北京四中2011中考数学全真模拟试题(2)及答案
- 格式:doc
- 大小:622.00 KB
- 文档页数:12
2011年北京市四中中考数学全真模拟试卷(二)2011年北京市四中中考数学全真模拟试卷(二)一、选择题(共14小题,每小题3分,满分42分)D.4.(3分)(2008•天河区一模)一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,.C D.5.(3分)(2006•临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().C9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)13.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是_________.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为_________.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为_________cm2(不考虑接缝等因素,计算结果用π表示).18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为_________.19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=_________(n是整数,且1≤n<7).三、解答题(共7小题,满分63分)20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?23.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.2011年北京市四中中考数学全真模拟试卷(二)参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)D.4.(3分)(2008•天河区一模)一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,.C D...5.(3分)(2006•临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().CBD+DF=×9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)OC=BC=.,﹣)ABC==60ABC==3013.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()∠∠PCB=((+∠(﹣BCP=∠∠﹣∠(﹣二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣..观察数轴知其解集为∴.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为.AC==,=r=.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为300πcm2(不考虑接缝等因素,计算结果用π表示).=18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为3.∴BE=﹣)+4x19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=2(n是整数,且1≤n<7).三、解答题(共7小题,满分63分)20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?=16x+32023.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)∴.7.2=解得.y=y=3.2=.25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.,a=xa=y=y=a aNS=a(∴MR=.x+bc=0∴SR=2.∴∴MT=PQ=∴参与本试卷答题和审题的老师有:Liuzhx;zhehe;feng;Linaliu;lf2-9;wdxwwzy;jpz;lanchong;zhjh;蓝月梦;hbxglhl;csiya;kuaile;hnaylzhyk;cook2360;算术;张超。
北京四中2011中考数学全真模拟试题作者:来源:《数学金刊·初中版》2012年第02期(说明:时间120分钟满分150分)一、选择题(本大题共10小题,每小题4分,共40分)1.芜湖地处长江中下游,水资源丰富,素有“江南水乡”之美称.据测量,仅浅层地下水蕴藏量就达56000万m3,用科学记数法记作()A. 5.6×109 m3 B. 56×108 m3C. 5.6×108 m3?摇D. 56000×104 m32.图1是由纸板拼成的立体图形,有两面是黑色纸板,将该图形展开后是()■3.在“手拉手,献爱心”捐款活动中,九年级七个班级的捐款数分别为:260、300、240、220、240、280、290(单位:元),则捐款数的中位数为()A. 280 B. 260 C. 250 D. 2704.已知⊙O■和⊙O■的半径分别是5和4,O■O■=3,则⊙O■和⊙O■的位置关系是()A.外离B.外切C.相交D.内切5.在平面直角坐标系中,点(4,-3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.如图2,已知一坡面的坡度i=1:■,则坡角α为()A. 15°B. 20°C. 30°D. 45°■7. 下列图形中,是轴对称而不是中心对称图形的是()A. 平行四边形B.菱形C.等腰梯形D.直角梯形8. 若使分式■的值为0,则x的取值为()A. 1或-1 B.-3或1C.-3 D.-3或-19. 若一个多边形的内角和为外角和的3倍,则这个多边形为()A. 八边形B.九边形C.十边形D.十二边形10. 估算■的值()A. 在4和5之间B.在5和6之间C.在6和7之间D.在7和8之间二、填空题(本大题共6小题,每小题4分,共24分)11. 函数y=■中,自变量x的取值范围是________.12. 已知等腰三角形两边长为7和3,则它的周长为______.13. 若反比例函数y=-■的图象经过点(-3,-2),则m=________.14. 计算:2a3·(3a)3=________.15. 在珠穆朗玛峰周围2 km的范围内,还有较著名的洛子峰(海拔8516 m)、卓穷峰(海拔7589 m)、马卡鲁峰(海拔8463 m)、章子峰(海拔7543 m)、努子峰(海拔7855 m)、和普莫里峰(海拔7145 m)六座山峰,则这六座山峰海拔高度的极差为________m.16. 已知三个边长分别为2、3、5的正方形如图3排列,则图中阴影部分面积为________.■三、解答题(大题共8小题,共86分)17. (12分)(1)解不等式组:2x-3(2)因式分解:y3-4x2y.18. (10分)如图4,已知在半圆AOB中,AD=DC,∠CAB=30°,AC=2■,求AD的长度.19. (10分)?摇图5是由权威机构发布的在1993年4月~2005年4月期间由中国经济状况指标之一中国经济预警指数绘制的图表.(1)请你仔细阅读图表,可从图表中得出:我国经济发展过热的最高点出现在________?摇年;我国经济发展过冷的最低点出现在________年.(2)根据该图表提供的信息,请你简单描述我国从1993年4月到2005年4月经济发展状况,并预测2005年度中国经济发展的总体趋势将会怎样.20. (10分)图6为⊙O的切线,A为切点,PO交⊙O于点B,OA=3,OP=6,求∠BAP 的度数.21. (10分)图7一上面无盖的正方体纸盒,现将其剪开展成平面图,如图8所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度,这样的线段可画几条?(2)试比较立体图中∠BAC与平面展开图中∠B′A′C′的大小关系.22. (10分)已知二次函数图象经过(2,-3),对称轴x=1,抛物线与x轴两交点距离为4,求这个二次函数的解析式.23. (12分)小胖和小瘦去公园玩标准的跷跷板游戏,两同学越玩越开心,小胖对小瘦说:“真可惜!我只能将你最高翘到1米高,如果我俩各边的跷跷板都再伸长相同的一段长度,那么我就能翘到1.25 m,甚至更高!”(1)你认为小胖的话对吗?请你作图分析说明.(2)你能否找出将小瘦翘到1.25 m高的方法?试说明.24. (12分)在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图10,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.(1)试问小球通过第二层A位置的概率是多少?(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层B位置和第四层C位置处的概率各是多少?。
ABCDE 122010~2011学年九年级综合水平质量调研数学试卷 2011.3学校___________________班级_______________姓名________________学号_____________ 考 生 须 知1. 本试卷共8页,共五道大题,25道小题,满分120分,考试时间120分钟. 2. 在试卷和答题卡上准确填写学校.班级.姓名.学号. 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4. 考试结束,请将本试卷和答题卡一并交回.注意事项 1. 考生要按规定的要求在机读答题卡上作答,题号要对应,填涂要规范. 2. 考试结束后,试卷和机读答题卡由监考人一并收回.第一卷(机读卷32分)一 选 择 题 本 题32分, 每 小 题 4 分1. 4的算术平方根是A .2B .±2C .16D .±16 2. 如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C , 则∠1+∠2等于 A . 90° B . 135° C . 150°D . 270°第2题图3.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任 意摸出一个球,摸出的球是白球..的概率是 A .13 B .16 C .12 D . 564.某班的9名同学的体重分别是(单位:千克): 61,59, 70,59,65,67,59, 63,57,这组数据的众数和中位数分别是A .59,61B .59,63C .59,65D . 57,615.全球可被人类利用的淡水总量仅占地球上总水量的0.00003,因此珍惜水、保护 水,是我们每一位公民义不容辞的责任.其中数字0.00003用科学记数法表示为 A .4103-⨯ B .5103-⨯ C .4103.0-⨯ D .5103.0-⨯6.如图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成. 现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体. 则下列选择方案中,能够完成任务的为A.模块②,④,⑤B.模块①,③,⑤C.模块①,②,⑤D.模块③,④,⑤一选择题本题32 分,每小题4分7. 如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PC=4,则两圆组成的圆环的面积是A.16π B.36π C.52π D.81π8. 矩形ABCD中,8cm6cmAD AB==,.动点E从点C开始沿边CB向点B以2cm/s的速度运动至点B停止,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:2cm),则y与x之间的函数关系用图象表示大致是下图中的第8题图第7题图注意事项1.第Ⅱ卷包括4道填空题和13道解答题,共8页.答题前要认真审题,看清题目要求,按要求认真作答.2.答题时字迹要工整,画图要清晰,卷面要整洁.3.考生除画图可以用铅笔外,答题必须用蓝色或黑色钢笔、圆珠笔.第二卷(非机读卷88分)二填空题本题共16分,每小题4分9.若分式2x4x2--的值为0,则x的值为.10. 如图,点A、B、C是半径为6的⊙O上的点,30B∠=︒,则的长为_____________.第10题图11. 如图,在△ABC中,D、E分别AB、AC边上的点,DE∥BC.若AD=3,DB=5,DE=1.2,则BC=.第11题图12. 如图,在ABC∆中,α=∠A,ABC∠的平分线与ACD∠的平分线交于点1A,得1A∠,则1A∠= .BCA1∠的平分线与CDA1∠的平分线交于点2A,得2A∠,……,BCA2009∠的平分线与CDA2009∠的平分线交于点2010A,得2010A∠,则2010A∠= .第12题图ACOABCCAEDB三解答题本题共30分,每小题5 分13. (本小题5分)(31)4sin6027-+-14. (本小题5分)解不等式组31422xx x->-⎧⎨<+⎩,并把它的解集表示在数轴上.15. (本小题5分)如图,E F、是平行四边形ABCD对角线AC上两点,BE DF∥,求证:AF CE=。
