,得相等关系:做桌面的木材+做桌腿的木材=3.8m3.设共做了x张桌子,做桌面的木材需0.03x m3,做桌腿的木材需4×0.002x m3,方程为0.03x+4×0.002x=3.8……学生自主解决问题.习题练习:课本P128练一练1,2;再举例如螺母螺栓、盒身底盖、人员调配问题等.思维拓展:数学实验室(月历问题),下图提供2005年11月的月历表(3)根据“数学实验室”中的游戏,请你再编一个游戏,并列出方程求解. 如:①某列3个数的和为54,这3个数是几?和能为56吗?②月历中能有2×2矩形方块中的4个数之和为80吗?若有,这四个数之间有什么样的关系?4.回顾反思:(1)进一步熟悉解一元一次方程的方法步骤;(2)弄清楚用一元一次方程解决问题的关键;(3)根据学生情况,适当补充安排较多类型的问题.如课本P129练一练3,4和教师教学参考资料补充例题.课时8 用方程解决问题(表格建模)一、教材分析: 1.学习目标:知识与技能:能利用表格作为建模策略,分析实际问题中的数量关系列方程解决问题.过程与方法:进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力. 情感、态度与价值观:综合运用已有知识,在探索和解决问题的过程中获得体验,发展自己的思维能力. 2.重、难点:表格设计,用表格分析题中的数量关系. 二、教材处理: 1.情景创设:广东宏远队的朱芳雨是中国男篮的主力前锋.在一场洲际杯比赛中,他一人独得23分(不含罚球得分).已知他投进3分球比2分球少4个,他一共投进了几个3分球和几个2分球? 2.学生活动、意义建构、数学理论:学生分析:题中涉及哪几个量?(投中3分球和2分球的个数关系,得分);相等关系是什么?(3分球的得分+2分球的得分=23)教师提示,师生建构表格,学生填写. 根据表格和相等关系列出方程: 3x +2(x +4)=23. ……学生在问题情景中初步体验用表格建模策略分析问题各量间的相互关系,列表格是解决问题的一个重要手段.3.数学运用:课本P 129问题2.学生仔细审题(齐读或精读后能复述题意)思考:(1)指出问题中的数、数量、已知数量和未知数量;(2)表格可以怎样设计?(3)设小丽买了x kg 苹果,如何用表格分析问题中的数量关系?列出方程是什么?思维拓展:本题还有没有其它解法?(如:设小丽买了x kg橘子;设小丽买了x元苹果;设小丽买了x元橘子)教师小结,让学生体会用方程解决问题时,设未知数的方法不同,方程的复杂程度也常常不同,因此要有所选择.习题练习:见课本P130练一练2,3或安排其它.4.回顾反思:(1)解方程,读懂题意是解决问题的前提,审题不要留于形式,“磨刀不误砍材工”.(2)所谓解题建模策略,是帮助学生理解题意,找清楚各量间的关系的一种方法,一种策略,一种途径,一个手段,不要过多地加大对解题策略(列表格)的分析、构建,这不应成为解方程的新的难点.学习时,可用列表格法表示问题的数量关系,列出代数式,帮助理清思路,找准等量关系列方程.课时9 用方程解决问题(示意图建模)一、教材分析:1.学习目标:知识与技能:能利用示意图作为建模策略,分析实际问题中的等量关系列方程解决问题.过程与方法:经历用方程解决实际问题的过程,提高应用数学的意识.情感、态度与价值观:进一步体会建构方程模型的作用,培养抽象、概括、分析问题的能力的勇于克服困难的意志.2.重、难点:示意图的构建和分析.二、教材处理:1.情景创设:简介“中国结”的文化内涵:见教师教学参考资料“课程资源”.问题情景,见课本P130.2.学生活动、意义建构、数学理论:呈现问题后,教师点拨:(1)直接分析:题中两个条件分别交代了计划做“中国结”总数可用含小组成员数(设x )的两个代数式来表示,得方程 5x -9=4x +15;(2)借助示意图分析相等关系.结合课本示意图,学生思考:根据问题中的第(2)个条件,这个 小组计划做的中国结多少个?怎样在示意图 上表示?你能根据示意图中线段和或差写出相等关系吗?并根据相等关系列出方程吗?你能列出几个不同的方程,不妨与同学交流一下.(5x -4x =9+15;5x -9-15=4x ;5x =4x +15+9等)示意图通常可以画成直线图或环形图等,用线段的长或曲线的长来表示某些量,并根据这些线段或曲线的长度关系列出方程.行程类问题中的数量关系多数可以用示意图来表达. 3.数学运用:例:甲、乙两人在环形跑道上练习跑步.已知环形跑道一圈长400m ,乙每秒中跑6m ,甲每秒中跑8m.(1)如果甲、乙两人在跑道上相距8m 处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8m 处同时同向出发,那么经过多少秒两人首次相遇?安排构思:补充环形示意图和线形示意图的作用,为下节课学习作一准备.分析:第(1)问是相遇问题,相等关系为:甲的行程+乙的行程=环形跑道一圈长-8m ;第(1)问是追及问题,相等关系为:甲的行程=乙的行程+相差距离(400一8)m..教师可以指导学生利用环形示意图 和线形示意图来帮助理清相等关系.习题见课本P 131练一练1,2,3,4.思维拓展:情景问题若设计划做x 个中国结,能不能解决? 课本习题可提高要求,一题多解,变式训练. 4.回顾反思:(1)利用示意图进行分析是继列表格法之后解决问题的又一个重要手段,示意图帮助我们分析各个量之间的相互关系的一种有效的工具.教学时,可多找一些实例去分析,让学生切身体会示意图的作用.(2)教学时,多让学生去探索、讨论、交流,来感悟画示意图帮助分析问题、解决问题.。
一元一次方程的应用古寨中学毕兰华一、教学分析:本节课设计简析:本节课内容是列方程解应用题,主要是小学解应用题和中学解应用题的衔接,让学生感受数学与现实生活息息相关,并且体验数学的趣味性,提高学习数学的积极性。
二、教学目标:(一)知识目标:1、通过身边的故事,引导学生对生活中的问题进行探讨和研究,学会用方程的思维解决问题。
2、借助找关键句或关键词、画线段图或示意图等方法,引导学生正确找出题中的等量关系,列出方程。
(二)能力目标:1、通过小组合作学习活动,培养学生的合作意识和语言表达能力。
2、培养学生的观察、分析能力以及用方程思维解决问题的能力。
(三)情感目标:1、使学生在讨论、交流的学习过程中获得积极的情感体验,探索意识、创新意识得到有效发展。
2、在分析应用题的过程中,培养学生勇于探索、自主学习的精神。
感受到生活中处处存在数学,体验数学的趣味性或者根据丢番图的年龄能被6,12,2,7整除,可知这个年龄是6,12,2,7的倍数,所以他的年龄为84,168……但是根据迄今被《吉尼斯世界记录》认可的世界上寿命最长的人是法国的让-卡尔门特,他在1997年8月4日去世时享年122岁。
所以丢番图的年龄为84岁。
【设计意图:这个题目有一定的难度和趣味性,可以在开课时吸引全班学生的注意力,同时这个题目可以用方程解法和算式解法,甚至还可以用以前学过的倍数来解决,解题方法多样性,可以锻炼学生的思维,也可以做到小学用算式和中学列方程解应用题的衔接。
