九年级数学上册22.3实际问题与二次函数第2课时拱桥问题与运动中的抛物线习题课件(新版)新人教版
- 格式:ppt
- 大小:7.51 MB
- 文档页数:14
22.3 实际问题与二次函数第1课时二次函数与图形面积1.如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积为() A.60 m2B.63 m2C.64 m2D.66 m22.如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=时,矩形场地的面积最大,最大值为.第1题图第2题图第3题图第4题图3.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B 点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q 分别从A,B同时出发,当△PBQ的面积最大时,运动时间t为s.4.如图,在正方形ABCD中,E为BC上的点,F为CD边上的点,且AE=AF,AB=4,设EC =x,△AEF的面积为y,则y与x之间的函数关系式是.5.用长为20 cm的铁丝,折成一个矩形,设它的一边长为x cm,面积为y cm2.(1)求出y与x的函数关系式;(2)当边长x为多少时,矩形的面积最大?最大面积是多少?6.如图,要利用一面墙(长为30 m)建羊圈,用100 m长的围栏围成两个大小相同的矩形羊圈,每个羊圈留有一个1 m宽的门(留门部分不需要围栏),若宽用x(m)表示,总面积用y(m2)表示.(1)写出总面积y(m2)与宽x(m)的函数关系式;(2)当面积y=624时,求羊圈的宽x的值.7.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?8.用一段长为24 m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长8 m,则这个养鸡场最大面积为 m2.9.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是cm2.10.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12 cm,点P是AB边上的一个动点,过点P作PE⊥BC于点E,PF⊥AC于点F,当PB=时,四边形PECF的面积最大,最大值为.11.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.(1)若花园的面积为192 m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.12.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数解析式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.13.如图,正方形ABCD 的边长为2 cm ,△PMN 是一块直角三角板(∠N =30°),PM >2 cm ,PM 与BC 均在直线l 上,开始时M 点与B 点重合,将三角板向右平行移动,直至M 点与C 点重合为止.设BM =x cm ,三角板与正方形重叠部分的面积为y cm 2.下列结论:①当0≤x ≤233时,y 与x 之间的函数关系式为y =32x 2;②当233<x ≤2时,y 与x 之间的函数关系式为y =2x -233;③当MN 经过AB 的中点时,y =32cm 2; ④存在x 的值,使y =12S 正方形ABCD (S 正方形ABCD 表示正方形ABCD 的面积).其中正确的是 (写出所有正确结论的序号).第2课时 二次函数与商品利润1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x 元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y(元)与售价x(元)之间的函数关系式为( )A .y =-10x 2-560x +7 350 B .y =-10x 2+560x -7 350 C .y =-10x 2+350x D .y =-10x 2+350x -7 3502.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为 元.3.中考前,某校文具店以每套5元购进若干套考试用具,为让利考生,该店决定售价不超过7元,在几天的销售中发现每天的销售数量y(套)和售价x(元)之间存在一次函数关系,绘制图象如图.(1)y与x的函数关系式为(要求写出x的取值范围);(2)设销售该套文具每天获利w元,则销售单价应为多少元时,才能使文具店每天的获利最大?最大利润是多少?4.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A.5元B.10元C.0元D.6元5.某商场销售一批品牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1 200元,每件衬衫应降价多少元?(2)想要平均每天盈利最多,每件衬衫应降价多少元?6.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x 元(x 为正整数),每星期销售该商品的利润为y 元,则y 与x 的函数关系式为( )A .y =-10x 2+100x +2 000 B .y =10x 2+100x +2 000 C .y =-10x 2+200x D .y =-10x 2-100x +2 0007.某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为 元.8.某工厂生产的某种产品按产量分为10个档次,第1档次(最低档次)的产品一天能生产95件产品,每件利润6元(第一档).每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x 档次的产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数解析式;(2)若生产第x 档次的产品一天的总利润为1 120元,求该产品的质量档次.9.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m 2),种草所需费用y 1(元)与x(m 2)的函数关系式为y 1=⎩⎪⎨⎪⎧k 1x (0≤x<600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x(m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1 000 m 2空地的绿化总费用为W(元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用W 的最小值.10.某网店销售某款童装,每件售价60元,每星期可卖300件.为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)若该网店每星期想要获得不低于6 480元的利润,每星期至少要销售该款童装多少件?第3课时实物抛物线1.河北省赵县的赵州桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=-125x2.当水面离桥拱顶的高度DO是4 m时,这时水面宽度AB为()A.-20 m B.10 m C.20 m D.-10 m2.某隧道横截面由抛物线与矩形的三边组成,尺寸如图所示.以隧道横截面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求得该抛物线对应的函数关系式为.3.有一个抛物线形的立交拱桥,这个拱桥的最大高度为16 m,跨度为40 m,现把它的图形放在坐标系中(如图).若在离跨度中心5 m处的M点垂直竖立一铁柱支撑拱顶,则这根铁柱的长为m.4.(绵阳中考)如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加 m.5.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16 m ,AE =8 m ,抛物线的顶点C 到ED 的距离是11 m .试以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系,求题中抛物线的函数解析式.6.王大力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=-148x 2+2324x +2,则王大力同学投掷标枪的成绩是 m.7.一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系式是y =-112x 2+23x +53,铅球运行路线如图. (1)求铅球推出的水平距离;(2)通过计算说明铅球行进高度能否达到4 m.8.某种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h =-5t 2+150t +10表示.经过 s ,火箭达到它的最高点.9.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式是y =ax 2+bx.小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.10.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y =-15x 2+85x ,如图,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2 m.(1)请写出抛物线的开口方向、顶点坐标、对称轴; (2)请求出球飞行的最大水平距离;(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线?求出其解析式.11.