北京2011-2012年中考数学模拟试卷(2)说明:本卷满分150分,考试时间为100分钟.题号 一 二 三四 五 总 分16 17 18 19 20 21 22 得分一、单项选择题(每小题4分,共20分,请将所选选项的字母写在题目后的括号内) 1.今年1至4月份,我省旅游收入累计达5163000000元,用科学记数法表示是( )A .6105163⨯元 B .910163.5⨯元 C .810163.5⨯元 D .1010163.5⨯元 2.函数x y -=2 中,自变量x 的取值范围是( )A .2≠xB .x ≥2C .x ≤2D .0<x3.为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中, 下列说法正确的是( )A .300名学生是总体B .300是众数C .30名学生是抽取的一个样本D .30是样本的容量4.如图1,△ABC和△GAF是两个全等的等腰直角三角形,图中相似三角形(不包括全等)共 有( ) A .1对 B .2对 C .3对D .4对5.一个空间几何体的主视图和左视图都是边长 为2的正方形,俯视图是一个圆,那么这个 几何体的表面积是( )A .π6B .π4C .π8D .4二、填空题(每小题4分,共20分,请把下列各题的正确答案填写在横线上) 6.计算=+-+-- 30cos 2)142.3(2201π .7.若()b a x x x -+=--2214,则b a -= .8.若相交两圆的半径长分别是方程0232=+-x x 的两个根,则它们的圆心距d 的取值范EABDF G C(图1)围是 .9.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是 .10.如图2,菱形ABCD 中,对角线AC 、BD 交于O 点,分别以A 、C 为圆心,AO 、CO 为半径画圆弧,交菱形各边于点E 、F 、G 、H ,若AC=32,BD=2,则图中阴影部分的面积是 .三、解答下列各题(每小题6分,共30分) 11.解不等式组(要求利用数轴求出解集):5351x x -<+① 423322-+>-x x x ②12.已知13+=x ,求xx x x xx x 112122÷⎪⎭⎫ ⎝⎛+---+的值.13.观察下面的几个算式:13×17=221可写成100×1×(1+1)+21; 23×27=621可写成100×2×(2+1)+21; 33×37=1221可写成100×3×(3+1)+21; 43×47=2021可写成100×4×(4+1)+21; …… ……根据上面规律填空:AB CDO (图2)E FGH(1)83×87可写成 .(2))710)(310(++n n 可写成 . (3)计算:1993×1997=.14.如图3,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连接为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B 的坐标为(-2,-2). (1)把△ABC向左平移8格后得到△A 1B 1C 1,画出△A 1B 1C 1的图形,此时点B 1的坐标为 .(2)把△ABC绕点C 按顺时针方向旋转90°后得到△A 2B 2C ,画出△A 2B 2C 的图形,此时点B 2的坐标为. (3)把△ABC以点A 为位似中心放大为△AB 3C 3,使放大前后对应边长的比为1︰2,画出△AB 3C 3的图形.15.如图4,△ABC中,AB=AC ,D 、E 分别是BC 、AC 上的点, ∠BAD与∠CDE满足什么条件时AD=AE ?写出你的推理过程.四、解答下列各题(每小题7分,共28分)16.初三级一位学生对本班同学的上学方式进行了一次调查统计,图5①和图5②是他通过采A BxyOC(图3)ABD CE (图4)集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题: (1)该班共有多少名学生?(2)在图5①中将表示“骑车”的部分补充完整.(3)在扇形统计图中,“步行”部分对应的圆心角的度数是多少? (4)如果全年级共有300名学生,请你估算全年级骑车上学的学生人数.(1)答: (3)答: (4)解:17.如图6,一次函数b kx y +=的图象与反比例函数xm y =的图象交于A 、B 两点。
中考数学全真模拟试题(1)一、 填空题(每空2分,共40分) 1、21-的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。
2、不等式组⎩⎨⎧-+2804<>x x 的解集是 。
3、函数y=11-x 自变量x 的取值范围是 。
4、直线y=3x-2一定过(0,-2)和( ,0)两点。
5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。
6、等腰三角形的一个角为︒30,则底角为 。
7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。
8、如图PA 切⊙O 于点A ,∠PAB=︒30,∠AOB= ,∠ACB= 。
9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。
10题图9题图ACDB8题图A11题图B10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。
11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。
12、已知Rt ∆ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ∆的外接圆的面积为 。
二、 选择题(每题4分,共20分)13、如果方程0m x 2x 2=++有两个同号的实数根,m 的取值范围是 ( )A 、m <1B 、0<m ≤1C 、0≤m <1D 、m >014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。
则平均每次降低成本的百分率是 ( )A .8.5% B. 9% C. 9.5% D. 10%15、二次函数c bx ax y 2++=的图像如图所示,则关于此二次函数的下列四个结论①a<0 ②a>0③ac 4-b 2>0 ④ab<0中,正确的结论有 ( ) A.1个 B.2个 C.3个 D.4个16题图16、如图:点P 是弦AB 上一点,连OP ,过点P 作PC ⊥OP ,PC 交⊙O ,若AP =4,PB =2,则PC 的长是 ( ) A.2 B. 2 C. 22 D. 317、为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是( ) A. 1、2 B. 2、1 C. 2、3 D. 3、2 三、 (本题每题5分,共20分)18、计算1303)2(2514-÷-+⎪⎭⎫⎝⎛+- 19、计算22)145(sin 230tan 3121-︒+︒--20、计算)+()-(+-abb a ]a b a b b a a [2÷ 21、解方程11-x 1-1-x 22=四、解答题(每题7分,共28分)22、已知关于x 的一元二次方程0)32(22=+-+m x m x 的两个不相等的实数根α、β满足111=+βα,求m 的值。
北京四中2010~2011学年度第二学期期中测验初一年级数学试卷(考试时间100分钟,试卷满分100分)班级_________学号_________姓名_________分数_________一、精心选一选(共10个小题,每小题3分,共30分)1.下列四个算式中,正确的个数有( ).①a4·a3=a12 ②a5+a5=a10 ③④(a3)3=a6A. 0个B.1个 C. 2个D.3个2.下列命题中正确的有().①相等的角是对顶角;②若a∥b,b∥c,则a∥c;③同位角相等;④邻补角的平分线互相垂直.A.0个B.1个C.2个D.3个3.下列变形中不正确的是( ).A.由得B.由得C.由得 D. 由得4.利用数轴表示不等式组的解集,正确的是().A.B.C.D.5.一个多边形的每一个外角都等于40°,那么这个多边形的内角和为().A.1260°B.900°C.1620°D.360°6. 已知三角形的三边长分别是3,8,,若的值为偶数,则的值有( ).A.6个B.5个C.4个D.3个7. 在下列四组多边形地板砖中,①正三角形与正方形;②正三角形与正六边形;③正六边形与正方形;④正八边形与正方形.将每组中的两种多边形结合,能密铺地面的是().A.①③④B.②③④C.①②③D.①②④8. 如图,在中,,过点且平行于,若,则的度数为().A.B.C.D.9. 如图是测量一颗玻璃球体积的过程:(1)将300ml的水倒进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在().A.20cm3以上,30cm3以下B.30cm3以上,40cm 3以下C.40cm3以上,50cm3以下D.50cm3以上,60cm 3以下10.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有().A.2个B.3个C.4个D.5个二、细心填一填(共10个小题,每小题2分,共20分)11.计算:-102×98=____________.12. 计算:=____________.13.若结果中不含x的二次项,则m的值是____________.14.如果的值是非正数,则的取值范围是____________.15.已知,则____________.16.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a +2b)、宽为(a+b)的大长方形,则需要C类卡片___________张.17.如图,将三角尺的直角顶点放在直尺的一边上,,,则∠3=______度.18.如图,中,ABC =,的外角平分线交BC的延长线于点D,若ADC =则ABC等于____________度.19.如果一个凸多边形,除了一个内角以外,其它内角的和为2570°,则这个没有计算在内的内角的度数为____________.20.将△ABC沿着平行于BC的直线折叠,点A落到点,若∠C=120°,∠A=26°,则的度数为____________.三、认真做一做(每小题5分,共25分)21. 计算:22. 先化简,再求值:,其中.23.解不等式组并写出该不等式组的整数解.24.已知:如图,∠C = ∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD .25.如图1,五角星ABCDE(1)请你直接写出∠A+∠B+∠C+∠D+∠E为____________度;(2)若有一个顶点B在运动,五角星变为图2, (1)的结论还正确吗?请说明理由.四、解答题(每小题5分,本题共25分)26. 若(x-1)(x2+mx+n)=x3-6x2+11x-6, 求m,n的值.27.在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分为12和15的两部分,求三角形各边的长.28.玉树地震后,某市立即组织医护工作人员赶赴灾区参加伤员抢救工作.拟派30名医护人员,携带25件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载3人和5件行李.(1)请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.29.已知:如图,六边形ABCDEF中,∠A+∠B+∠C =∠D+∠E+∠F,猜想六边形ABCDEF中必有两条边是平行的.(1)根据图形写出你的猜想:_______∥________;(2)请证明你在(1)中写出的猜想.30. 如图1,已知直线m∥n,点A、B在直线n上,点C、P在直线m上:(1)请写出图1中所有的面积相等的各对三角形:________________;(2)如图1,不难证明,点P在直线m上移动到任一位置时,总有△ABP与△ABC的面积相等;如图2,点M在△ABC的边上,请过点M画一条直线,平分△ABC的面积.(保留作图痕迹,并对作法做简要说明)附加题:(共5分,计入总分,但总分不超过100分)1.(2分)多项式的最小值是__________.2. (3分)操作示例:(1)如图1,△ABC中,AD为BC边上的的中线,△ABD的面积记为S△ABD ,△ADC的面积记为S△ADC.则S△ABD=S△ADC .图1 图2(2)在图2中,E、F分别为四边形ABCD的边AD、BC的中点,四边形ABCD的面积记为S四边形ABCD ,阴影部分面积记为S阴,则S阴和S四边形ABCD之间满足的关系式为:1=2ABCD S S阴四边形.解决问题:在图3中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方厘米,求图中四个小三角形的面积和,并说明理由。