通过这个题目对比两种解法可以看出:算术解法是把未知量置于特殊地位,设法用已知量组成的混合运算式表示出来(在条件较复杂时,列出这样的式子往往比较困难);代数解法是把未知量与已知量同等对待(使未知量在分析问题的过程中也能发挥作用),找出各量之间的等量关系,建立方程.】总结:列方程解应用题的一般步骤:(1)“审”:审清题意;(2)“设”:设未知数并把有关的量用含有未知数的代数式表示;(3)“列”:根据等量关系列出方程;(4)“解”:解方程;(5)“答”:检验作答。
一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
2024年初一数学一元一次方程教学计划一、本单元教材分析教学内容:方程和方程的解;一元一次方程;等式的基本性质;一元一次方程的解法;一元一次方程的应用地位及作用:方程和方程组是第三学段数与代数的主要内容之一。
一元一次方程是最简单、最基本的代数方成。
它不仅在实际中有广泛的应用,而且是学习二元一次方程组等后继知识的基础。
可以说它承前启后,有重要地位。
还能培养学生的方程思想和建模能力,发展数感和符号感,提高分析问题和解决问题的能力。
本单元特点:本单元重视问题情境的设置,采用了问题情境-建立模型-求解、应用和拓展的内容呈现模式并逐步渗透方程思想、建模思想,发展数感和符号感,提高分析问题和解决问题的能力。
教材设计(课题组成)本单元教学目标:知识和技能:1.了解方程和方程的解、一元一次方程及其相关概念;会解一元一次方程;掌握解一元一次方程的步骤。
2.了解等式的基本性质及其在方程中的作用过程和方法:会根据具体问题中的数量关系列出一元一次方程并求解,能根据具体问题的实际意义检验结果是否合理。
情感态度、价值观:1.在经历建立方程模型解决实际问题的过程中,体方程思想、建模思想,并体会方程的应用价值。
通过学习培养自己学习数学的兴趣和信心。
2.提高学习能力,增强和他人合作的意识。
本单元重点、难点:重点是根据具体问题中的数量关系列出一元一次方程;解一元一次方程的步骤;运用一元一次方程解决实际问题。
难点是根据题意找出等量关系,列出一元一次方程解应用题。
教学关键:等式的基本性质;根据实际问题中的数量关系正确的列出代数式;根据实际问题中的等量关系正确列出等式。
二、学情分析学生在第二学段已经接触过简单的方程,对于方程并不陌生,另外已经有了初一前一段所学数、整式的知识做基础对于解方程并不难掌握,但是列一元一次方程解应用题应是难点问题,这里应多让学生练习三、教学策略:重视问题情境的设置,采用问题情境-建立模型-求解、应用和拓展的内容呈现模式;让学生的思维真正动起来,让学生通过感知概括应用的思维过程去发现并掌握规律;抓住教学关键:等式的基本性质;根据实际问题中的数量关系正确的列出代数式;根据实际问题中的等量关系正确列出等式。
一元一次方程应用题归类分析大庙小学蔡丽娜摘要:一元一次方程的解法及其应用是中学数学的重要部分,是继续学习数学的重要工具.本文首先阐述一元一次方程的解法,进而归纳一元一次方程能够解决的实际问题的类型,并结合例题进行分析.关键词:一元一次方程;一元一次方程的解法;一元一次方程解决实际问题1 一元一次方程及其应用只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是0a).≠=ax(a,b为常数,且0+b1.1 一元一次方程简介1.1.1 一元一次方程的概念通过化简,只含有一个未知数,且含有未知数的最高次项的次数是1的等式,叫一元一次方程,通常形式是0a).一元一次方程属于整≠=+bax(a,b为常数,且0式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将0≠ax(其中x是未知数,a,b是已知数,且0a)=+b的次数必须是1.即叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x一元一次方程必须同时满足四个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项次数为1;(4)含有未知数的项的系数不为0."方程"一词来源于我国古算术书《九章算术》.在这本著作中,已经会列一元一次方程.法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程.在19世纪以前,方程一直是代数运算的核心.1.1.2 一元一次方程解法步骤使方程左右两边相等的未知数的值叫做方程的解.解一元一次方程的一般方法为:1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);2.去括号:先去小括号,再去中括号,最后去大括号(括号外有减号一定要记得变号);3.移项:把含有未知数的项都移到方程的一边,其他的项都移到方程的另一边(移项要变号);4.合并同类项:把方程化成()0≠=a b ax 的形式;5.系数化为1:在方程两边都除以未知数的系数a ,得到方程的解ab x =例1 解方程()()()53210232213+--=-+x x x解:去分母得,()()()32223210135+--=⨯-+x x x去括号得,642320515---=-+x x x移项得,205624315+---=+-x x x合并同类项得,716=x系数化为1得,167=x1.2 一元一次方程的应用题一元一次方程的应用题实际上就是用一元一次方程解决实际问题,其一般思路是分析数量关系,列出方程.列方程的实质就是用两种不同的方法来表示同一个量.实际问题中的数量关系比较隐蔽,关键是审题,弄清问题背景,分析清楚数量关系,特别是找出可以作为列方程的依据的相等关系.一元一次方程能够解决较多类型的实际问题,本人将在第二部分详细阐述.2 一元一次方程解决应用问题列一元一次方程解应用题,是中学数学的重要内容之一.许多实际问题都可以归结为解一种方程,所以列出方程解应用题是数学联系实际、解决实际问题的一个重要方面.做一元一次方程应用题的一般方法:1.认真审题(审题);2.分析已知和未知量;3.找一个合适的等量关系;4.设一个恰当的未知数;5.列出合理的方程(列式);6.解出方程(解题);7.检验;8.写出答案(作答).在下文中,本人从以下几方面分门别类的对常见一元一次方程问题加以阐述.2.1 用一元一次方程解决和、差、倍、分问题此问题中常用"多、少、大、小、几分之几"或"增加、减少、缩小"等等词语体现等量关系.审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.类1),求甲乙各多少?这样的问题就似于:甲乙两数之和56,甲比乙多3(乙是甲的3是和倍问题.问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少.基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程.例2 一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?解析此题为和倍问题.解:设去年一季度产量x台.x+1802=36x72=答:设去年一季度产量72台.例3 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?