如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的平面直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到墙面OB的水平距离为3 m ,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?22.3 实际问题与二次函数第1课时 二次函数与图形面积1.C2.20m ,800__m 2. 3.2.4.y =-12x 2+4x .5.解:(1)已知一边长为x cm ,则另一边长为(10-x )cm.则y =x (10-x ),化简,得y =-x 2+10x (0<x <10).(2)y =10x -x 2=-(x 2-10x )=-(x -5)2+25. ∴当x =5时,y 取最大值,为25.答:当边长x 为5 cm 时,矩形的面积最大,最大面积是25 cm 2. 6.解:(1)y =x (100-3x +2),即y =-3x 2+102x (24≤x ≤34).(2)由题意得-3x 2+102x =624,解得x 1=8(不合题意,舍去),x 2=26. 则羊圈的宽x =26.7.解:(1)S =-12x 2+30x.(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大面积为450 cm 2. 8.64 . 9.18.10.6cm ,3__cm 2.11.解:,得x (28-x )=192,解得x 1=12,x 2=16. ∴x =12或16.(2)S =x (28-x )=-(x -14)2+196.由题意知⎩⎪⎨⎪⎧x ≥6,28-x ≥15,解得6≤x ≤13.在6≤x ≤13范围内,S 随x 的增大而增大.∴当x =13时,S 最大=-(13-14)2+196=195.12.解:(1)y =x (16-x )=-x 2+16x (0<x<16).(2)当y =60时,-x 2+16x =60, 解得x 1=10,x 2=6.∴当x =10或6时,围成的养鸡场的面积为60平方米.(3)当y =70时,-x 2+16x =70,整理得 x 2-16x +70=0.∵Δ=256-280=-24<0, ∴此方程无实数根.∴不能围成面积为70平方米的养鸡场. 13.①②④.第2课时 二次函数与商品利润1.B3.(1)y=-20x+200(5≤x≤7);(2)解:根据题意得w=(x-5)(-20x+200)=-20x2+300x-1 000=-20(x-7.5)2+125,∵当x<7.5时,w随x的增大而增大,∴当x=7时,文具店每天的获利最大,最大利润是-20×(7-7.5)2+125=120(元).答:销售单价为7元时,才能使文具店每天的获利最大,最大利润是120元.4.A5.解:(1)设每件衬衫应降价x元,∵商场平均每天要盈利1 200元,∴(40-x)(20+2x)=1 200.整理,得2x2-60x+400=0.解得x1=20,x2=10.因为要扩大销售,在获利相同的情况下,降价越多,销售越快,故每件衬衫应降价20元.(2)设商场平均每天赢利w元.则 w=(20+2x)(40-x),=-2x2+60x+800,=-2(x-15)2+1 250.∴当x=15时,w取最大值,为1 250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1 250元.6.A7.55.8.解:(1)y=[6+2(x-1)]×[95-5(x-1)],整理,得y=-10x2+180x+400(1≤x≤10).(2)由-10x2+180x+400=1 120,化简,得x2-18x+72=0.解得x1=6,x2=12(不合题意,舍去).∴该产品为第6档次的产品.9.解:(1)k1=30,k2=20,b=6 000.(2)当0≤x<600时,W=30x+(-0.01x2-20x+30 000)=-0.01x2+10x+30 000=-0.01(x-500)2+32 500,∵-0.01<0,∴当x=500时,W取最大值为32 500元.当600≤x≤1 000时,W=20x+6 000+(-0.01x2-20x+30 000)=-0.01x2+36 000,∵-0.01<0,∴当600≤x≤1 000时,W随x的增大而减小.∴当x=600时,W取最大值为32 400元.∵32 400<32 500,∴W的最大值为32 500元.(3)由题意,得1 000-x≥100,解得x≤900.又∵x≥700,∴700≤x≤900.∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取最小值为27 900元.10.解:(1)y=300+30(60-x)=-30x+2 100.(2)设每星期的销售利润为W元,依题意,得W=(x-40)(-30x+2 100)=-30x2+3 300x-84 000=-30(x-55)2+6 750.∵-30<0,∴当x=55时,W最大=6 750.答:当每件售价定为55元时,每星期的销售利润最大,最大利润是6 750元.(3)由题意,得-30(x -55)2+6 750=6 480,解得x 1=52,x 2=58.∵抛物线W =-30(x -55)2+6 750的开口向下,∴当52≤x ≤58时,每星期销售利润不低于6 480元.∵在y =-30x +2 100中,y 随x 的增大而减小,∴当x =58时,y 最小=-30×58+2 100=360.答:每星期至少要销售该款童装360件.第3课时 实物抛物线1. C2.y =-13x 2. 345解:如图所示.由题知抛物线的顶点坐标为(0,11),过点B (8,8),设抛物线的解析式为y =ax 2+11,将点B 的坐标(8,8)代入抛物线的解析式,得64a +11=8.解得a =-364, ∴抛物线的解析式为y =-364x 2+11. 6.48.7.解:(1)当y =0时,-112x 2+23x +53=0, 解得x 1=10,x 2=-2(不合题意,舍去). ∴铅球推出的水平距离是10 m.(2)y =-112x 2+23x +53=-112(x 2-8x +16)+43+53=-112(x -4)2+3. 当x =4时,y 取最大值3.∴铅球行进高度不能达到4 m ,最高能达到3 m.8.15s .9.36.10.解:(1)y =-15x 2+85x =-15(x -4)2+165. ∴抛物线y =-15x 2+85x 开口向下,顶点坐标为(4,165),对称轴为直线x =4. (2)令y =0,得-15x 2+85x =0. 解得x 1=0,x 2=8.∴球飞行的最大水平距离是8 m.(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10 m. ∴抛物线的对称轴为直线x =5,顶点为(5,165).设此时对应的抛物线解析式为y =a (x -5)2+165. 又∵点(0,0)在此抛物线上,∴25a +165=0,a =-16125. ∴y =-16125(x -5)2+165, 即y =-16125x 2+3225x. 11.解:(1)由题意,得点B 的坐标为(0,4),点C 的坐标为(3,172), ∴⎩⎪⎨⎪⎧4=c ,172=-16×32+3b +c. 解得⎩⎪⎨⎪⎧b =2,c =4. ∴该抛物线的函数关系式为y =-16x 2+2x +4. ∵y =-16x 2+2x +4=-16(x -6)2+10, ∴拱顶D 到地面OA 的距离为10 m.(2)当x =6+4=10时,y =-16x 2+2x +4=-16×102+2×10+4=223>6, ∴这辆货车能安全通过.(3)当y =8时,-16x 2+2x +4=8,即x 2-12x +24=0,∴x 1=6+23,x 2=6-2 3. ∴两排灯的水平距离最小是6+23-(6-23)=43(m ).。
22.3 实际问题与二次函数一、选择题(共12小题;共60分)1. 某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中画出的曲线是抛物线(单位:米)的一部分,则水喷出的最大高度是A. 米B. 米C. 米D. 米2. 竖直上抛物体离地面的高度与运动时间之间的关系可以近似地用公式表示,其中是物体抛出时离地面的高度,是物体抛出时的速度.某人将一个小球从距地面的高处以的速度竖直向上抛出,小球达到的离地面的最大高度为3. 如图,是等腰直角三角形,,,点是边上一动点,沿的路径移动,过点作于点,设,的面积为,则下列能大致反映与函数关系的图象是A. B.C. D.4. 平时我们在跳大绳时,绳甩到最高处的形状可近似地看作抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为,手距地面均为学生丙、丁分别站在距甲拿绳的手水平距离处.绳子在甩到最高处时刚好通过丙、丁的头顶.已知学生丙的身高是,则学生丁的B.5. 小敏用一根长为的细铁丝围成矩形,则矩形的最大面积是C. D.6. 一同学推铅球,铅球高度关于时间的函数表达式为.若铅球在第秒与第秒时的高度相等,则在时铅球最高.A. 第秒B. 第秒C. 第秒D. 第秒7. 一个长方形的周长是,一边长是,则这个长方形的面积与边长的函数关系可用图象表示为A. B.C. D.8. 如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于轴对称.轴,,最低点在轴上,高,.则右轮廓线所在抛物线的函数表达式为A. B.C. D.9. 某市自来水厂,蓄水池原有水吨,一天中在向水池中注水的同时,蓄水池又向广大用户供水,小时向用户供水吨.当每小时向水池注水吨时,则一天中蓄水池中的水最少为A. 吨B. 吨C. 吨D. 吨10. 图()是一个横断面为抛物线形状的拱桥,拱顶(拱桥洞的最高点)离水面.如图()建立平面直角坐标系,则抛物线的关系式是A. B. C. D.11. 小明乘坐摩天轮转一圈,他离地面的高度(米)与旋转时间(分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如下表:下列选项中,最接近摩天轮转一圈的时间的是A. 分B. 分C. 分D. 分12. 