数学试卷(考试时间为120分钟,试卷满分为120分)班级 学号_________ 姓名 分数__________一、选择题(每小题4分,共32分,下面各题均有四个选项,其中只有一个..是符合 题意的)1.下列事件是必然事件的是( ).A.随意掷两个均匀的骰子,朝上面的点数之和是6B.掷一枚硬币,正面朝上C.3个人分成两组,一定有两个人分在一组D.打开电视,正在播放动画片2.抛物线2)1(2+-=x y 可以由抛物线2x y =平移而得到,下列平移正确的是( ). A .先向左平移1个单位,再向上平移2个单位 B .先向左平移1个单位,再向下平移2个单位 C .先向右平移1个单位,再向上平移2个单位 D .先向右平移1个单位,再向下平移2个单位3.已知一顶圆锥形纸帽底面圆的半径为10cm,母线长为50cm,则圆锥形纸帽的侧 面积为( ). A .2250cm π B .2500cm π C .2750cm π D .21000cm π 4.两圆半径分别为2和3,圆心坐标分别为(1,0)和(-4,0),则两圆的位置关系是( ). A .外离 B .外切 C .相交 D .内切 5.同时投掷两枚硬币,出现两枚都是正面的概率为( ). A .41 B .31 C .43 D .216.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴 相切与点Q,与y 轴交于M(0,2),N(0,8)两点,则点P 的 坐标是( ).A .(5,3)B .(3,5)C .(5,4)D .(4,5)7.抛物线12++=kx x y 与k x x y --=2相交,有一个交点在x 轴上,则k 的值为 ( ).A . 0B . 2C . 1-D .418.如图,在直角梯形ABCD 中,AD ∥BC ,90C ∠=,6cm CD =, AD =2cm ,动点P 、Q 同时从点B 出发,点P 沿BA 、AD 、DC 运动到点C 停止,点Q 沿BC 运动到C 点停止,两点运动时的速度都是1cm/s ,PQ A DCB而当点P 到达点A 时,点Q 正好到达点C .设P 点运动的时间为(s)t ,BPQ △的面积为y 2(cm ).下图中能正确表示整个运动中y 关于t 的函数关系的大致图象是 ( ).A .B .C .D .二、填空题(本题共18分,每题3分)9.正六边形边长为3,则其边心距是_______cm .10.函数)22(322≤≤--+=x x x y 最小值为 ,最大值为 . 11.如图,在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一 点,且︒=∠40EPF ,则图中阴影部分的面积是 . 12.已知二次函数c bx ax y ++=2满足(1)c b a <<; (2)0=++c b a ;(3)图象与x 轴有2个交点,且两交点间的距离小于2;则以下 结论正确的有 .①0<a ②0<+-c b a ③0>c ④02>-b a ⑤412<-ab三、解答题(每小题5分,本题共30分) 13. 计算:30)31()2(21250--+---π. 14.用配方法解方程:032212=--x x .15.已知,)3()1(122m x m x m y m m +-++=--当m 为何值时,是二次函数?16.如图,半径为6cm 的⊙O 中,圆心O 到弦AB 的距离OC 为3cm.试求: ⑴弦AB 的长;⑵弧AB 的长17.已知二次函数c bx ax y ++=2的图象的顶点位于x 轴下方,它到x 轴的距离为4, 下面是函数x 与y 的对应值表:(1)求出二次函数的解析式;(2)将表中空白处填写完整; (3)在右边的坐标系中画出c bx axy ++=2的图象;(4)根据图象回答:当x 为何值时,函数c bx ax y ++=2的值大于0. 18.如图,在△ABC 中,︒=∠90C ,AD 是BAC ∠的平分线,O 是AB 上一点,以OA 为半径 的⊙O 经过点D.(1)求证:BC 是⊙O 的切线; (2)若BD=5,DC=3,求AC 的长.x0 2 y3- 4- 3-四.应用题(19题6分,20题5分,21题4分)19.桐桐和大诚玩纸牌游戏.下面是同一副扑克中4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,桐桐先丛中抽出一张,大诚从剩余的3张牌中也抽出一张.桐桐说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.(1)请用列表(或树状图)表示出两人抽牌可能出现的所有结果;(2)若按桐桐说的游戏规则进行游戏,这个游戏公平吗?请说明理由.20.某体育品商店在销售中发现:某种体育器材平均每天可售出20件,每件可获利40元;若售价减少1元,平均每天就可多售出2件;若想平均每天销售这种器材盈利1200元,那么每件器材应降价多少元?若想获利最大,应降价多少?21.用尺规作图找出该残片所在圆的圆心O的位置.(保留作图痕迹,不写作法)五.解答题(本题5分)22.已知如图,正方形AEDG的两个顶点A、D都在⊙O上,AB为⊙O的直径,射线ED 与⊙O的另一个交点为C,试判断线段AC与线段BC的关系.六.综合运用(23题、25题7分,24题8分)23.已知: 关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2-bx+kc(c ≠0)的图象与x 轴一个交点的横坐标为1. (1)若方程①的根为正整数,求整数k 的值; (2)求代数式akcabb kc +-22)(的值;(3)求证: 关于x 的一元二次方程ax 2-bx +c =0 ②必有两个不相等的实数根.24.已知:如图,在平面直角坐标系xoy 中,点A(2,0),点B 在第一象限且△OAB 为正三角 形, △OAB 的外接圆交y 轴的正半轴于点C,过点C 的圆的切线交x 轴于点D.(1)求B、C两点的坐标;(2)求直线CD的解析式;(3)设E、F分别是线段AB、AD上的两个动点,切EF平分四边形ABCD的周长.试探究:当点E运动到什么位置时,△AEF的面积最大?最大面积是多少?25.已知抛物线32-+=bx ax y 交x 轴于A 、B 两点,与y 轴于点C ,已知抛物线的 对称轴为1=x ,AB=4.(1)求二次函数32-+=bx ax y 的解析式;(2)在抛物线对称轴上是否存在一点P ,是点P 到B 、C 两点的距离之差最大?若存 在,求出P 点的坐标;若不存在,请说明理由;(3)平行与x 轴的一条直线交抛物线于M 、N 两点,若以MN 为直径的圆恰好与x 轴 相切,求此圆的半径。
D 2010—2011学年第二学期期中测试初三数学试卷命题人:徐惠忠复核人:缪月红 (满分130分,考试时间120分钟)一、选择题(每题3分,共30分,请在答题卡指定区域内作答)1、-3的倒数是…………………………………………………………………………( )A . 3B . 31-C .-3D .31 2、下列运算中,结果正确的是…………………………………………………………( ) A .()532x x = B .()222y x y x +=+ C .532x x x =+ D .633x x x =⋅3、下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是( )4、已知33-=-y x ,则y x 35+-的值是………………………………………………( ) A . 2 B .5 C .8 D .05、下列调查适合作普查的是………………………………………………………………( ) A .了解在校大学生的主要娱乐方式 B .了解无锡市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查6、如图:是由几个相同的小正方体搭成的一个几何体,它的左视图是…………………( )O 1O 2可能取的值 )8、已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是…………………( ) A .220cmB .220cm πC .210cm πD .25cm π9、下图是章老师早晨出门散步时,离家的距离(y )与时间(x )之间的函数图像,若用黑点表示章老师家的位置,则章老师散步行走的路线可能是……………………………( )A B CDABC10、如图,E F G H ,,,分别为正方形ABCD 的边AB ,BC ,CD , DA 上的点,且13AE BF CG DH AB ====,则图中阴影部分的面积与正方形ABCD 的面积之比为……………………………………………………………………………………………( )A .25B .49 C .12D .35二、填空(每空2分,共20分,请在答题卡指定区域内作答) 11、-8的相反数是 ;25的算术平方根是 12、函数y =x 的取值范围是13、2010年上海世界博览会中国馆投资110000万元,将110000万元用科学记数法表示为_________ 万元14、因式分解: x x 43-=___________15、关于x 的一元二次方程220x x m -+=有两个实数根分别为1x 和 2x ,则m 的取值范围是_____________,12x x +=16、如图:△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上, 若∠BAC =35°,则∠ADC = 度17、如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .18、如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .第9题(第10题)第16题第17题第18题第22题三、解答题(本大题共10小题,共80分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19、(本题满分8分)计算:(1101()(5)4sin 603π----︒ (2)化简并求值:21(1)11a a a a --÷++,其中12a =.20、(本题满分8分) (1)解方程:213xx x +=+; (2)解不等式组:12,132,2x x x ->⎧⎪⎨-≤+⎪⎩………………①…………②21、(本题满分6分)中央电视台举办的第14届“蓝色经典·天之蓝”杯青年歌手大奖赛,由部队文工团的A (海政)、B (空政)、C (武警)组成种子队,由部队文工团的D (解放军)和地方文工团的E (江苏)、F (上海)组成非种子队.现从种子队A 、B 、C 与非种子队D 、E 、F 中各抽取一个队进行首场比赛.(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A 、B 、C 、D 、E 、F 表示);(2)求首场比赛出场的两个队都是部队文工团的概率P. 22、(本题满分6分)已知:如图,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF 。
北京市四中2011年自主招生考试数学素质测试题◆注意事项:本试题共三大题,满分120分,考试时间120分钟。
参考公式:()3223333b ab b a a b a +++=+ ()()2233b ab a b a b a +-+=+ ()3223333b ab b a a b a -+-=- ()()2233b ab a b a b a ++-=-一、选择题(每小题5分,共30分。
以下每小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填均得0分)1、已知80sin cos<<A ,则锐角A 的取值范围是 ( ) A .8060<<A B .8030<<A C .6010<<AD .3010<<A2、实数b 满足3<b ,并且有实数a ,使b a <恒成立,则a 的取值范围是 A .小于或等于3的实数 B .小于3的实数 C .小于或等于3-的实数 D .小于3-的实数3、设1x 、2x 是方程02=++k x x 的两个实根,若恰有22221212k x x x x =++成立,则k 的值为( )A .1-B .21或 1- C .21D .21-或 1 4、代数式9)12(422+-++x x 的最小值为A .12B .13C .14D .11 5、掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1至6六个数。