解析 此问题为差分问题.解:设原来每人需要付费x 元.321010=+-x x18=x答:原来每人需要付费18元.2.2 用一元一次方程解决等积变形问题此类问题的关键在"等积"上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式.常用等量关系:形状面积变化,周长不变;原料体积=成品体积.例4 已知圆柱的底面直径是60毫米,高为100毫米,圆锥的底面直径是120毫米,且圆柱的体积比圆锥的体积多一半,求圆锥的高是多少?解析 此题中的等量关系为:圆柱的体积23=圆锥的体积. 解:设圆锥的高是x 毫米. x 2221203123260100⎪⎭⎫ ⎝⎛⨯⨯⨯=⎪⎭⎫ ⎝⎛⨯⨯ππ 50=x 答:圆锥的高是50毫米.2.3 用一元一次方程解决劳力调配问题这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变.例5 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?解析此题中只有调入,注意调入后的数量关系.解:设应调往甲处x人,则应调往乙处()x-20人.()3+=+x-x23+17202x=18则()2-x20=答:设应调往甲处18人,则应调往乙处2人.2.4 用一元一次方程解决比例分配问题这类问题的一般思路为设其中的一份为x,利用已知的比,写出相应的代数式.常用等量关系:各部分之和=总量.例6 一足球由黑白两种皮子缝制而成共32块,已知黑白皮子数的比为3:5,求各多少块?解析设一份为x,利用相应数量关系即可解答.解:设一份为x,则黑皮子x3块,白皮子x5块.+xx53=32x=4则12x5=3=x,20答:黑皮子12块,白皮子20块.2.5 用一元一次方程解决数字问题要正确区分"数"与"数字"两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:c100.两+10a+b个连续整数之间的关系,较大的比较小的大1;偶数用n2表示,连续的偶数用2n或2+2-n表示.n或1n表示;奇数用122-2+例7 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数.解析 等量关系:原两位数=+36对调后新两位数.解:设十位上的数字x ,则个位上的数是x 2.()36210210++=+⨯x x x x4=x则82=x ,48210=+x x答:原来的两位数为48.2.6 用一元一次方程解决工程问题其基本数量关系:工作总量=工作效率⨯工作时间;合做的效率=各单独做的效率的和.当工作总量未给出具体数量时,常设总工作量为"1",分析时可采用列表或画图来帮助理解题意.例8 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解析 设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量. 解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得1123121151=+⨯⎪⎭⎫ ⎝⎛+x 1124151=++x 536533==x 答:乙还需536天完成全部工程. 2.7 用一元一次方程解决行程问题要掌握行程中的基本关系:路程=速度⨯时间.基本类型有:相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系.追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系.环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程.航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静-.水中速度水流速度飞行问题、基本等量关系:①顺风速度=无风速度+风速;②逆风速度=无风速度风速-.行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点.例9 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.(1)慢车先开出1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程.故可结合图形分析.(1)分析:相遇问题,画图表示为:甲乙等量关系是:慢车走的路程+快车走的路程=480公里.解:设快车开出x 小时后两车相遇,由题意得,()480190140=++x x23161=x 答:快车开出23161小时后两车相遇. 分析:相背而行,画图表示为:600甲 乙等量关系是:两车所走的路程和+480公里=600公里.解:设x 小时后两车相距600公里,由题意得,()60048090140=++x2312=x 答:2312小时后两车相距600公里. (3)分析:等量关系为:快车所走路程减去慢车所走路程加上480公里等于600公里.解:设x 小时后两车相距600公里,由题意得,()60048090140=+-x 4.2=x答:2.4小时后两车相距600公里. (4)分析:追及问题,画图表示为:甲 乙等量关系为:快车的路程=慢车走的路程+480公里.解:设x小时后快车追上慢车.由题意得,480x=x140+90x=6.9答:9.6小时后快车追上慢车.(5)分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里.解:设快车开出x小时后追上慢车.由题意得,()480=x+x1140+90x=4.11答:快车开出11.4小时后追上慢车.2.8 用一元一次方程解决利润盈亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价;商品利润率=商品利润/商品进价;商品售价=商品标价×折扣率.例10 某商品按定价销售,每个可获利45元,现在按定价的8.5折出售8个所能获得的利润与按定价每个减价35元出售12个所获得利润一样.问这种商品每个的进价是多少元?解析两种销售方案利润相同.解:设这种商品每个的进价是x元.()()12-=⨯⨯+xx-453545⨯8885%x255=答:这种商品每个的进价是255元.2.9 用一元一次方程解决储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税.⑵利息=本金×利率×期数;本息和=本金+利息;利息税=利息×税率(20%).例11 某同学把250元钱存入银行,整存整取,存期为半年.半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)解析 等量关系:本息和=本金⨯(1+利率)解:设半年期的实际利率为x ,则半年期的年利率为x 2.()7.2521250=+x0108.0=x则0216.02=x答:半年期的年利率为0.0216.2.10 用一元一次方程解决溶液配制问题这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,其基本数量关系是:溶质=溶液×浓度(溶液溶质浓度=,浓度溶质溶液=),溶液=溶质+溶剂. 