如图,中,,,正方形的顶点,分别在,上,,两点不重合,设的长度为,与正方形重叠部分的面积为,则下列图中能表示与之间的关系的是A. B.C. D.二、填空题(共5小题;共25分)13. 飞行中的炮弹经秒后的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则炮弹在最高处的时间是第秒.14. 某企业今年第一个月新产品的研发资金为万元,以后每月新产品的研发资金与上月相比增长率都是,则该厂今年第三个月新产品的研发资金(元)关于的函数关系式为.15. 公路上行驶的汽车急刹车时,刹车距离与时间的函数关系式,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行才能停下来,最大的滑行距离.16. 如图,在矩形中,,,点以的速度从点向点运动,同时点以的速度从点向点运动,点不能与点重合.设运动开始第秒钟时,五边形的面积为,求出与的函数关系式,并写出自变量的取值范围.17. 如图,要用总长为的铁栏杆,一面靠墙(墙长不限,靠墙部分不用铁栏杆),围成一个矩形的花圃,若设的长为,求矩形的面积与的函数关系式(要求写出自变量的取值范围).三、解答题(共5小题;共65分)18. 如图所示,为了改造小区环境,某小区决定要在一块一边靠墙(墙的最大可使用长度)的空地上建造一个矩形绿化带.除靠墙一边()外,用长为的栅栏围成矩形.设绿化带宽为.(1)求与的函数关系式,并直接写求出的取值范围.(2)绿化带的面积能达到吗?若能,请求出的长度;若不能,请说明理由.(3)当为何值时,满足条件的绿化带面积最大.19. 跳绳时,绳甩到最高处时的形状是抛物线,正在甩绳的甲、乙两名同学拿绳的手间距为米,到地面的距离和均为米,身高为米的小丽站在距点的水平距离为米的点处,绳子甩到最高处时刚好通过她的头顶,以点为原点建立如图所示的平面直角坐标系,则此抛物线的表达式可设为.(1)求该抛物线的表达式;(2)求绳子甩到最高处时的最大高度;(3)如果身高为米的小丽站在之间,且离点的距离为米,绳子甩到最高处时超过她的头顶,请结合图象,求出的取值范围.20. 草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克元,经试销发现,销售量(千克)与销售单价(元)符合一次函数关系,如图是与的函数关系图象.(1)求与的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为元,求的最大值.21. 某商店原来平均每天可销售某种水果千克,每千克可盈利元.为减少库存,经市场调查,如果这种水果每千克降价元,则每天可多售出千克.(1)设每千克水果降价元,平均每天盈利元,试写出关于的函数表达式;(2)若要平均每天盈利元,则每千克应降价多少元?22. 如图,一小球从斜坡点处抛出,球的抛出路线可以用二次函数刻画,斜坡可以用一次函数刻画.(1)请用配方法求二次函数图象的最高点的坐标.(2)小球的落点是,求点的坐标.(3)连接抛物线的最高点与点,得,求的面积.(4)在上方的抛物线上存在一点(与不重合),的面积等于的面积.请直接写出点的坐标.答案第一部分1. A2. C3. B 【解析】过点作于 .是等腰直角三角形,,,当时,如图1,,,;当时,如图2,,,.4. B5. A6. C7. A8. C9. B10. C【解析】设此函数解析式为:,;那么应在此函数解析式上.则,即得,那么.11. C12. B 【解析】当时,,当时,交于,交于,如图,,则,中,,为等腰直角三角形,,,,,.第二部分13.【解析】此炮弹在第秒与第秒时的高度相等,抛物线的对称轴是:,炮弹所在高度最高时:时间是第秒.14.15. ,16.17. ,,,,,.第三部分18. (1).(2)根据题意得,,解得:,当时,,故绿化带的面积不能达到.(3),当时,绿化带面积最大,.19. (1)抛物线经过,两点,解得抛物线的表达式为.(2),,,.最大高度为米.(3)当时,,解得,.由图象可知,当时,.20. (1)设与的函数关系式为,根据题意,得:解得:与的函数解析式为,.(2)由已知得:,,当时,随的增大而增大,,当时,最大,最大值为元.21. (1).(2)令,得,即.解得或(舍去).答:要平均每天盈利元,则每千克应降价元.22. (1)由题意得,,故二次函数图象的最高点的坐标为.(2)联立两解析式可得:解得:或故可得点的坐标为.(3)如图,作轴于点,轴于点.(4).【解析】过作的平行线,交抛物线于点,连接,,则的面积等于的面积.设直线的解析式为,的坐标为,,解得,直线的解析式为.由解得点的坐标为.。
第二十二章二次函数22.3.3实际问题与二次函数(拱桥问题)(练习)精选练习基础篇一、单选题(共10小题)1.如图,图中是抛物线形拱桥,当拱顶离水面2m 时水面宽4m .水面下降1m ,水面宽度为()A .mB .mC mD .m2.(2019·山西中考真题)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-3.如图是抛物线形拱桥的剖面图,拱底宽12m ,拱高8m ,设计警戒水位为6m ,当拱桥内水位达到警戒水位时,拱桥内的水面宽度是()A .3mB .6mC .3 mD .6 m4.有一拱桥洞呈抛物线形,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为()A .y = x 2+ xB .y =- x 2+58xC .y =- x 2- xD .y =- x 2+ x +165.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加()A .1mB .2mC .3mD .6m6.(2018·江苏省扬州市宝应县射阳湖镇天平初级中学初三月考)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为2125y x =-,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为()A .﹣20mB .﹣10mC .10mD .20m7.(2015·浙江中考真题)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x ﹣80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴,若OA=10米,则桥面离水面的高度AC 为()A .16米B .米C .16米D .米8.图(1)是一个横断面为抛物线形状的拱桥,当水面在图(1)位置时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是()A .y=﹣2x 2B .y=2x 2C .y=﹣0.5x 2D .y=0.5x 29.如图所示的是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降2m ,则水面宽度增加()A .()4mB .C .()4m -D .4m10.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A .2.76米B .6.76米、C .6米D .7米提升篇二、填空题(共6小题)11.如图,一个横断面为抛物线形的拱桥,当水面宽4m 时,拱顶离水面2m .以桥孔的最高点为原点,过原点的水平线为x 轴,建立平面直角坐标系.当水面下降1m 时,此时水面的宽度增加了_____m (结果保留根号).12.一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y =-2116x ,当水面离桥拱顶的高度OC 是4m 时,水面的宽度AB 为______m .13.如图是一个横断面为抛物线形状的拱桥,当水面宽 米时,拱顶(拱桥洞的最高点)离水面 ,水面上升 时,水面的宽度为________.14.(2019·济南市历城区初级实验中学初三月考)在如图所示的平面直角坐标系中,桥孔抛物线对应的二次函数关系式是 힘᧕ ,桥下的水面宽 为 .当水位上涨 时,水面宽 为________ (结果保留根号).15.拱桥截面是一条抛物线,如图所示,现测得水面宽AB=16m,拱顶O到水面的距离为8m,在图中的直角坐标系内,拱桥所在抛物线的解析式是________16.(2019·山东省五莲县第二中学初三期末)如图,某抛物线型桥拱的最大高度为16米,跨度为40米,图示为它在坐标系中的示意图,则它对应的解析式为:_________________。
22.3实际问题与二次函数一、单选题1.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( ) A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )] 2.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 3.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加( )A .1 mB .2 mC .3 mD .6 m 4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A .1个B .2个C .3个D .4 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m,那么每条行道宽是()A.不大于4m B.恰好4m C.不小于4m D.大于4m,小于8m6.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m2A.45B.83C.4D.567.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43 (0≤x≤30).y值越大,表示接受能力越强.如果学生的接受能力逐步增强,则x的取值范围是()A.0≤x≤13B.13≤x≤26C.0≤x≤26D.13≤x≤30 8.如图1,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm29.