连续掷两次,掷得面向上的点数之和是3的倍数的概率为A .365 B .61 C .31 D .946、=⨯++⨯+⨯+⨯10099433221A .223300B .333300C .443300D .433300二、填空题(每小题5分,共30分)1、多项式411623++-x x x 可分解为 。
学校 姓名 准考证号( )( )23( )( )2、已知点),(y x p 位于第二象限,并且62+≤x y ,x 、y 为整数,则点p 的个数是 。
2011年中考数学模拟试卷题号 一 二 三总 分 19 20 21 22 23 24 25 得分注意事项:本试题满分150分,考试时间120分钟;一、选择题:本大题8个小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在题后面的括号内.1. 北京国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为 ( )A .24108.25m ⨯B .25108.25m ⨯C .251058.2m ⨯D . 261058.2m ⨯ 2.计算23(2)a -的结果为 ( ) A .68a -B .52a -C .58a -D .66a -3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E ∠的度数为( ) A .70° B .80° C .90° D .100°4.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色 黄色 绿色 白色 紫色 红色 数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是 ( )A.方差 B.平均数 C.众数 D.中位数 5.已知二元一次方程组2423m n m n -=⎧⎨-=⎩,,则m n +的值是 ( )A .1B .0C .2-D .1-6.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么 ( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b < 7.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是 ( ) A .4π B .π42 C .π22 D .2π得分 评卷人Oyx 1x =(30)A ,EAB C D45°125°3题图7题图8.如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0), 二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论是 ( ) A .②④ B .①③ C .②③ D .①④二、填空题:本大题共8个小题,每小题4分,共32分,请把答案填在题中横线上。
北京四中2010~2011学年度第二学期开学测试初三数学试卷及答案(考试时间120分钟试卷满分120分)一.选择题(每题4分共32分)1.Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为()A.1︰2 B.1︰3 C.1︰4 D.1︰52.在平面直角坐标系XOY中,A点坐标为,将OA绕原点O逆时针旋转900得到,则点的坐标是()A.B.C.D.3.(18届江苏初三)如图,⊙C过原点,与轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A.B.C.D.24. 下列说法正确的个数有()(1)如图(a),可以利用刻度尺和三角板测量圆形工件的直径;(2)如图(b),可以利用直角曲尺检查工件是否为半圆形;(3)如图(c),两次使用丁字尺(CD所在直线垂直平分线段AB)可以找到圆形工件的圆心;(4)如图(d),测倾器零刻度线和铅垂线的夹角,就是从点看点时仰角的度数.A.1个B.2个C.3个D.4个5.已知关于x的一元二次方程有两个正整数根,则m的值为( ).A.B.C.-4,-5 D. 4, 56.方程的实数根的个数是().A.0 B.1C.2 D.37. 如图,抛物线与x轴交于点A、B,与y轴交于点C,若,则b的值为()A. B. C. D.8.已知抛物线满足:(1);(2);(3)与x 轴有2个交点,且两交点间的距离小于2;则以下结论不正确的是( ).A. B. C. D.二.填空题(每题4分共16分)9.已知关于x的方程有两个实数根, 则n的取值范围________.10.在△ABC中,若,则∠A+∠B=__________.11. ⊙O中,弦AB是内接正三角形的一边,弦AC是内接正六边形的一边,则∠BAC =__________12.已知抛物线过点A(-2,-1),B(1,2),对于任何非0的实数a,抛物线都不过点P(m,m2+1),则m的值是______.三.解答题:(13-18每题5分,19、21、22题6分,20题7分,23题9分,24题8分)13.计算:.14.已知关于x的一元二次方程有两个相等的实数根,求的值。
数 学 试 卷(考试时间为100分钟,试卷满分为100分)班级 学号 姓名 分数 一、选择题: (每题3分,共30分)1.下列交通标志是轴对称图形的是.下列交通标志是轴对称图形的是 ( )A. B . C . D .2.下列各式中,正确的是.下列各式中,正确的是 ( )A .39±=±B .9)3(2=-C .393-=- D .2)2(2-=- 3.下列各式能用完全平方公式进行分解因式的是 ( )A .21x +B .221x x +-C .21x x ++D .244x x ++4.如果53-x 有意义,则x 可以取的最小整数为可以取的最小整数为 ( ) A .0 B .1 C .2 D .3 5.如图,已知△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,则下列关系式正确的,则下列关系式正确的为 ( )A .BD=CD B .BD=2CD C .BD=3CD D .BD=4CD 6.小明乘出租车去体育场,有两条路线可供选择:路线一全程是25千米,但交通比较拥堵,路线二全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时平均速度为x 千米/小时,根据题意,得据题意,得 ( ) A .253010(180%)60xx -=+ B .253010(180%)x x-=+C .302510(180%)60xx-=+ D .302510(180%)xx-=+7.已知1=-b a ,则a 2-b 2-2b 的值为的值为 ( ) A .4 B .3 C .1 D .0 8.已知ΔABC 中,AB=10,BC=15,CA=20,点O 是ΔABC 内角平 分线的交点,则ΔABO 、 ΔBCO 、 ΔCAO 的面积比是 ( )OADC米,用科学记数法表示为 3328-= .A= . 第15题图题图 上,且AC=CD=DB B= .AB 的垂直平分线交的周长是的周长是 cm .则顶角的度数为 .x 的取值范围是.18.如图,在△ABC 中,ÐABC = 2ÐACB ,BD 平分ÐABC , AD ∥BC ,则图中的等腰三角形有角形有 个,分别为个,分别为 .B'DC)22.化简求值(本题4分)分)111(11222+---¸-+-m m m m m m ),其中m =3.23.(本题5分)已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =DC .(2)AD ∥BC .24.(本题5分)如图,DC ∥AB ,∠BAD 和∠ADC 的平分线相交于E ,过E 的直线分别交DC 、AB 于C 、B 两点. 求证:AD=AB+DC. 图① 图①27.(本题6分)如图,已知,AC=BC,∠BCA=90°,点D 为等腰直角△ABC 内一点, ∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .(1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC=DM ,求证: ME=BD .28.(本题5分)在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧..作ADE △,使AD AE DAE BAC =Ð=Ð,,连接CE . (1)如图1,当点D 在线段BC 上,如果90BAC Ð=°,则BCE Ð= 度;度; (2)设BAC a Ð=,BCE b Ð=.①如图2,当点D 在线段BC 上移动,则a b ,之间有怎样的数量关系?请说明理由;之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则a b ,之间有怎样的数量关系?请直接写出你的结论.附加题(共计10分,计入总分,但卷面总分不得超过100分)分)1.设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++. 若12...n S S S S =+++,求S(用含n 的代数式表示,其中n 为正整数).2. 已知:如图,AD=DC=BC ,∠BCD=2∠BAD. 求证:∠ABC=120°ABC=120°--∠BAD .3是原分式方程的解.21. (1) 12m n (2)1a b - 22. 33由题意得:68000320002x x-=答:商场两次共购进这种运动服600套.套. 26.解:(1)①作图:略)①作图:略 ②猜想:∠A+∠B=90°,°, (2)答:①作图:略)答:①作图:略 ②猜想:∠B=3∠A 27.证明:(1)在等腰直角△ABC 中,中,∵∠CAD=∠CBD=15o ∴∠BAD=∠ABD=45o-15o =30o,∴BD=AD ,∴△BDC ≌△ADC ,∴∠DCA=∠DCB=45o .由∠BDM=∠ABD+∠BAD=30o +30o =60o , ∠EDC=∠DAC+∠DCA=15o +45o =60o ,∴∠BDM=∠EDC , ∴DE 平分∠BDC ; (2)如图,连接MC ,∵DC=DM ,且∠MDC=60°,°,∴△MDC 是等边三角形,即CM=CD .又∵∠EMC=180°-∠DMC=180°-60°=120°,°, ∠ADC=180°-∠MDC=180°-60°=120°,°, ∴∠EMC=∠ADC . 又∵CE=CA , ∴∠DAC=∠CEM=15°. ∴△ADC ≌△EMC , ∴ME=AD=DB .28. 解:(1)90°. (2)①α+β=180°,理由:∵∠BAC=∠DAE ,∴∠BAC-∠DAC=∠DAE-∠DAC . 即∠BAD=∠CAE . 在△ABD 与△ACE 中,中,{AB=AC ∠BAD=∠CAEAD=AE ∴△ABD ≌△ACE , ∴∠B=∠ACE .∴∠B+∠ACB=∠ACE+∠ACB . ∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°, ∴α+β=180°;②当点D 在射线BC 上时,α+β=180°; 当点D 在射线BC 的反向延长线上时,α=β.附加题:(1)122++n nn (2)连接AC,过点D 作AC 的垂线交AC 于点M 则DM 为AC 的中垂线,设DM 与AB 交与点E ,连结CE,证明△DCE 全等于△BCE. 证明△DCE 全等于△DAE.从而,∠ABC=120°ABC=120°--∠BAD .。
2011年10月北京四中考试试卷一、选择题(本题共5小题,每题3分,共计15分)1、有一列数:2,22,222,2222,…,把它们的前27个数相加,那么所求的和的十位数字是()A、3B、5C、7D、92、某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照下面的规律摆N个“金鱼”需用火柴棒的根数为()A、2+6nB、8+6nC、4+4nD、8n3、100个自然数的和是10000,在这100个自然数中奇数比偶数多,则这些数中偶数至多有()个。
A、46B、47C、48D、494、甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局,已知甲、乙各比赛了4局,丙当了3次裁判,那么第2局的输者是()。