例12 有浓度为98%的硫酸溶液8千克,加入浓度为20%的硫酸溶液多少千克,可配制成浓度为60%的硫酸溶液.解析 找出硫酸的质量的关系.解:设加入溶液x 千克.()x x +=+⨯8%60%20%9886.7=x答:加入溶液7.6千克.2.11 用一元一次方程解决年龄问题这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等,大小两人年龄差不变.例13 甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少? 解析 两人年龄差不变.解:设乙现在x 岁.()52515-=-+x x20=x答:乙现在20岁.2.12 用一元一次方程解决古典数学问题这类问题最典型的问题是鸡兔同笼问题,例如:一笼内有鸡和兔,共有头70个,有腿280条,问鸡和兔各有多少?此类问题的特点是:两处总量都和包含的个体有关系.因此,两处总量就是两个等量关系,可以设其中一个个体为x ,利用其中一个等量关系写出另一个个体数,利用另一个等量关系列方程.例13 100个和尚100个馍,大和尚每人吃两个,小和尚三人吃一个,问有多少大和尚,多少小和尚.解析 此问题中有两个等量关系:和尚的人数和,馍的个数和.利用和尚的人数和设出未知数,利用馍的个数列出方程.解:设有x 个大和尚,则有()x -100个小和尚.()100100312=-+x x 40=x则60100=-x答:有40个大和尚,60个小和尚.2.13 用一元一次方程解决探寻规律问题这类问题的特点是:在给出的材料中找出规律,并利用这一规律找出解决问题的相等关系,列出方程.例如:数字排列规律、年龄的规律、日历中的规律等.熟练的掌握生活中的一些规律是解决此类问题的关键.例14 在日历上任意圈出一竖列上的4个数,如果这4个数的和是54,那么这4个数是多少呢?解析 日历上竖列上的数字的规律是下一个数比前一个大7.解:设第二个数为x ,则第一个数为()7-x ,第三个数为()7+x ,第四个数为()14+x . ()()()541477=+++++-x x x x10=x则37=-x ,177=+x ,2414=+x答:这四个数分别为3,10,17,24.结语一元一次方程是中学数学学习的基础,在学习一元一次方程的过程中,对概念的理解是十分重要的.一元一次方程的主要应用是在解决应用问题,在用一元一次方程解决应用问题时,解法步骤是十分重要的,本文对此作了清楚地介绍.在解决应用问题时,共分了十三种类型,每一个类型都有例题并包含了具体的解析以及解题步骤.要想深入理解一元一次方程的应用,一定要对这十三种类型融会贯通,并能够独立解答.在学习一元一次方程的过程中,一定要把握住每种类型的解题思想,要严格的按照解题思想来解决不同类型的问题,对于变式类型要自己独立思考,创新,把握解题技巧,只有这样,才能够提高自己分析问题和解决问题的能力.参考文献[1] 陈连斌.例谈一元一次方程在实际问题中的应用及解题技巧[J].数学学习与研究,2011.[2] 臧学俊.一元一次方程应用题的教学[J].安徽教育,1996,(Z1).[3] 陈丽.初中数学中一元一次方程的教学研究[J].中小学电教(下),2011,(08).[4] 庄益君,温博超.浅谈一元一次方程应用题的教学[J].甘肃教育,1998,(12).[5] 刘顿,蒋成富.实际生活中一元一次方程的应用问题[J].数学教学通讯,2002,(S7).[6] 吴育弟.解一元一次方程的技巧大放送[J].中学生数理化(七年级数学)(人教版),2011,(10).。
第一章实数 课时1.实数的有关概念【课前热身】1.(08重庆)2的倒数是 .2.(08白银)若向南走2m 记作2m -,则向北走3m 记作 m .3.(08的相反数是 .4.(08南京)3-的绝对值是( )A .3-B .3C .13-D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7³10-6B. 0.7³10-6C. 7³10-7D. 70³10-8【中考演练】1.(08常州)-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= .2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”)3. 下列各数中:-3,02,0.31,227,2π,2.161 161 161…,(-2 005)0是无理数的是___________________________.4.(08湘潭)全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字) 5.(06北京)若0)1(32=++-n m ,则m n +的值为 . 6. 2.40万精确到__________位,有效数字有__________个. 7.(06泸州)51-的倒数是 ( )A .51-B .51 C .5- D .58.(06荆门)点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或3 9.(08扬州)如果□+2=0,那么“□”内应填的实数是( )A .21 B .21-C .21±D .210.(08梅州)下列各组数中,互为相反数的是( )A .2和21 B .-2和-21 C .-2和|-2| D .2和2111.(08无锡)16的算术平方根是( )A.4B.-4C.±4D.1612.(08郴州)实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或2 14.(08湘潭) 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数课时2.实数的运算与大小比较【课前热身】1.(08大连)某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C . 2.(07晋江)计算:=-13_______.3.(07贵阳)比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.6 5.(08巴中)下列各式正确的是( )A .33--=B .326-=- C .(3)3--= D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2³1=2,3!=3³2³1=6,4!=4³3³2³1,…,则100!98!的值为( )A.5049B. 99!C. 9900D. 2!【中考演练】1. (07盐城)根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 . 2. 比较大小:73_____1010--.3.(08江西)计算(-2)2-(-2) 3的结果是( )A. -4. (08宁夏)下列各式运算正确的是( )A .2-1=-21 B .23=6 C .22²23=26 D 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A. 10 B .20 C .