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.140元B.150元C.160元D.180元10.如图所示,已知ABC 中,8BC BC =,上的高4h D =,为BC 上一点,//EF BC ,交AB 于点E ,交AC 于点(F EF 不过A 、)B ,设E 到BC 的距离为x ,则DEF 的面积y 关于x 的函数的图象大致为( ).A .B .C .D .二、填空题11.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.12.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m ,两侧距底面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个隧道入口的最大高度为_________m .13.数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x的式子表示).14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x元,可列方程为_________.15.某体育公园的圆形喷水池的水柱如图△所示,如果曲线APB表示落点B离点O最远的一条水流(如图△),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.三、解答题16.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.17.一条隧道的截面如图所示,它的上半部分是一个半圆,下半部分是一个矩形,矩形的一边长为2.5m.(1)求隧道截面的面积S()2m关于半圆半径r()m的函数解析式;(2)当半圆半径为2m时,求截面的面积.(π取3.14,结果精确到0.1)18.在足球比赛中,当守门员远离球门时,进攻队员常常会使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30m的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14m时,足球达到最大高度323m.若以球门底部为坐标原点建立平面直角坐标系,球门PQ的高度为2.44m.(1)通过计算,说明球是否会进球门.(2)如果守门员站在距离球门2m远处,而守门员跳起后最多能摸到2.75m高处,他能否在空中截住这次吊射?19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案1.C2.C3.B4.D5.A6.B7.A8.B9.C10.C11.1.212.64713.2400x + 2252024000x x -+-14.(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭15.9216.正确. 22003x y =或236200y x =-+ 17.(1)21π52S r r =+;(2)当2r 时,2π1016.3S =+≈()2m . 18.(1)球不会进球门;(2)守门员不能在空中截住这次吊射. 19.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m .。
人教版九年级数学22.3 实际问题与二次函数课后训练一、选择题1. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD的总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18 3 m2 C.24 3 m2 D.45 32m22. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m3. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C.600平方米D.2400平方米4. 如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B时,两点同时停止运动),在运动过程中,四边形P ABQ的面积的最小值为()A.19 cm2B.16 cm2C.15 cm2D.12 cm25. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同6. 一种包装盒的设计方法如图所示,四边形ABCD是边长为80 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20 D.157. 用长为12 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,垂足分别为A,B,∠C=∠D=∠E.设CD=DE=x m,五边形ABCDE的面积为S m2,则S的最大值为()A.12 3 B.12 C.24 3 D.没有最大值8. 一位篮球运动员在距离篮圈中心水平距离4 m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m,在如图(示意图)所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=-15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m二、填空题9. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,则可卖出(30-x)件.若要使销售利润最大,则每件的售价应为________元.10. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=________m时,矩形ABCD的面积最大.11. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.12. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.13. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)14. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.15. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题16. 超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元/件,每天销售量会减少1件.设销售单价增加x元/件,每天售出y 件.(1)请写出y与x之间的函数解析式(不用写x的取值范围);(2)当x为多少时,超市每天销售这种玩具可获得利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?17. 如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s 的速度向点D移动,当其中一点到达终点时,另一点也随之停止移动.(1)经过几秒,P,Q两点之间的距离是10 cm?(2)P,Q两点之间的距离何时最小?18. 如图,排球运动员站在O处练习发球,将球从点O正上方2米的点A处发出,把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足解析式y=a(x -6)2+h.已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x之间的函数解析式;(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,则h的取值范围是多少?人教版 九年级数学 22.3 实际问题与二次函数课后训练-答案一、选择题1. 【答案】C [解析] 如图,过点C 作CE ⊥AB 于点E , 则四边形ADCE 为矩形,∠DCE =∠CEB =90°, 则∠BCE =∠BCD -∠DCE =30°. 设CD =AE =x m ,则BC =(12-x)m.在Rt △CBE 中,∵∠CEB =90°,∠BCE =30°, ∴BE =12BC =(6-12x)m , ∴AD =CE =BC 2-BE 2=(6 3-32x)m ,AB =AE +BE =x +6-12x =(12x +6)m ,∴梯形ABCD 的面积=12(CD +AB)·CE =12(x +12x +6)·(6 3-32x) =-3 38x 2+3 3x +18 3 =-3 38(x -4)2+24 3.∴当x =4时,S 最大=24 3.即CD 的长为4 m 时,梯形储料场ABCD 的面积最大为24 3 m 2.故选C.2. 【答案】C[解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】B[解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米,则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.4. 【答案】C[解析] 在Rt △ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,∴AC =AB 2-BC 2=6 cm.设运动时间为t s(0<t≤4),则PC =(6-t)cm ,CQ =2t cm ,∴S 四边形PABQ =S △ABC -S △CPQ =12AC·BC -12PC·CQ =12×6×8-12(6-t)×2t =t 2-6t +24=(t -3)2+15,∴当t =3时,四边形PABQ 的面积取得最小值,最小值为15 cm 2. 故选C.5. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确. 由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.6. 【答案】C[解析] 如图,设BE =CF =x cm ,则EF =(80-2x )cm.