A、甲B、乙C、丙D、不能确定5、老师报一个五位数,同学们将它的顺序倒排后得到的五位数减去原数,学生甲、乙、丙、丁的结果分别是34567,34056,34956,23456,老师判定4个结果中只有1个正确,则答对的应是()。
A、甲B、乙C、丙D、丁二、填空题(本题共15小题,每小题3分,共计45分)1、100只兔子分100个萝卜,大兔子1只分3个萝卜,小兔子3只分1个萝卜,那么小兔子是______只。
2、两个数的最大公约数是4,最小公倍数是1428,已知一个数为84,则另一个数是___________。
3、一艘轮船从甲码头顺流行驶向乙码头,用了4个小时,从乙码头逆流返回甲码头,用了5个小时。
已知水流的速度是3千米/时,则船在静水中的速度为_______________。
4、为了确保信息安全,信息需要加密传输发送方由明文转至密文(密文),接收方由密文转至明文(解密),已知加密规则为:明文a ,b 对应的密文为a +1 ,2b +a 。
例如:明文1,2对应密文2,5,如果接收方接到的密文是4,11,则解密得到的明文是________________。
5、有一个分数,分母减1可约简为21,分母加12,可约简为31,则这个分数是____________。
北京四中2013~2014学年度第一学期开学测验初三数学试卷及答案(考试时间为90分钟,试卷满分为120分)开学测验A卷(满分100分)一、选择题(共8个小题,每小题3分,共24分,各题均为四个选项,其中只有一个是符合题意的。
)1.下列运算中,正确的是()A.B.C.D.2.经过点P(-1,2)的双曲线的解析式为()A.B.C.D.3.⊙O的半径为4,圆心O到直线的距离为3,则直线与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定4.已知反比例函数的图象上有两点A(,)、B(,),且,则的值是()A.正数 B.负数 C.非正数D.不能确定5.某地连续10则这组数据的中位数和平均数分别为()A.24.5,24.6 B.25,26 C.26,25 D.24,266.把代数式分解因式,下列结果中正确的是()A.B.C. D.7.小明用作函数图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数图象、如图所示,他解的这个方程组是()8.已知:M(2,1),N(2,6)两点,反比例函数与线段MN相交,过反比例函数上任意一点P作轴的垂线PG,G为垂足,O为坐标原点,则△OGP面积S的取值范围是()A. B.C.D.二、填空题(共4个小题,每小题4分,共16分)9.若分式的值为0,则的值为__________。
10.若关于的一元二次方程没有实数根,则k的取值范围是__________。
11.设等边△ABC的边长为a,将△ABC绕它的外心旋转60°,得到对应的,则A、两点间距离等于__________。
12.已知抛物线与轴有且只有一个交点,则p=_______________,该抛物线的对称轴方程是__________,顶点的坐标是__________。
三、解答题(菜6个小题,共30分)13.计算:。
14.(1)解方程:,并计算两根之和。
(2)求证:无论为任何实数,关于的方程总有实数根。
北京四中2010—2011学年度第一学期期中初三数学试题(考试时间为120分钟,试卷满分为120分)第Ⅰ卷(共32分)考生须知1.第Ⅰ卷共1页,共一道大题,8道小题.2.考生须将所选选项按要求填涂在答题卡上,在试卷上作答无效.一、选择题(本题共32分,每小题4分)1.下列图形中,是中心对称图形但不是轴对称图形的是().2.在下列二次根式中,是最简二次根式的是().A.B.C.D.3.将二次函数的图象先向右平移2个单位,再向下平移个单位,得到的函数图象的解析式为().A.B.C.D.4.已知⊙O1、⊙O2的半径分别是,,若两圆相交,则圆心距O1O2可能取的值是().A.2 B.4 C.6D.8 5.已知,则等于().A.B.C.D.6.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是().A.20B.20C.10D.57.若方程没有实数根,则的最小整数值是().A.2 B.1 C.-1 D.不存在8.已知抛物线:(为常数,且)的顶点为,与轴交于点;抛物线与抛物线关于轴对称,其顶点为.若点是抛物线上的点,使得四边形为菱形,则m为().A.B.C.D.第Ⅱ卷(共88分)二、填空题(本题共18分,每题3分)9.若二次根式有意义,则的取值范围是_______.10.抛物线,若其顶点在x轴上,则b值为____________.11.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是____.12.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是____________.13.已知圆的一条弦把圆周分成1:3两部分,则这条弦所对的圆周角的度数是____________.14.已知二次函数的图象如图所示,抛物线经过点(1,0),则下列结论:①;②方程的两根之和大于0;③随的增大而增大;④,其中正确的是__________三、解答题(本题共70分;第15—20题各5分,第21—23题各6分,第24—25题7分,26题8分)15.计算:.16.解方程:.17.已知关于的一元二次方程的两个不相等的实数根中,有一个根是0,求的值.18.已知二次函数中,函数与自变量的部分对应值如下表:………7 2 -1 -2 -1 2 …(1)写出二次函数的顶点坐标及对称轴;(2)求二次函数的解析式;(3)若,,两点都在该函数的图象上,且m<2,试比较与的大小.19.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).20.抛物线与直线交于点.(1)求的值;(2)设抛物线与直线的两个交点为B、C(点B在点C的左侧),求△ABC的面积.21.如图,已知是的直径,点在上,过点的直线与的延长线交于点,,.(1)求证:是的切线;(2)点是弧AB的中点,交于点,求∠CNA的度数.22.某园艺公司计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润(万元)与投入资金(万元)成正比例关系,如图1所示;种植花卉的利润(万元)与投入资金(万元)成二次函数关系,如图2所示.(1)分别求出利润(万元)与(万元)关于投入资金(万元)的函数关系式;(2)如果该园艺公司以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?23.农科所有一块五边形的实验田,用于种植1号良种水稻进行实验,如图所示,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=20米.(1)若每平方米实验田需要水稻1号良种25克,若在△ABC和△ADE实验田中种植1号良种水稻,问共需水稻1号良种多少克?(2)在该五边形实验田计划全部种上这种1号良种水稻,现有1号良种9千克,问是否够用,通过计算加以说明.24.已知关于x的方程①有两个相等的实数根.(1)用含n的代数式表示;(2)求证:关于y的方程②必有两个不相等的实数根;(3)若方程①的一根的相反数恰好是方程②的一个根,求代数式的值.25.如图,⊙与x轴的正半轴交于C、D 两点,E为圆上一点,给出5 个论断:①⊙与y轴相切于点A;②DE⊥x轴;③EC平分∠AED;④DE=2AO;⑤OD=3OC.(1)如果论断①、②都成立,那么论断④一定成立吗?答:_______(填“成立”或“不成立”).(2)从论断①、②、③、④中选取三个作为条件,将论断⑤作为结论,组成一个真命题,并加以证明已知:如图,⊙与x轴的正半轴交于C、D 两点,E为圆上一点,____(只需填论断的序号).求证:OD=3OC.26.已知抛物线()与轴的一个交点为,与y轴的负半轴交于点C,顶点为D.(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点A的坐标;(2)以AD为直径的圆经过点C.①求抛物线的解析式;②点在抛物线的对称轴上,点在抛物线上,且以四点为顶点的四边形为平行四边形,直接写出点的坐标.。
2011年北京四中中考数学全真模拟试卷(三)一、选择题(共15小题,每小题2分,满分30分)1.(2分)值等于()A.±4B.4C.±2D.22.(2分)下列计算中,正确的是()A.B.C.D.3.(2分)1纳米=0.000000001米,则2.5纳米用科学记数法表示为()A.2.5×10﹣8米B.2.5×10﹣9米C.2.5×10﹣10米D.2.5×109米4.(2分)计算:÷(1﹣)的结果为()A.x B.﹣C.D.﹣5.(2分)在△ABC中,∠A、∠B都是锐角,且,,则△ABC 的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定6.(2分)已知菱形的边长为6cm,一个内角为60°,则菱形较短的对角线长是()A.6cm B.cm C.3cm D.cm 7.(2分)已知|a|=5,|b|=2,且a+b<0,则ab的值是()A.10B.﹣10C.10或﹣10D.﹣3或﹣7 8.(2分)点(1,m),(﹣2,n)在函数y=﹣|k|x+1(k≠0)的图象上,则m、n的关系是()A.m≤n B.m=n C.m<n D.m>n9.(2分)二次函数y=﹣x2﹣2的图象大致是()A.B.C.D.10.(2分)矩形面积为4,长y是宽x的函数,其函数图象大致是()A.B.C.D.11.(2分)在直角坐标系中,若一点的横坐标与纵坐标互为倒数,则该点一定在()A.直线y=﹣x上B.双曲线y=﹣上C.直线y=x上D.双曲线y=上12.(2分)已知点A和点B(如图),以点A和点B为其中两个顶点作位置不同的等腰直角三角形,一共可作出()A.2个B.4个C.6个D.8个13.(2分)一个圆锥形冰淇淋纸筒(无盖),其底面直径为6cm,母线长为5cm,做成一个这样的纸筒所需纸片的面积是()A.66πcm2B.28πcm2C.30πcm2D.15πcm2 14.(2分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是()A.B.C.D.15.(2分)已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第2003个三角形的周长为()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)16.(2分)某公司员,月工资由m元增长了10%后达到元.17.(2分)分解因式:x2﹣9=.18.(2分)在函数中,自变量的取值范围是.19.(2分)如图,在⊙O中,若半径OC与弦AB互相平分,且AB=6cm,则OC= cm.20.(2分)要做两个形状为三角形的框架,其中一个三角形框架的三边长分别为4,5,6,另一个三角形框架的一边长为2,欲使这两个三角形相似,三角形框架的两边长可以是cm.21.(2分)下面的扑克牌中,牌面是中心对称图形的是.(填序号)22.(2分)如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为度.23.(2分)小明上周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x袋牛奶,则根据题意列得方程为.三、解答题(共11小题,满分74分)24.(5分)计算:(﹣2)3+()﹣2+.25.(5分)解不等式组,并把解集在数轴上表示出来.26.(5分)如图,有一长方形的地,该地块长为x米,宽为120米,建筑商将它分成三部分:甲、乙、丙.甲和乙为正方形.现计划甲建设住宅区,乙建设商场,丙开辟成公司.若已知丙地的面积为3200平方米,你能算出x的值吗?27.(7分)在本学期某次考试中,某校初二(1)、初二(2)两班学生数学成绩统计如下表:请根据表格提供的信息回答下列问题:(1)二(1)班平均成绩为分,二(2)班平均成绩为分,从平均成绩看两个班成绩谁优谁次?(2)二(1)班众数为分,二(2)班众数为分.从众数看两个班的成绩谁优谁次?.(3)已知二(1)班的方差大于二(2)班的方差,那么说明什么?28.(5分)如图,ABCD是正方形,点E在BC上,DF⊥AE于F,请你在AE上确定一点G,使△ABG≌△DAF,并说明理由.29.(9分)小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定赢,现在小明让小亮先跑若干米,两人的路程y(米)分别与小明追赶时间x(秒)的函数关系如图所示.(1)小明让小亮先跑了多少米?(2)分别求出表示小明、小亮的路程与时间的函数关系式.