-30 D .18 6. 计算:⑴(08南宁)4245tan 21)1(1+-︒+--;⑵(08年郴州)21()2sin 3032--+︒+-;⑶ (08东莞) 01)2008(260cos π-++-.﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)³4=24.(注意上述运算与4 ³(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24, (1)_______________________,(2)_______________________, (3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章代数式 课时3.整式及其运算【课前热身】 1. 31-x 2y 的系数是 ,次数是 .2.(08遵义)计算:2(2)a a -÷= .3.(08双柏)下列计算正确的是( )A .5510x x x += B .5510·x x x = C .5510()x x = D .20210x x x ÷=4. (08湖州)计算23()x x - 所得的结果是( )A .5xB .5x -C .6xD .6x -5. a ,b 两数的平方和用代数式表示为( )A.22a b + B.2()a b + C.2a b + D.2a b +6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ²5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.(06泉州)下列运算中,结果正确的是( )A.633·x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+ ﹡3.(08枣庄)已知代数式2346x x -+的值为9,则2463x x -+的值为( )A .18B .12C .9D .7 4. 若3223mnx y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.(08巴中)大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .课时4.因式分解【课前热身】1.(06 温州)若x -y =3,则2x -2y = .2.(08茂名)分解因式:3x2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则. 4. 简便计算:2200820092008-⨯ = . 5. (08东莞) 下列式子中是完全平方式的是( )1 1 1 12 11 3 3 1 14 6 4 1 ....................................... ⅠⅡ 1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________. 5.(08凉山)分解因式2232ab a b a -+= . 6.(08泰安)将3214x x x +-分解因式的结果是 .7.(08中山)分解因式am an bm bn +++=_____ _____; 8.(08安徽) 下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+- C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.11.计算: (1)299;(2)2222211111(1)(1)(1)(1)(1)234910----- .﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得: 222244c b c a b a -=- ① ()()()2222222b a c b a b a -=-+ ② 即222c b a =+ ③∴△ABC 为Rt △。
第九课时 一元一次方程及应用一、复习目标:1、理解等式的基本性质、方程、方程的解、一元一次方程的概念;2、能利用等式的基本性质进行方程的变形,能熟练地解一元一次方程;3、能用一元一次方程来解决简单的实际问题.二、复习重点难点:(一)复习重点:解一元一次方程和二元一次方程组的一般步骤与方法.(二)复习难点:能用一元一次方程来解决简单的实际问题.三、复习过程:(一)知识梳理:1、等式性质:(1)如果a=b,那么c b c a ±=±; (2)如果a=b,那么)0(,≠==c cb c a bc ac ; 2、方程的有关概念:(1)方程:含有未知数的的等式叫方程。
(2)方程的解:使方程左右两边相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
(3)解方程:求方程的解或判断方程无解的过程叫做解方程。
3、一元一次方程:(1)一元一次方程的一般形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0);(2)一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0);(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
4、列方程解应用题的一般步骤:(1)审题:(2)设未知数;(3)找出相等关系,列方程;(4)解方程(组);(5)检验,作答;5、列方程(组)解应用题常见类型题及其等量关系;(1)工程问题①基本工作量的关系:工作量=工作效率×工作时间②常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量③注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题(2)行程问题①基本量之间的关系:路程=速度×时间②常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程(3)水中航行问题:顺流速度=船在静水中的速度+水流速度;逆流速度=船在静水中的速度–水流速度(二)典例精析:例1、(1)已知x =-2是关于x 的方程()x m x m -=-284的解,则m 的值= ;.(2)若关于x 的方程03)1(22=+-x x a 式一元一次方程,则a= ;【方法总结】:1、第1题是已知方程的解,要求方程中待确定的字母系数,可以像解数字系数的方程一样,先求出方程的解,再进行比较;也可以根据方程的解的定义:能使方程两边代数式的值相等的未知数的取值叫做方程的解,将2x =-代入原方程,转化为关于m 的方程求解.2、在运用一元一次方程定义时,要注意两点:一是未知数的次数为1,二是未知数系数不能为0;例2、解方程:12733)1(2-=-++x x x ; 【方法总结】:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1,需要注意去分母时不要漏乘不含分母的项,去括号时,括号前是负号要注意括号内各项均要改变符号,移项要变号,系数化为1要注意方程两边要未知数的系数;例3、某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?