∵△EFM 和△CFN 都是等腰直角三角形,∴MF =22EF =(40 2-2x )cm ,FN =2CF =2x cm ,∴包装盒的侧面积=4MF ·FN =4·2x (40 2-2x )=-8(x -20)2+3200,故当x=20时,包装盒的侧面积最大.7. 【答案】A[解析] 连接EC,过点D作DF⊥EC,垂足为F.∵∠DCB=∠CDE=∠DEA,∠EAB=∠CBA=90°,∴∠DCB=∠CDE=∠DEA=120°.∵DE=CD,∴∠DEC=∠DCE=30°,∴∠CEA=∠ECB=90°,∴四边形EABC为矩形.∵DE=x m,∴AE=(6-x)m,DF=12x m,EC=3x m,∴S=12·3x·12x+(6-x)·3x=-3 34x2+6 3x(0<x<6),故当x=4时,S最大=123.8. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a=-15.∴y=-15x2+3.5.可见选项A正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B错误.由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C错误.将x=-2.5代入抛物线的解析式,得y=-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m可见选项D错误.故选A.二、填空题9. 【答案】25[解析] 设利润为w元,则w=(x-20)(30-x)=-(x-25)2+25. ∵20≤x≤30,∴当x =25时,二次函数有最大值25.10. 【答案】150[解析] 设AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900-3x)m.设矩形ABCD 的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <300).由于二次项系数小于0,所以y 有最大值,且当x =-b2a =-4502×(-32)=150时,函数y 取得最大值.故当AB =150 m 矩形ABCD 的面积最大.11. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.12. 【答案】y =-19(x +6)2+413. 【答案】①②③[解析] 由题意知,当70≤x≤150时,y =-2x +400,∵-2<0,∴y 随x 的增大而减小,∴当x =150时,y 取得最小值,最小值为100,故①正确; 当x =70时,y 取得最大值,最大值为260,故②正确; 设销售这种文化衫的月利润为W 元,则W =(x -60)(-2x +400)=-2(x -130)2+9800, ∵70≤x≤150,∴当x =70时,W 取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x =130时,W 取得最大值,最大值为9800,故④错误. 故答案为①②③.14. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.15. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB =36 m ,∴AH =BH =18 m. 由题可知:OH =7 m ,CH =9 m , ∴OC =9+7=16(m).设该抛物线的解析式为y =ax 2+k. ∵抛物线的顶点为C(0,16), ∴抛物线的解析式为y =ax 2+16.把(18,7)代入解析式,得7=18×18a +16, ∴7=324a +16, ∴a =-136, ∴y =-136x 2+16.当y =0时,0=-136x 2+16, ∴-136x 2=-16,解得x =±24, ∴E(24,0),D(-24,0), ∴OE =OD =24 m ,∴DE =OD +OE =24+24=48(m).三、解答题16. 【答案】解:(1)根据题意,得y =-12x +50. (2)根据题意,得(40+x)(-12x +50)=2250, 解得x 1=50,x 2=10.∵每件利润不能超过60元,∴x=50不合题意,舍去,∴x=10.答:当x为10时,超市每天销售这种玩具可获得利润2250元.(3)根据题意,得w=(40+x)(-12x+50)=-12x2+30x+2000=-12(x-30)2+2450.∵a=-12<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w最大=2400.答:当x为20时w最大,最大值是2400.17. 【答案】解:(1)设经过x s,P,Q两点之间的距离是10 cm,则AP=3x,CQ=2x,过点Q作QM⊥AB于点M,则PM=|16-2x-3x|=|16-5x|.根据勾股定理,得PM2+QM2=PQ2,即(16-5x)2+62=102,解得x1=1.6,x2=4.8.答:经过1.6 s或4.8 s,P,Q两点之间的距离是10 cm. (2)∵PQ=(16-5x)2+62,∴当16-5x=0,即x=165时,PQ最小.故当点P,Q出发165s时,PQ最小.18. 【答案】解:(1)当h=2.6时,y=a(x-6)2+2.6.因为点A(0,2)在抛物线上,所以2=a(0-6)2+2.6,解得a=-1 60,所以y与x之间的函数解析式为y=-160(x-6)2+2.6.(2)球能越过球网且会出界.理由:当x=9时,y=-160(9-6)2+2.6=2.45>2.43,所以球能越过球网;当x=18时,y=-160(18-6)2+2.6=-2.4+2.6=0.2>0,所以球会出界.(3)把x=0,y=2代入y=a(x-6)2+h,得a=2-h 36,所以y=2-h36(x-6)2+h.当x=9时,y=2-h36(9-6)2+h=2+3h4>2.43.①当x=18时,y=2-h36(18-6)2+h=8-3h≤0.②由①②解得h≥8 3.。
人教版九年级上册数学22.3实际问题与二次函数--拱桥问题训练1.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.2.如图,一隧道的横截面是由一段抛物线及矩形的三边围成的,隧道宽BC=10米,矩形部分高AB=3米,抛物线型的最高点E离地面OE=6米,按如图建立一个以BC 为x轴,OE为y轴的直角坐标系.(1)求抛物线的解析式;(2)如果该隧道内设有双车道,现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能顺利通过隧道吗?3.如图,隧道的截面由抛物线和长方形构成.长方形的长是8m ,宽是2m ,抛物线可以用2144y x =-+表示.()1一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?()2如果该隧道内设双行道,那么这辆货运卡车是否可以通过?4.建立适当的坐标系,运用函数知识解决下面的问题:如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E 到桥下水面的距离EF 为3米时,水面宽AB 为6米,一场大雨过后,河水上涨,水面宽度变为CD ,且CD=26米,此时水位上升了多少米?5.如图所示,有一座抛物线形拱桥,桥下面在正常水位时,AB宽20 m,水位上升到警戒线CD时,CD到拱桥顶E的距离仅为1 m,这时水面宽度为10 m.(1)在如图所示的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.3 m的速度上升,从正常水位开始,持续多少小时到达警戒线?6.如图所示的是水面一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下水面宽度为20米,拱顶距离正常水面4米,建立平面直角坐标系如图所示,求抛物线的解析式.7.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12 m,宽OB为4 m,隧道顶端D到路面的距离为10 m,建立如图所示的直角坐标系.(1)求该抛物线的表达式;(2)一辆货车载有一个长方体集装箱,集装箱最高处与地面距离为6 m,宽为4 m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排离地面高度相等的灯,如果灯离地面的高度不超过8.5 m,那么这两排灯的水平距离最小是多少米?8.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.9.某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:①抛物线型,②圆弧型. 已知这座桥的跨度L=32米,拱高h=8米.(1)如果设计成抛物线型,以AB所在直线为x轴, AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;(2)如果设计成圆弧型,求该圆弧所在圆的半径;(3)在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.10.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)如图建立平面直角坐标系,使抛物线对称轴为y轴,求该抛物线的解析式;(2)若需要开一个截面为矩形的门(如图所示),已知门的高度为1.60米,那么门的宽度最大是多少米(不考虑材料厚度)?(结果保留根号)11.如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,把拱桥的截面图放在平面直角坐标系中.(1)求抛物线对应的函数解析式,并写出自变量的取值范围;(2)求两盏景观灯之间的水平距离.12.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40)且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?13.