(3)谁将赢得这场比赛?请说明理由.30.(8分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?31.(7分)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)32.(8分)如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A ﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).(1)t为何值时,四边形APQD为矩形;(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.33.(6分)旋转是一种常见的全等变换,图1中△ABC绕点O旋转后得到△A′B′C′,我们称点A和点A′、点B和点B′、点C和点C′分别是对应点,把点O称为旋转中心.(1)观察图1,想一想,旋转变换具有哪些特点呢?请写出其中三个特点;(2)图2中,△ABC顺时针旋转后,线段AB的对应线段为线段DE,请你利用圆规、直尺等工具,①作出旋转中心O;②作出△ABC绕点O旋转后的△DEF.(要求保留作图痕迹,并说明作法)34.(9分)已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE 交直线BC于点E,同时交直线DC于点Q.①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;②当CE=1时,写出AP的长.(不必写解答过程)2011年北京四中中考数学全真模拟试卷(三)参考答案一、选择题(共15小题,每小题2分,满分30分)1.B;2.B;3.B;4.C;5.A;6.A;7.C;8.C;9.D;10.B;11.D;12.C;13.D;14.B;15.C;二、填空题(共8小题,每小题2分,满分16分)16.1.1m;17.(x+3)(x﹣3);18.x≥2且x≠3;19.;20.和3或和或和;21.①③;22.60;23.;三、解答题(共11小题,满分74分)24.;25.;26.;27.80;80;70;90;二(2)班;28.;29.;30.;31.;32.;33.;34.;。
北京2011-2012中考数学全真模拟试题及答案第Ⅰ卷 (机读卷 共32分)一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.5-的相反数是( )A .5B .5-C .15 D .15- 2.在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年我国粮食连续五年增产,总产量为52850万吨,创历史最高水平.将52850用科学记数法表示应为( ) A .528510⨯ B .352.8510⨯ C .35.28510⨯ D .45.28510⨯ 3.五边形的内角和是( )A .180°B .360°C .540°D .720° 4.我国部分城市五月某一天最高温度如下表,这些数据的众数和中位数分别是( )城市 北京 上海 重庆 杭州 苏州 广州 武汉 最高温度 (℃)262531 29293131A .29,28B .31,29C .26,30D .25,315.若两圆的半径分别是2cm 和5cm ,圆心距为3cm ,则这两圆的位置关系是( ) A .外离 B .相交 C .外切 D .内切 6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是A .12B .14C .34D .17.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…,若 21010b ba a+=⨯符合前面式子的规律,则a b +的值为( )A .179B .140C .109D .210 8.将一正方体纸盒沿下右图所示的粗实线剪开,展开成平面图,其展开图的形状为( ).0.1625—32A .B .C .D .第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分) 9.在函数1y x =-中,自变量x 的取值范围是______________.10.如图,点A 、B 、C 是⊙O 上三点,∠C 为20°,则∠AOB 的度数 为__________°.11.分解因式:2242x x ++=____________________.12.如图,小正方形方格的边长为1cm ,则AB ⌒的长为___________cm .三、解答题(共5道小题,共25分) 13.(本小题满分5分)计算:112sin 60(2009)122-⎛⎫+--+ ⎪⎝⎭.14.(本小题满分5分)解不等式组()2035148x x x -<⎧⎪⎨+-⎪⎩≥,15.(本小题满分5分)已知:如图,AB ∥DE ,∠A =∠D ,且BE =CF , 求证:∠ACB =∠F . 16.(本小题满分5分)先化简,再求值:2314223a a a a +-⎛⎫+÷⎪--⎝⎭,其中2410a a -+=.AOBA B C DE FAOCBCBDA图1图2AD 'BCACE OBD F 17.(本小题满分5分)如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.求反比例函数与一次函数的解析式.四、解答题(共2道小题,共10分) 18.(本小题满分5分)如图1,矩形纸片ABCD 中,AB =4,BC =43,将矩形纸片沿对角线AC 向下翻折,点D 落在点D ’处,联结B D ’,如图2,求线段BD ’ 的长.19.(本小题满分5分)如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交于点F ,且CF =9,cos ∠BF A =32,求EF 的长.图1A CE DB20.某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是___________(填写序号); (2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为__________人. (注:图2中相邻两虚线形成的圆心角为30°)六、解答题(共2道小题,共10分) 21.(本小题满分5分)列方程或方程组解应用题:2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难、八方支援”,某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于情况紧急,该厂又增加了人员进行生产,将工作效率提高到原来的1.5倍,结果提前4天完成任务.问该厂原来每天加工多少顶帐篷.22.(本小题满分5分)把两个三角形按如图1放置,其中90ACB DEC ==︒∠∠, 45A =︒∠,30D =︒∠,且6AB =,7DC =.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图2,这时AB 与 CD 1相交于点O ,与D 1E 1相交于点F .(1)求1ACD ∠的度数;(2)求线段AD 1的长;(3)若把△D 1CE 1绕点C 顺时针再旋转30°得到△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?请说明理由.BAE CD 1OF23.如图1,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,联结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =,90BAC =∠,①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF BD 、所在直线的位置关系为 __________ ,线段CF BD 、的数量关系为 ; ②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB AC ≠,BAC ∠是锐角,点D在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C F 、不重合),并说明理由.八、解答题(本题满分7分)24. 如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴、y 轴于A B 、两点.点(40)C ,、(80)D ,,以CD 为一边在x 轴上方作矩形CDEF ,且:1:2CF C D =.设矩形CDEF 与ABO △重叠部分的面积为S .(1)求点E 、F 的坐标;(2)当b 值由小到大变化时,求S 与b 的函数关系式; (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQC ∠等于90 ,请直接..写出b 的取值范围.图1 A B D F E C 图2A B D E C F F 图3A B D C ExyB C E AF DO25.已知抛物线223y x bx c =-++与x 轴交于不同的两点()10A x ,和()20B x ,,与y 轴交于点C ,且12x x ,是方程2230x x --=的两个根(12x x <).(1)求抛物线的解析式;(2)过点A 作AD ∥CB 交抛物线于点D ,求四边形ACBD 的面积; (3)如果P 是线段AC 上的一个动点(不与点A 、C 重合),过点P 作平行于x 轴的直线l 交BC 于点Q ,那么在x 轴上是否存在点R ,使得△PQR 为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.答案及评分参考一、选择题(共8道小题,每小题4分,共32分)1.A ; 2.D ; 3.C ; 4.B ; 5.D ; 6.B ; 7.C ; 8.A . 二、填空题(共4道小题,每小题4分,共16分)9.x ≥1; 10.40; 11.()221x +; 12.2π. 三、解答题(共5道小题,共25分)13.解:1012sin 60(2009)122-⎛⎫+--+ ⎪⎝⎭14.()2035148x x x -<⎧⎪⎨+-⎪⎩≥, ①,② 3212322=⨯+-+…………4分 解:解不等式①,得x >2; ······· 2分 33=-.………………………5分 解不等式②,得1x -≥; ····· 4分 在数轴上表示不等式①、②的解集,∴原不等式组的解集为x >2. ··· 5分15.证明: ∵AB ∥DE ,∴∠B =∠DEF , ·········································································· 1分∵BE =CF , ∴BE +CE =CF +CE ,即BC =EF , ········································· 2分 ∵∠A =∠D ,∴△ABC ≌△DEF . ·································································· 4分 ∴∠ACB =∠F . ································································································· 5分16.解:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭2314223a a a a +-⎛⎫=-÷ ⎪--⎝⎭22423a a a +-=÷-………2分 ()()23222a a a a +=⋅-+-2344a a =-+ ···································································· 4分∵2410a a -+= ∴241a a -=-当241a a -=-时, 原式3114==-+. ······························································· 5分17.