【方法总结】:1、有比时,应根据比值设未知数;2、应找好等量关系:横标两边的边空+18个字的字宽+18个字之间的字距=12.8cm ;然后根据所设未知数和等量关系就可列出方程;例4、剃须刀由刀片和刀架组成,某时期,甲乙两厂家分别生成老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获利的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少刀架和刀片?【方法总结】:等量关系是:1、刀架数×50=刀片数;2 、甲厂家利润×2=乙厂家的利润例5、某省公布的居民用电阶梯电价听证方案如下:例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?分析:(1)分别计算出用电量为210度,350度时需要交纳的电费,然后可得出小华家5月份的电量在哪一档上,从而列示计算即可;(2)根据(1)求得的结果,讨论a的值,得出不同的结论.解:(1)用电量为210度时,需要交纳210×0.52=109.2元,用电量为350度时,需要交纳210×0.52+(350﹣210)×(0.52+0.05)=189元,故得小华家5月份的用电量在第二档;设小华家5月份的用电量为x,则210×0.52+(x﹣210)×(0.52+0.05)=138.84解得:x=262,即小华家5月份的用电量为262度.(2)由(1)得,当a≤109.2时,小华家的用电量在第一档;当109.2<a≤189时,小华家的用电量在第二档;当a>189时,华家的用电量在第三档;【方法总结】:解答此类题目要先计算出分界点处需要交的电费,这样有助我我们判断。
用一元一次不等式解决实际问题用一元一次方程解决实际问题弄清题意,找出题目中的不等关系弄清题意,找出题目中的等量关系根据所求问题,设出适当的未知数根据所求问题,设出适当的未知数用未知数表示不等关系中的数量,建立不等关系,列出不等式用未知数表示等量关系中的数量,建立等量关系,并列出方程求出所列不等式的解集求出所列方程的解检验解集是否符合实际意义,写出答案检验解,写出答案注意:特别说明的是,利用不等式解决实际问题时,往往要注意问题中的限制条件,求出的解集必须使实际意义有意义,如人数为非负整数,图形的面积、时间、速度、路程、价格为正数等。
例某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员。
(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?几种题型分析题型一快餐营养问题例2012年5月20日是第23个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.题型二商品购买问题例(2011四川内江)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8。
步步为赢中考数学第一轮复习资料目录第一章实数课时1.实数的有关概念…………………………………………( 1 )课时2.实数的运算与大小比较……………………………( 4 )第二章代数式课时3.整式及运算……………………………………………( 7 )课时4.因式分解…………………………………………………( 10 )课时5.分式……………………………………………………( 13 )课时6.二次根式…………………………………………………( 16 )第三章方程(组)与不等式课时7.一元一次方程及其应用……………………………( 19 )课时8.二元一次方程及其应用……………………………( 22 )课时9.一元二次方程及其应用………………………………( 25 )课时10.一元二次方程根的判别式及根与系数的关系…( 28 )课时11.分式方程及其应用……………………………………( 31 )课时12.一元一次不等式(组)………………………………( 34 )课时13.一元一次不等式(组)及其应用……………………( 37 )第四章函数课时14.平面直角坐标系与函数的概念……………………( 40 )课时15.一次函数…………………………………………………( 43 )课时16.一次函数的应用………………………………………( 46 )课时17.反比例函数……………………………………………( 49 )课时18.二次函数及其图像…………………………………( 52 )课时19.二次函数的应用……………………………………( 55 )课时20.函数的综合应用(1)………………………………( 58 )课时21.函数的综合应用(2)………………………………( 61 )第五章统计与概率课时22.数据的收集与整理(统计1)……………………( 64 )课时23.数据的分析(统计2)………………………………( 67 )课时24.概率的简要计算(概率1)…………………………( 70 )课时25.频率与概率(概率2)…………………………………( 73 )第六章三角形课时26.几何初步及平行线、相交线………………………( 76 )课时27.三角形的有关概念…………………………………( 79 )课时28.等腰三角形与直角三角形…………………………( 82 )课时29.全等三角形……………………………………………( 85 )课时30.相似三角形……………………………………………( 88 )课时31.锐角三角函数…………………………………………( 91 )课时32.解直角三角形及其应用……………………………( 94 )第七章四边形课时33.多边形与平面图形的镶嵌..............................( 97 )课时34.平行四边形...................................................( 100 )课时35.矩形、菱形、正方形 (103)课时36.梯形 (106)第八章圆课时37.圆的有关概念与性质 (109)课时38.与圆有关的位置关系 (112)课时39.与圆有关的计算 (115)第九章图形与变换课时40.视图与投影 (118)课时41.轴对称与中心对称 (121)课时42.平移与旋转 (124)第一章 实数课时1.实数的有关概念【课前热身】1.(08重庆)2的倒数是 .2.(08白银)若向南走2m 记作2m -,则向北走3m 记作 m .3.(08的相反数是 . 4.(08南京)3-的绝对值是( )A .3-B .3C .13-D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.【典例精析】 例1 在“()05,3.14 ,()33,()23-,cos 600 sin 450”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个 例2 ⑴(06成都)2--的倒数是( )A .2 B.12C.12-D.