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形脚手架CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需测算“脚手架”三根钢杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.14.有一个抛物线形的桥洞,桥洞离水面的最大高度BM为3米,跨度OA为6米,以OA所在直线为x轴,O为原点建立直角坐标系(如图所示).(1)请你直接写出O、A、M三点的坐标;(2)一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)?15.一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ(居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG,使H、G两点在抛物线上,A、B两点在地面DE上,设GH长为n米,“脚手架”三根木杆AG、GH、HB的长度之和为L,当n为何值时L最大,最大值为多少?16.某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB=4 m,顶部C离地面高为4.4 m.(1)以AB所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,求该抛物线对应的函数表达式;(2)现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8 m,装货宽度为2.4 m,请通过计算,判断这辆汽车能否顺利通过大门.17.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,求涵洞所在抛物线的函数表达式.18.如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB =6m,建立如图所示的坐标系.(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?参考答案1.解:(1)根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(10,0)、(0,6). 设抛物线的解析式为y =ax2+c ,将B 、C 的坐标代入y =ax2+c ,得60100c a c ⎧⎨⎩=,=+ 解得a =350-,c =6. 所以抛物线的表达式是y =350-x2+6. (2)可设()5F F y ,,于是2356 4.550F y -⨯=+=, 从而支柱EF 的长度是10-4.5=5.5米.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是()70,. 过G 点作GH 垂直AB 交抛物线于H ,则2376 3.06350H y -⨯==+>. 根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.2.(1)设抛物线的解析式为y =ax 2+c .∵点E (0,6),点A (﹣5,3)在此抛物线上,∴2653c a c =⎧⎨⨯-+=⎩(),得:3256a c ⎧=-⎪⎨⎪=⎩,∴此抛物线的解析式为y 2325x =-+6; (2)当x =±3时,y 23325=-⨯±+()6=4.92>4.5,即这辆货运卡车能顺利通过隧道. 3. 解:()1把422y =-=代入2144y x =-+得: 21244x =-+, 解得22x =±,∴此时可通过物体的宽度为()2222422--=>,∴能通过;()2∵一辆货运卡车高4m ,隧道的截面由抛物线和长方形构成.长方形的长是8m ,宽是2m ,∴货车上面有2m ,在矩形上面,当2y =时,21244x =-+, 解得22x =±,∵222>,∴能通过.4.以点E 为原点、EF 所在直线为y 轴,垂直EF 的直线为x 轴建立平面直角坐标系,根据题意知E (0,0)、A (﹣3,﹣3)、B (3,﹣3),设y=kx 2(k <0),将点(3,﹣3)代入,得:k=﹣13, ∴y=﹣13x 2, 将6代入,得:y=﹣2,∴上升了1米.5.解:(1)设所求抛物线的解析式为y =ax 2.∵CD =10 m ,CD 到拱桥顶E 的距离仅为1 m ,∴C (-5,-1).把点C 的坐标代入y =ax 2,得a =-,故抛物线的解析式为y =-x 2.(2)∵AB 宽20 m ,∴可设A (-10,b).把点A 的坐标代入抛物线的解析式y =-x 2中,解得b =-4,∴点A 的坐标为(-10,-4).设AB 与y 轴交于点F ,则F (0,-4),∴EF =3 m.∵水位以每小时0.3 m 的速度上升,∴3÷0.3=10(时).答:从正常水位开始,持续10小时到达警戒线.6.试题解析:设抛物线解析式为2y ax =,把点()104B -,代入解析式得:2410a -=⨯, 解得:125a =-, ∴抛物线的解析式为2125y x =-. 7.试题分析:(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令x=10,求出y 与6作比较;(3)求出y=8.5时x 的值即可得.试题解析:(1)根据题意,该抛物线的顶点坐标为(6,10),设抛物线解析式为:y=()26a x -+10,将点B (0,4)代入,得:36a+10=4,解得:a=16-, 故该抛物线解析式为y=()2166x --+10; (2)根据题意,当x=6+4=10时,y=16-×16+10=223>6, ∴这辆货车能安全通过.(3)当y=8.5时,有:()2166x --+10=8.5, 解得:1x =3,2x =9,∴2x ﹣1x =6,答:两排灯的水平距离最小是6米.考点:二次函数的应用.8.:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m .方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 9.解析:(1)抛物线的解析式为y=ax 2+c ,又∵抛物线经过点C (0,8)和点B (16,0),∴0=256a+8,a=-132. ∴抛物线的解析式为y=-132x 2+8(-16≤x≤16); (2)设弧AB 所在的圆心为O ,C 为弧AB 的中点,CD ⊥AB 于D ,延长CD 经过O 点,设⊙O 的半径为R ,在Rt △OBD 中,OB 2=OD 2+DB 2∴R 2=(R-8)2+162,解得R=20;(3)①在抛物线型中设点F (x ,y )在抛物线上,x=OE=16-4=12,EF=y=3.5米;②在圆弧型中设点F′在弧AB 上,作F′E′⊥AB 于E′,OH ⊥F′E′于H ,则OH=D E′=16-4=12,O F′=R=20,在Rt △OH F′中,H F′= 222012-,∵HE′=OD=OC -CD=20-8=12,E′F′=HF′-HE′=16-12=4(米)∴在离桥的一端4米处,抛物线型桥墩高3.5米; 圆弧型桥墩高4米.10.解:(1)由图可设抛物线的解析式为:y=ax 2+2,由图知抛物线与x 轴正半轴的交点为(2,0),则:a×22+2=0, ∴a=﹣,∴抛物线的解析式为y=﹣x 2+2;(2)当y=1.60时,知1.6=﹣x 2+2,解得:x=,所以门的宽度最大为2×=米. 考点:二次函数的应用.11.(1)抛物线的顶点坐标为(5,5),与y 轴交点坐标是(0,1),设抛物线的解析式是y =a(x ﹣5)2+5,把(0,1)代入y =a (x ﹣5)2+5,得:a =﹣425,∴y =﹣425(x ﹣5)2+5(0≤x ≤10),即2481255y x x =-++(0≤x ≤10); (2)由已知得两景观灯的纵坐标都是4,∴4=﹣425(x ﹣5)2+5,∴425(x ﹣5)2=1,∴x 1=152,x 2=52,∴两景观灯间的距离为 152﹣52=5米. 12.二次函数的应用,待定系数法,曲线上点的坐标与方程的关系.(1)根据抛物线特点设出二次函数解析式,把B 坐标代入即可求解.(2)水面到顶点C 的距离不大于5米时,即水面与河底ED 的距离h 至多为6,把6代入所给二次函数关系式,求得t 的值,相减即可得到禁止船只通行的时间.13.(1)∵M (12,0),P (6,6).∴设这条抛物线的函数解析式为y=a(x -6)2+6,∵把(0,0)代入解得a=-16, ∴这条抛物线的函数解析式为y=-16(x -6)2+6, 即y=-16x 2+2x (0≤x≤12); (2)当x=6-0.5-2.5=3(或x=6+0.5+2.5=9)时,y=4.5<5∴不能行驶宽2.5米、高5米的特种车辆;(3)设点A的坐标为(m,-16m2+2m),∴OB=m,AB=DC=-16m2+2m根据抛物线的轴对称可得OB=CM=m,∴BC=12-2m,即AD=12-2m∴L=AB+AD+DC=-13m2+2m+12=-13(m-3)2+15∴当m=3,即OB=3米时,三根木杆长度之和L的最大值为15米.14.解:(1)0(0,0),A(6,0),M(3,3).(2)设抛物线的关系式为y=a(x-3)2+3,因为抛物线过点(0,0),所以0=a(0-3)2+3,解得a=,所以,要使木板堆放最高,依据题意,得B点应是木板宽CD的中点,把x=2代入,得,所以这些木板最高可堆放米.15.解:(1)由题意得M(0,4),F(4,0)可设抛物线的解析式为y=ax2+4,将F(4,0)代入y=ax2+4中,得a=-14,∴抛物线的解析式为y=-14x2+4;(2)当x=3,y=74, 74+2-12=3.25>3.2,∴能安全通过; (3)由GH=n ,可设H (24216n n -+,), ∴GH+GA+BH=n+(2416n -+)×2+2×2=21128n n -++, ∴L=21128n n -++, ∵a <0,抛物线开口向下,∴当n=-2b a=4时,L 有最大值,最大值为14. 16.解:(1)如图,过AB 的中点作AB 的垂直平分线,建立平面直角坐标系.点A ,B ,C 的坐标分别为 A(-2,0),B(2,0),C(0,4.4).设抛物线的表达式为y =a(x -2)(x +2).将点C(0,4.4)代入得a(0-2)(0+2)=4.4,解得a =-1.1,∴y =-1.1(x -2)(x +2)=-1.1x 2+4.4.故此抛物线的表达式为y =-1.1x 2+4.4.(2)∵货物顶点距地面2.8 m ,装货宽度为2.4,∴只要判断点(-1.2,2.8)或点(1.2,2.8)与抛物线的位置关系即可.将x =1.2代入抛物线,得 y =2.816>2.8,∴点(-1.2,2.8)和点(1.2,2.8)都在抛物线内.∴这辆汽车能够通过大门.17.解:设此抛物线所对应的函数表达式为:2y ax =,∵ 1.6AB m =,涵洞顶点O 到水面的距离为2.4m ,∴A 点坐标应该是()0.8, 2.4--,把A 点代入得:22.4(0.8)a -=-⨯, 解得:154a =-,故涵洞所在抛物线的函数表达式2154y x =-. 18. (1)设抛物线形桥洞的函数解析式为y=ax 2+c , 把A (3,0),E (0,3)代入得:解得: ∴由题意得:点C 与D 的纵坐标为0.5, ∴解得:∴(米), 则水面的宽度CD 为米;(2)当x =1时,∵ ∴这艘游船能从桥洞下通过.。