解:(1)∵点A (13),在反比例函数ky x =的图象上,∴3k =, …………………1分∴反比例函数的解析式为3y x =, ································································· 2分∵点B (1)n -,在反比例函数3y x=的图象上, ∴31n=-,∴3n =-, ·················································································· 3分 ∴点B 的坐标为(31)--,,∵点A 、点B 在一次函数y mx b =+的图象上.12345-1-2-3-4-50A C E O BD F O 1423CBD 'A 图2图1ADBCE∴331m b m b +=⎧⎨-+=-⎩,∴12m b =⎧⎨=⎩∴一次函数的解析式为2y x =+···································································· 5分四、解答题(共2个小题,共10分)18.解:设AD ’交BC 于O ,方法一:过点B 作BE ⊥AD ’于E , 矩形ABCD 中,∵AD ∥BC ,AD =BC , ∠B =∠D =∠BAD =90°, 在Rt △ABC 中,∵ta n ∠BAC =4334BC AB ==, ∴∠BAC =60°,∴∠DAC =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’,∴AD’=AD =BC =43,∠1=∠DAC =30°, ∴∠4=∠BAC —∠1=30°,又在Rt △ABE 中,∠AEB =90°,∴BE =2, ……………………………………4分 ∴AE =2223AB BE -=,∴D’E =AD’—AE =23,∴AE =D’E ,即BE 垂直平分AD’,∴BD ’=AB =4. ……………………………5分 方法二:矩形ABCD 中,∵AD ∥BC ,AD =BC ,∠B =∠D =90°,∴∠ACB =∠DAC , 在Rt △ABC 中,∵ta n ∠BAC =4334BC AB ==, ∴∠BAC =60°,∴∠ACB =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’, ∴AD =AD’=BC ,∠1=∠DAC =∠ACB =30°, ∴OA =OC ,∴OD ’=OB ,∴∠2=∠3,∵∠BOA =∠1+∠ACB =60°, ∠2+∠3=∠BOA , ∴∠2=12∠BOA =30°,…………………………………………………………4分 ∵∠4=∠BAC —∠1=30°,∴∠2=∠4,∴BD ’=AB =4. …………………5分19.(1)证明:联结BO ,……………………………1分 方法一:∵AB =AD ,∴∠D =∠ABD ,∵AB =AO ,∴∠ABO =∠AOB ,………………2分又在△OBD 中,∠D +∠DOB +∠ABO +∠ABD =180°,∴∠OBD =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. ················································································ 3分方法二:∵AB =AO ,BO =AO ,∴AB =AO =BO ,∴△ABO 为等边三角形,∴∠BAO =∠ABO =60°, ∵AB =AD ,∴∠D =∠ABD , 又∠D +∠ABD =∠BAO =60°,∴∠ABD =30°, …………………2分 ∴∠OBD =∠ABD +∠ABO =90°,即BD ⊥BO , ∴BD 是⊙O 的切线. ……………………………………………………3分方法三:∵ AB =AD =AO ,∴点O 、B 、D 在以OD 为直径的⊙A 上 …………2分∴∠OBD =90°,即BD ⊥BO , ∴BD 是⊙O 的切线. ……………………………………………………3分(2)解:∵∠C =∠E ,∠CAF =∠EBF ,∴△ACF ∽△BEF , …………………… ········· 4分∵AC 是⊙O 的直径,∴∠ABC =90°,在Rt △BF A 中,cos ∠BF A =32=AF BF ,∴32==AF BF CF EF ,又∵CF =9,∴EF =6.…………………5分五、解答题(本题满分5分) 20.解:(1)③,……………………1分(2)图1补充完整, ……3分 (3)220. …………………5分六、解答题(共2个小题,共10分)21.解:设该厂原来每天加工x 顶帐篷,则工作效率提高后每天加工1.5x 顶帐篷. ······ 1分根据题意,得1500300150030041.5x x---=, ····················································· 3分 解这个方程,得100x =, ····················································································· 4分 经检验:100x =是原方程的解.答:该厂原来每天加工100顶帐篷. ····································································· 5分22.解:(1)如图1,由题意可知:∠BCE 1=15°,∵∠D 1CE 1=60°, ∴∠D 1CB =∠D 1CE 1—∠D 1CB =45°,又∠ACB =90°,∴∠ACD 1=∠ACB —∠D 1CB =45°. ············· 1分(2)由(1)知,∠ACD 1=45°,又∠CAB =45°,∴∠AOD 1=∠CAB +∠ACD 1=45°∴OC ⊥AB ,∵∠BAC =45°,∠ABC =90°—∠BAC =45°, ∴∠ABC =∠BAC ,∴AC =BC , ∴OC =12AB =OA =3,∴OD 1=CD 1—OC =4, 在R t △AOD 1中,∠5=90°,AD 1=221OA OD +=5. ···························· 3分 (3)点B 在△D 2CE 2内部. ··················································································· 4分 理由如下:设BC (或延长线)交D 2E 2于点P ,则∠PCE 2=15°+30°=45°.在R t △PCE 2中,可求CP =212CE 2=722, 在R t △ABC 中,可求BC =32,∵72322<,即BC <CP ,………5分 ∴点B 在△D 2CE 2内部.B 图1A E 1C D 1O FG B D C E FA 图1B C ADE FyxOGDE F C 图2A ByxOH GxyBA图3C FE D OD E FC图4AByxO 七、解答题(本题满分7分) 23.(1)①垂直,相等;………………………………………………………………………1分②当点D 在BC 的延长线上时①的结论仍成立.…………………………………2分 由正方形ADEF 得 AD =AF ,∠DAF =90º. ∵∠BAC =90º,∴∠DAF =∠BAC , ∴∠DAB =∠F AC ,又AB =AC ,∴△DAB ≌△F AC , ∴CF =BD , ∠ACF =∠ABD . ∵∠BAC =90º, AB =AC ,∴∠ABC =45º,∴∠ACF =45º,∴∠BCF =∠ACB +∠ACF =90º.即 CF ⊥BD . ……………………………………………………………………5分(2)当∠ACB =45º时,CF ⊥BD (如图).……………………………………………6分 理由:过点A 作AG ⊥AC 交CB 或CB 的延长线于点G ,则∠GAC =90º,∵∠ACB =45°,∠AGC =90°—∠ACB =45°, ∴∠ACB =∠AGC ,∴AC =AG ,∵点D 在线段BC 上,∴点D 在线段GC 上,由(1)①可知CF ⊥BD . …………………………………………………………7分八、解答题(本题满分7分)24. 解:(1)∵(40)C ,,(80)D ,,∴4CD =, ∵矩形CDEF 中,12CF CD =,∴2CF DE ==, ∵点E 、F 在第一象限,∴(8)E ,2,(4)F ,2.………………………1分 (2)由题意,可知(2)A b ,0,(0)B b ,,在R t △ABO 中,ta n ∠BAO =12OA OB =, ①当0<b ≤2时,如图1,0S =.……………………………………………2分 ②当2<b ≤4时,如图2,设AB 交CF 于G ,24AC b =-, 在R t △AGC 中,∵ta n ∠BAO =12GC AC =,∴2CG b =-. ∴()()12422S b b =--,即244S b b =-+,……………………………4分③当4<b ≤6时,如图3,设AB 交EF 于G ,交ED 于H ,28AD b =-, 在R t △ADH 中,∵ta n ∠BAO =12DH AD =,∴4DH b =-,6EH b =-, 在矩形CDEF 中,∵CD ∥EF ,∴∠EGH =∠BAO , 在R t △EGH 中,∵ta n ∠EGH =12EH EG =,∴122EG b =-, ∴()()12412262S b b =⨯---,即21228S b b =-+-,……………5分 ④当b >6时,如图4,8S =.………………………………………………6分(3)0b <≤51+. ………………………………………………………7分九、解答题(本题满分8分)解:(1)解方程2230x x --=,得123x x ==-1,.………………1分∴点()0A -1,,点()0B 3,.∴()()221110213302b c b c ⎧-⨯-+⋅-+=⎪⎪⎨⎪-⨯+⋅+=⎪⎩ 解,得432b c ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为224233y x x =-++. ······················································· 2分 (2)∵抛物线与y 轴交于点C .∴点C 的坐标为(0,2).又点()0B 3,,可求直线BC 的解析式为223y x =-+. ∵AD ∥CB ,∴设直线AD 的解析式为23y x b '=-+. 又点()0A -1,,∴23b '=-,直线AD 的解析式为2233y x =--. 解2242332233y x x y x ⎧=-++⎪⎪⎨⎪=--⎪⎩,得211241,1003x x y y =⎧=-⎧⎪⎨⎨==-⎩⎪⎩, ∴点D 的坐标为(4,103-). ················································································ 4分 过点D 作DD ’⊥x 轴于D ’, DD ’=103,则又AB =4.∴四边形ACBD 的面积S =12AB •OC +12AB •DD ’=2103································· 5分 (3)假设存在满足条件的点R ,设直线l 交y 轴于点E (0,m ),∵点P 不与点A 、C 重合,∴0< m <2,∵点()0A -1,,点()0,2C ,∴可求直线AC 的解析式为22y x =+,∴点112P m m ⎛⎫- ⎪⎝⎭,. ∵直线BC 的解析式为223y x =-+,∴点332Q m m ⎛⎫-+ ⎪⎝⎭,. ∴24PQ m =-+.在△PQR 中,①当RQ 为底时,过点P 作PR 1⊥x 轴于点R 1,则∠R 1PQ =90°,PQ =PR 1=m . ∴24m m -+=,解得43m =,∴点1433P ⎛⎫- ⎪⎝⎭,, ∴点R 1坐标为(13-,0). ················································································ 6分 ②当RP 为底时,过点Q 作Q R 2⊥x 轴于点R 2,同理可求,点R 2坐标为(1,0). ····································································· 7分 ③当PQ 为底时,取PQ 中点S ,过S 作SR 3⊥PQ 交x 轴于点R 3,则PR 3=QR 3,∠PR 3Q =90°.∴PQ =2R 3S =2m .∴242m m -+=,解,得1m =, ∴点112P ⎛⎫- ⎪⎝⎭,,点312Q ⎛⎫ ⎪⎝⎭,,可求点R 3坐标为(12,0). …………………8分 经检验,点R 1,点R 2,点R 3都满足条件.综上所述,存在满足条件的点R ,它们分别是R 1(13-,0),R 2(1,0)和点R 3(12,0).。
北京市2011年北京市解密预测中考模拟数学试题卷2温馨提示:1. 本试卷分试题卷和答题卷两部分。
满分120分, 考试时间120分钟. 2.答题时, 应该在答题卷密封区内写明校名, 姓名和学号。