-2 ⑵(08芜湖)若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4 ⑶(07扬州)如图,数轴上点P 表示的数可能是( )B. C. 3.2-D.例3 下列说法正确的是( )A .近似数3.9×103精确到十分位B .按科学计数法表示的数8.04×105其原数是80400C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.001【中考演练】1.(08常州)-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”) 3. 下列各数中:-3,0,2,0.31,227,2π,2.161 161 161…, (-2 005)0是无理数的是___________________________.4.(08湘潭)全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)5.(06北京)若0)1(32=++-n m ,则m n +的值为 .6. 2.40万精确到__________位,有效数字有__________个.7.(06泸州)51-的倒数是( )A .51-B .51 C .5- D .58.(06荆门)点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或3 9.(08扬州)如果□+2=0,那么“□”内应填的实数是( )A .21 B .21- C .21± D .2 10.(08梅州)下列各组数中,互为相反数的是( )A .2和21 B .-2和-21C .-2和|-2|D .2和21 11.(08无锡)16的算术平方根是( )A.4B.-4C.±4D.1612.(08郴州)实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或2 14.(08湘潭) 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数课时2. 实数的运算与大小比较【课前热身】1.(08大连)某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C . 2.(07晋江)计算:=-13_______.3.(07贵阳)比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.6 5.(08巴中)下列各式正确的是( )A .33--=B .326-=- C .(3)3--=D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!【考点链接】1. 数的乘方 =na ,其中a 叫做 ,n 叫做 . 2. =0a (其中a 0 且a 是 )=-pa(其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 如5÷51×5.【典例精析】 例1 计算:⑴(08龙岩)20080+|-1|-3cos30°+ (21)3;⑵22(2)2sin 60--+.例2 计算:1301()20.1252009|1|2--⨯++-.﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.【中考演练】1. (07盐城)根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 . 2. 比较大小:73_____1010--. 3.(08江西)计算(-2)2-(-2) 3的结果是( A. -4. (08宁夏)下列各式运算正确的是( )A .2-1=-21B .23=6C .22·23=26D .(23)2=26 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A. 10 B .20 C .-30 D .18 6. 计算:⑴(08南宁)4245tan 21)1(10+-︒+--;⑵(08年郴州)201()2sin 3032--+︒+-;⑶ (08东莞) 01)2008(260cos π-++-.﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24, (1)_______________________,(2)_______________________, (3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式课时3.整式及其运算【课前热身】 1. 31-x 2y 的系数是 ,次数是 . 2.(08遵义)计算:2(2)a a -÷= . 3.(08双柏)下列计算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 4. (08湖州)计算23()x x -所得的结果是( )A .5xB .5x -C .6xD .6x -5. a ,b 两数的平方和用代数式表示为( )A.22a b + B.2()a b + C.2a b + D.2a b +6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1 (08乌鲁木齐)若0a >且2xa =,3ya =,则x ya-的值为( )A .1-B .1C .23D .32例2 (06 广东)按下列程序计算,把答案写在表格内:⑴ 填写表格:⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:(1) (08江西)x (x +2)-(x +1)(x -1),其中x =-21; (2) 22(3)(2)(2)2x x x x +++--,其中13x =-.【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.(06泉州)下列运算中,结果正确的是( )A.633·x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+ ﹡3.(08枣庄)已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .74. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.(08巴中)大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .课时4.因式分解1 1 1 12 1 13 3 1 14 6 4 1 ....................................... ⅠⅡ 1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++【课前热身】1.(06 温州)若x -y =3,则2x -2y = .2.