人教版九年级数学试题第2课时 二次函数y=ax2+bx+c (a≠0)中的不等关系●基础练习1.已知二次函数y=ax 2-5x+c 的图象如图所示,请根据图象回答下列问题: (1)a=_______,c=______.(2)函数图象的对称轴是_________,顶点坐标P__________. (3)该函数有最______值,当x=______时,y 最值=________. (4)当x_____时,y 随x 的增大而减小. 当x_____时,y 随x 的增大而增大. (5)抛物线与x 轴交点坐标A_______,B________; 与y 轴交点C 的坐标为_______;ABC S ∆=_________,ABP S ∆=________.(6)当y>0时,x 的取值范围是_________;当y<0时,x 的取值范围是_________. (7)方程ax 2-5x+c=0中△的符号为________.方程ax 2-5x+c=0的两根分别为_____,____. (8)当x=6时,y______0;当x=-2时,y______0. 2.已知下表:x 0 1 2 ax 21 ax 2+bx+c33(1)求a 、b 、c 的值,并在表内空格处填入正确的数; (2)请你根据上面的结果判断:①是否存在实数x,使二次三项式ax 2+bx+c 的值为0?若存在,求出这个实数值;若不存在,请说明理由.②画出函数y=ax 2+bx+c 的图象示意图,由图象确定,当x 取什么实数时,ax 2+ bx+c>0?14B AxO y3.请画出适当的函数图象,求方程x 2=12x+3的解.4.若二次函数y=-12x 2+bx+c 的图象与x 轴相交于A(-5,0),B(-1,0). (1)求这个二次函数的关系式;(2)如果要通过适当的平移,使得这个函数的图象与x 轴只有一个交点,那么应该怎样平移?向右还是向左?或者是向上还是向下?应该平移向个单位?5.已知某型汽车在干燥的路面上, 汽车停止行驶所需的刹车距离与刹车时的车速之间有下表所示的对应关系.(1)请你以汽车刹车时的车速V 为自变量,刹车距离s 为函数, 在图所示的坐标系中描点连线,画出函数的图象;(2)观察所画的函数的图象,你发现了什么?(3)若把这个函数的图象看成是一条抛物线,请根据表中所给的数据,选择三对,求出它的函数关系式;(4)用你留下的两对数据,验证一个你所得到的结论是否正确.速度V(km/h)4864 8096112…刹车距离s(m) 22.5 3652.5 72 94.5 …5010015015010050s(m)v(km/h)O●能力提升6.如图所示,矩形ABCD 的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB 在x 轴上,点C 在直线y=x-2上.(1)求矩形各顶点坐标;(2)若直线y=x-2与y 轴交于点E,抛物线过E 、A 、B 三点,求抛物线的关系式; (3)判断上述抛物线的顶点是否落在矩形ABCD 内部,并说明理由.C BAxO D y E7.已知一条抛物线经过A(0,3),B(4,6)两点,对称轴是x=53. (1)求这条抛物线的关系式.(2)证明:这条抛物线与x 轴的两个交点中,必存在点C,使得对x 轴上任意点D 都有AC+BC≤AD+BD.8.如图所示,一位篮球运动员在离篮圈水平距离为4m 处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m 时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m 处出手.问:球出手时,他跳离地面多高?9.某工厂生产A 产品x 吨所需费用为P 元,而卖出x 吨这种产品的售价为每吨Q 元, 已知P=110x 2+5x+1000,Q=-30x+45. (1)该厂生产并售出x 吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式; (2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元? 这时每吨的价格又是多少元?10.已知抛物线y=2x 2-kx-1与x 轴两交点的横坐标,一个大于2,另一个小于2,试求k 的取值范围.3.05m4m2.5mxOy●综合探究11.已知抛物线L;y=ax 2+bx+c(其中a 、b 、c 都不等于0), 它的顶点P 的坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭,与y 轴的交点是M(0,c)我们称以M 为顶点,对称轴是y 轴且过点P 的抛物线为抛物线L 的伴随抛物线,直线PM 为L 的伴随直线.(1)请直接写出抛物线y=2x 2-4x+1的伴随抛物线和伴随直线的关系式: 伴随抛物线的关系式_________________ 伴随直线的关系式___________________(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x 2-3和y=-x-3, 则这条抛物线的关系是___________:(3)求抛物线L:y=ax 2+bx+c(其中a 、b 、c 都不等于0) 的伴随抛物线和伴随直线的关系式;(4)若抛物线L 与x 轴交于A(x 1,0),B(x 2,0)两点x 2>x 1>0,它的伴随抛物线与x 轴交于C,D 两点,且AB=CD,请求出a 、b 、c 应满足的条件.答案:1.(1)a=1;c=4 (2)直线x=52,59,24⎛⎫- ⎪⎝⎭ (3)小; 52;94- (4)55;22≤≥(5)(1,0);(4,0);(0,4); 6; 278; (6)x<1或x>4;1<x<4 (7)正号;x1=1;x2=4 (8)>;>2.(1)由表知,当x=0时,ax 2+bx+c=3;当x=1时,ax 2=1;当x=2时,ax 2+bx+c=3.∴31423c a a b c =⎧⎪=⎨⎪++=⎩,∴123a b c =⎧⎪=-⎨⎪=⎩, ∴a=1,b=-2,c=3,空格内分别应填入0,4,2. (2)①在x 2-2x+3=0中,∵△=(-2)2-4×1×3=-8<0, ∴不存在实数x 能使ax 2+bx+c=0.②函数y=x 2-2x+3的图象示意图如答图所示, 观察图象得出,无论x 取什么实数总有ax 2+bx+c>0. 3.:在同一坐标系中如答图所示,画出函数y=x 2的图象,画出函数y=12x+3 的图象, 这两个图象的交点为A,B,交点A,B 的横坐标32-和2就是方程x 2=12x+3的解. 4.:(1)∵y=12-x 2+bx+c,把A(-5,0),B(-1,0)代入上式,得∴()221(5)5021(1)(1)02b c b c ⎧⎛⎫-⨯-+⨯-+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⨯-+⨯-+= ⎪⎪⎝⎭⎩,352a b =-⎧⎪⎨=-⎪⎩,∴y=215322x x ---. (2)∵y=215322x x ---=21(3)22x -++∴顶点坐标为(-3,2),13122x=1xy O 632BAxyO∴欲使函数的图象与x 轴只有一个交点,应向下平移2个单位. 5.:(1)函数的图象如答图所示.(2)图象可看成是一条抛物线这个函数可看作二次函数. (3)设所求函数关系式为:s=av 2+bv+c,把v=48,s=22.5;v=64,s=36;v=96,s=72分别代入s=av 2+bv+c,得222484822.5646436969672a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩, 解得35123160a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩.∴23351216s v v =+ (4)当v=80时,223333808052.55121651216v v +=⨯+⨯= ∵s=52.5, ∴23351216s v v =+当v=112时, 22333311211294.55121651216v v +=⨯+⨯=∵s=94.5,∴23351216s v v =+经检验,所得结论是正确的.6.:(1)如答图所示.∵y=x-2,AD=BC=2,设C 点坐标为(m,2), 把C(m,2)代入y=x-2,2=m-2.∴m=4.∴C(4,2),∴OB=4,AB=3.∴OA=4-3=1, ∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x-2,∴令x=0,得y=-2,∴E(0,-2).设经过E(0,-2),A(1,0),B(4,0) 三点的抛物线关系式为y=ax 2+bx+c,∴201640c a b c a b c =-⎧⎪++=⎨⎪++=⎩, 解得12522a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩∴y=215222x x -+-. (3)抛物线顶点在矩形ABCD 内部. ∵y=215222x x -+-, ∴顶点为59,28⎛⎫ ⎪⎝⎭. ∵5142<<, ∴顶点59,28⎛⎫⎪⎝⎭在矩形ABCD 内部. 7.