3.考试时不能使用计算器,所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应.4.考试结束后, 上交答题卷.试题卷一、选择题(3分×12) 1.2-的倒数( ) A .-2 B .2 C .21- D .212.函数12-+=x y 的自变量取值范围( )A .x ≥-2B .x ≥-1C .x ≤-2D .x ≤-1 3.不等式组⎩⎨⎧≥+--2142x x π的解集在数轴上表示为( )A B C D 4.式子()22-化简的结果( )A .4±B .2±C .2D .-25.若1-=x 是一元二次方程02=-ax x 的一个解,则a 的值( ) A .-1 B .1 C .0 D .1±6.随着电子技术的不断进步,电子元件的尺寸大幅缩小,电脑芯片上某电子元件大约只有0.0000006449mm 2,这个数保留两个有效数字用科学记数法表示为( )A .7104.6-⨯ B .7105.6-⨯ C .61064-⨯ D .61065-⨯ 7.如图△ABC 沿直线AM 对折后,使B 落在AC 的点B 1上,若∠B 1MC=20°,则∠AMB=( )A .65°B .70°C .75°D .80° 8.下列图形的主视图中,与其他有明显不同的是( )CB 1MBA12121212A .B .C .D . 9.已知电流在一定时间段内正常通过电子元件的概率是21, 在一定时间段内,C 、D 之间电流能够正常通过的概率为( ) A .1 B .21 C .41 D .43 10.BC 、AC 为半径为1的⊙O 的弦,D 为BC 上动点,M 、N 分别为AD 、BD的中点,则sin∠ACB 的值可表示为( )A .DNB .DMC .MND .CD11.某市为了响应中央的号召,扩大绿化面积。
中考数学全真模拟试题(2)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.第1卷l 至4页,第Ⅱ卷5至12页.满分120分.考试时间120分钟.第1卷(选择题 共42分)一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的. 1.一3的绝对值是( )(A)3 (C)±3 (B) 3 (D)±132.2004年聊城市的国民生产总值为1012亿元,用科学记数法表示正确的是( ) (A)1012×108元 (B)1.012×1110元 (C)1.0×1110元. (D)1.012×1210元. 3.下列各式计算正确的是( ) (A)527()a a =.(B)22122xx-=(C)236326a a a = (D)826a a a ÷=。
4.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是( )(A)18 (B) 13 (C) 38 (D) 355.如图,将两根钢条'AA 、'BB 的中点O 连在一起,使'AA 、'BB 可以绕着点0自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB ≅△''A OB 的理由是( )(A)边角边 (B)角边角 (C)边边边 (D)角角边6.已知两圆相交,其圆心距为6,大圆半径为8,则小圆半径r 的取值范围是( ) (A)r>2 (13)2<r<14 (C)l<r<8 (13)2<r<87.化简24()22a a a a a a---+的结果是( ) (A)一4 (B)4 (C)2a (13) 2a +48.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为( )(C)6. (D)9.9.小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm 幻灯片到屏幕的距离是1.5m ,幻灯片上小树的高度是10cm ,则屏幕上小树的高度是( )(A)50cm . (B)500cm . (C)60 cm . (D)600cm.10.多边形的内角中,锐角的个数最多有( )(A)1个. (B)2个. (C)3个. (D)4个.第5题图11.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动, 当线段AB 最短时,点B 的坐标为( ) (A)(0,0). (B)11(,)22-.(C) (D) 11(,)22-.12.等腰三角形一腰上的高与另一腰的夹角为30。
,则顶角的度数为( )(A)60︒. (B)120︒. (C)60︒或150︒. (D)60︒或120︒13.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为( ) (A)4. (B)6. (C)12. (D)1514.已知△ABC ,(1)如图l ,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=1902A ︒+∠; (2)如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90A ︒-∠;(3)如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=1902A ︒-∠。
图3图2图1EBCC上述说法正确的个数是( )(A)0个 (B)1个 (C)2个 (D)3个第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷共8页,用钢笔或园珠笔直接答在试卷上。
2.答卷前将密封线内的项目及座号填写清楚。
二、填空题(本大题共5小题.每小题3分,共15分)把答案填在题中横线上.15.关于x 的不等式3x 一2a ≤一2的解集如图所示,则a 的值是_______________。
(第15题图)16.若圆周角α所对弦长为sin α,则此圆的半径r 为___________。
17.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的 面积___________cm 2。
(不考虑接缝等因素,计算结果用π表示)第18题图CD18.如图,Rt △ABC 中,∠A =90︒,AB =4,AC =3,D 在BC 上运动(不与B 、C 重合),过D 点分别向AB 、Ac 作垂线,垂足分别为E 、F ,则矩形AEDF 的面积的最大值为___________。
19.判断一个整数能否被7整除,只需看去掉一节尾...(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的”倍的差能否被7整除来判断,则n =___________(n 是整数,且1≤n<7). 三、开动脑筋.你一定能做对20.(本小题满分6分)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 l 95 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(本小题满分7分)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.A B22.(本小题满分8分)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?四、认真思考,你一定能成功!23.(本小题满分9分)如图l ,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)求证:OE=OF ;(2)如图2,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE=OF ”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图1C B24.(本小题满分10分)某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2005年已投人技改资金5万元. ①预计生产成本每件比2004年降低多少万元?②如果打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元(结果精确到0.01万元)?五、相信自己。
加油呀 25.(本小题满分10分)△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。
若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.图1CB图2CB图3CB26.(本小题满分13分)如图1,已知抛物线的顶点为A(O ,1),矩形CDEF 的顶点C 、F 在抛物线上,D 、E 在x 轴上,CF 交y 轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P 点为抛物线上不同于A 的一点,连结PB 并延长交抛物线于点Q ,过点P 、Q 分别作x 轴的垂线,垂足分别为S 、R .①求证:PB =PS ; ②判断△SBR 的形状;③试探索在线段SR 上是否存在点M ,使得以点P 、S 、M 为顶点的三角形和以点Q 、R 、M 为顶点的三角形相似,若存在,请找出M 点的位置;若不存在,请说明理由.中考数学模拟试题(2)参考答案及评分标准注:第三、四、五题给出了一种解法或两种解法.考生若用其它解法.应参照本评分标准给分二、填空题(每小题3分.共15分l1 5.一12; 16.12; 17. 300π; 18 .3; 19 .2。
三、开动脑筋,你一定能做对(共21分)20.解:由题中7周的数据.可知小亮家平均每周日常生活消费的费用为:17(230+195+180+250+270+455+170)=250(元) …………(4分)∴小亮家每年日常生活消费总赞用为:250×52=13000(元)答:小亮家平均每年的日常生活消费总费用约为13000元…………… (6分) 2l.解:作法:(1)作AB的垂直平分线CD交AB于点O;(2)分别以A、B为圆心,以AO(或BO)的长为半径画弧,分别交半圆干点M、N;(3)连结OM、ON即可.说明:本小题满分7分。
画图正确得4分;写出作法,每步各1分,共3分。
22.解:根据题意,可有三种购买方案;方案一:只买大包装,则需买包数为:48048 505=;由于不拆包零卖.所以需买10包.所付费用为30×10=300(元) … (1分)方案二:只买小包装.则需买包数为:48016 30=所以需买1 6包,所付费用为1 6×20=320(元) ……… (2分)方案三:既买大包装.又买小包装,并设买大包装x 包.小包装y 包.所需费用为W 元。
则50304803020x y W x +=⎧⎨=+⎩…………(4分)103203W x =-+…………(5分) ∵050480x <<,且x 为正整数, ∴x =9时,最小W =290(元).∴购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少.为290元。
………………………………………………………………(7分)答:购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少为290元。
……………………………………………………………… (8分) 四、认真思考.你一定能成功!(共19分)23(1)证明:∵四边形ABCD 是正方形.∴∠BOE=∠AOF =90︒.OB =OA ……………… (1分) 又∵AM ⊥BE ,∴∠MEA+∠MAE =90︒=∠AFO+∠MAE ∴∠MEA =∠AFO ………………(2分)∴Rt △BOE ≌ Rt △AOF ……………… (3分) ∴OE=OF ………………(4分)(2)OE =OF 成立 ……………… (5分) 证明:∵四边形ABCD 是正方形,∴∠BOE=∠AOF =90︒.OB =OA ……………… (6分) 又∵AM ⊥BE ,∴∠F+∠MBF =90︒=∠B+∠OBE 又∵∠MBF =∠OBE∴∠F =∠E ………………(7分)∴Rt △BOE ≌ Rt △AOF ……………… (8分) ∴OE=OF ………………(9分)24.(1)解:设其为一次函数,解析式为y kx b =+ 当 2.5x =时,7.2y =; 当x =3时,y =6.7.2 2.563k bk b =+⎧⎨=+⎩解得 2.4k =-,13.2b =∴一次函数解析式为 2.413.2y x =-+ 把4x =时, 4.5y =代人此函数解析式,左边≠右边.∴其不是一次函数.同理.其也不是二次函数. ………… (3分)(注:学生如用其它合理的方式排除以上两种函数,同样得3分)设其为反比例函数.解析式为k y x=。