(08茂名)分解因式:3x 2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则. 4. 简便计算:2200820092008-⨯ = . 5. (08东莞) 下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a【考点链接】 1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2.6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】 例1 分解因式:⑴(08聊城)33222ax y axy ax y +-=__________________.⑵(08宜宾)3y 2-27=___________________. ⑶(08福州)244x x ++=_________________. ⑷ (08宁波) 221218x x -+= . 例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________. 5.(08凉山)分解因式2232ab a b a -+= . 6.(08泰安)将3214x x x +-分解因式的结果是 . 7.(08中山)分解因式am an bm bn +++=_____ _____; 8.(08安徽) 下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+- C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.11.计算: (1)299;(2)2222211111(1)(1)(1)(1)(1)234910-----.﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得: 222244c b c a b a -=- ① ()()()2222222b a c b aba -=-+ ②即222c b a =+ ③∴△ABC 为Rt △。
第三章 方程(组)和不等式
课时7.一元一次方程及其应用
【课前热身】
1.在等式367y -=的两边同时 ,得到313y =.
2.方程538x -+=的根是 .
3.x 的5倍比x 的2倍大12可列方程为 .
4.写一个以2-=x 为解的方程 .
5.如果1x =-是方程234x m -=的根,则m 的值是 .
6.如果方程2130m x -+=是一元一次方程,则m = .
【考点链接】
1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;
② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=c
a . 2. 方程、一元一次方程的概念
⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不
同.
⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数
是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a .
3. 解一元一次方程的步骤:
①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.
4.易错知识辨析:
(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满
足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像
21=x
,()1222+=+x x 等不是一元一次方程. (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程
两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不
同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移
项”要变号.
【典例精析】
例1 解方程
36
例2 当m 取什么整数时,关于x 的方程1514()2323
mx x -=-的解是正整数?
例3 今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨
大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3
但他知道下面三条信息:
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元;
信息三:(1)班学生平均每人捐款的金额大于..48元,小于..51元.
请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数.
【中考演练】
1.若5x -5的值与2x -9的值互为相反数,则x =_____.
2. 关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.
3. 某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )
A .15025%x =⨯
B . 25%150x ⋅=
C .%25150=-x
x D . 15025%x -= 4.解方程16
110312=+-+x x 时,去分母、去括号后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x
C. 611024=--+x x
D. 611024=+-+x x
5.解下列方程:
253
6. 某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二
季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度生产甲、乙两种机器各多少台?
7. 苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大
闸蟹与河虾的混合养殖,他了解到如下信息:
①每亩水面的年租金为500元,水面需按整数亩出租;
②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;
④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
(1) 若租用水面亩,则年租金共需__________元;
(2) 水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹
虾混合养殖的年利润(利润=收益-成本);
(3) 李大爷现在奖金25000元,他准备再向银行贷不超过25000元的款,用
于蟹虾混合养殖.已知银行贷款的年利率为8%,试问李大爷应该租多少
亩水面,并向银行贷款多少元,可使年利润超过35000元?。