(1)解:设所求抛物线的关系式为y=ax 2+bx+c, ∵A(0,3),B(4,6),对称轴是直线x=53. ∴31646523c a b c b a ⎧⎪=⎪++=⎨⎪⎪-=⎩, 解得981543a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴y=2915384x x -+. (2)证明:令y=0,得2915384x x -+=0, ∴ 124,23x x ==∵A(0,3),取A 点关于x 轴的对称点E,∴E(0,-3).设直线BE 的关系式为y=kx-3,把B(4,6)代入上式,得6=4k-3,∴k=94,∴y=94x-3 . 由 94x-3=0,得x=43.故C 为4,03⎛⎫⎪⎝⎭,C 点与抛物线在x 轴上的一个交点重合,在x 轴上任取一点D,在△BED 中,BE< BD+DE. 又∵BE=EC+BC,EC=AC,ED=AD ,∴AC+BC<A D+BD. 若D 与C 重合,则AC+BC=AD+BD. ∴AC+BC≤AD+BD. 8:(1)图中各点字母表示如答图所示.∵OA=2.5,AB=4,∴OB=4-2.5=1.5. ∴点D 坐标为(1.5,3.05). ∵抛物线顶点坐标(0,3.5),3.05my D∴设所求抛物线的关系式为y=a x 2+3.5,把D(1.5, 3.05)代入上式,得3.05=a×1.52+3.5, ∴a=-0.2,∴y=-0.2x 2+3.5(2)∵OA=2.5,∴设C 点坐标为(2.5,m),∴把C(2.5,m)代入y=-0.2x 2+3.5, 得m=- 0.2×2.52+3.5=2.25.∴该运动员跳离地面高度h=m-(1.8+0.25)=2.25-(1.8+0.25)=0.2(m).9:(1)∵P=110x 2+5x+1000,Q=-30x+45. ∴W=Qx-P=(-30x +45)-(110x 2+5x+1000)= 224010015x x -+-.(2)∵W=224010015x x -+-=-215(x-150)2+2000.∵-215<0,∴W 有最大值.当x=150吨时,利润最多,最大利润2000元. 当x=150吨,Q=-30x+45=40(元). 10:∵y=2x 2-kx-1,∴△=(-k)2-4×2×(-1)=k 2+8>0,∴无论k 为何实数, 抛物线y=2x 2-kx-1与x 轴恒有两个交点. 设y=2x 2-kx-1与x 轴两交点的横坐标分别为x 1,x 2,且规定x 1<2,x 2> 2, ∴x 1-2<0,x 2-2>0.∴(x 1-2)(x 2-2)<0,∴x 1x 2-2(x 1+x 2)+4<0.∵x 1,x 2亦是方程2x 2-kx-1=0的两个根,∴x 1+x 2=2k ,x 1·x 2=-12, ∴124022k --⨯+<,∴k>72.∴k 的取值范围为k>72.法二:∵抛物线y=2x 2-kx-1与x 轴两交点横坐标一个大于2,另一个小于2,∴此函数的图象大致位置如答图所示. 由图象知:当x=2时,y<0. 即y=2×22-2k-1<0,∴k>72.∴k 的取值范围为k>72. x 2x 12xyO11.(1)y=-2x 2+1,y=-2x+1.(2)y=x 2-2x-3 (3)∵伴随抛物线的顶点是(0,c),∴设它的解析式为y=m(x-0)2+c(m≠0). ∴设抛物线过P 24,24b ac b a a ⎛⎫-- ⎪⎝⎭, ∴22442ac b b m c a a -⎛⎫=-+ ⎪⎝⎭ 解得m=-a,∴伴随抛物线关系式为y=-ax 2+c.设伴随直线关系式为y=kx+c(k≠0). ∵P 24,24b ac b a a ⎛⎫-- ⎪⎝⎭在此直线上,∴2442ac b b k c a a -⎛⎫=-+ ⎪⎝⎭, ∴k=2b . ∴伴随直线关系式为y=2b x+c (4)∵抛物线L 与x 轴有两交点,∴△1=b 2-4ac>0,∴b 2<4ac.∵x 2>x 1>0,∴x 1+ x 2= -b a >0,x 1x 2=c a>0,∴ab<0,ac>0. 对于伴随抛物线y=-ax 2+c,有△2=02-(-4ac)=4ac>0.由-ax 2+c=0,得x=c a±. ∴,0,,0c c C D a a ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴CD=2c a . 又AB=x 2-x 1=22221212124()()44b c b ac x x x x x x a a a -⎛⎫-=+-=--⋅= ⎪⎝⎭. 由AB=CD ,得 24b ac a-=2c a , 整理得b 2=8ac,综合b 2>4ac,ab<0,ac>0,b 2=8ac,得a,b,c 满足的条件为b 2=8ac 且ab<0,(或b 2=8ac 且bc<0). 习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。
人教版九年级上册数学22.3实际问题与二次函数——拱桥问题同步训练一、单选题1.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为20m ,此时水面到桥拱的距离是16m ,则抛物线的函数关系式为( )A .2254y x =B .2254y x =C .2425y x =-D .2425y x = 2.如图,某拱形门建筑的形状时抛物线,拱形门地面上两点的跨度为192米,高度也为192米,若取拱形门地面上两点的连线作x 轴,可用函数2y ax bx c =++表示,则a 的值为( )A .1192B .148C .1192D .148- 3.如图所示,一座抛物线形的拱桥在正常水位时,水面AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .B .10米C .米D .12米 4.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是( )A .12米B .13米C .14米D .15米5.如图,有一抛物线形拱桥,当拱顶离水面2m 时,水面宽4m ,当水面宽增加()4m 时,则水面应下降的高度是( )A .2mB .1mCD .)2m 6.如图为一座抛物线型的拱桥,AB 、CD 分别表示两个不同位置的水面宽度,O 为拱桥顶部,水面AB 宽为10米,AB 距桥顶O 的高度为12.5米,水面上升2.5米到达警戒水位CD 位置时,水面宽为( )米.A .5B .C .D .87.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度20AB =米,顶点M 距水面6米(即6MO =米),小孔顶点N 距水面4.5米(即 4.5NC =米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,则此时大孔的水面宽度EF 长为( )A .B .C .12米D .10米 8.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m ,那么每条行道宽是( )A .不大于4mB .恰好4mC .不小于4mD .大于4m ,小于8m二、填空题9.如图,某拱桥桥洞的形状是抛物线,若取水平方向为x 轴,拱桥的拱点O 为原点建立直角坐标系,它可以近似地用函数218y x =-表示(单位:m ).已知目前桥下水面宽4m ,若水位下降1.5m ,则水面宽为______m .10.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB 间间隔0.2米的7根立柱)进行加固,若立柱EF 的长为0.28米,则拱高OC 为_____米11.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,当水面宽度为面下降了____.12.一个涵洞成抛物线形,它的截面如图,当水面宽AB =1.6米时,涵洞顶点与水面的距离为2.4m .涵洞所在抛物线的解析式是_____________.13.某抛物线型拱桥的示意图如图,桥长AB=48 米,拱桥最高处点C到水面AB的距离为12 米,在该抛物线上的点E、F处要安装两盏警示灯(点E、F关于y轴对称),警示灯F距水面AB的高度是9米,则这两盏灯的水平距离EF是___米.14.如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等.小强骑自行车从桥的一端0沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需_____________秒.15.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为8m,24mAB ,D,E为拱桥底部的两点,且//DE AB,若DE的长为36m,则点E到直线AB的距离为______.16.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y=﹣13x2,桥下的水面宽AB为6m,当水位上涨2m时,水面宽CD为_____m(结果保留根号).三、解答题17.某公路有一个抛物线形状的隧道ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣110x2+c且过顶点C(0,5).(长度单位:m)(1)直接写出c=;(2)求该隧道截面的最大跨度(即AB的长度)是多少米?(3)该隧道为双向车道,现有一辆运货卡车高4米、宽3米,问这辆卡车能否顺利通过隧道?请说明理由.18.如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.19.一座隧道的截面由抛物线和长方形构成,长方形的长OC为8m,宽OA为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:(1)求抛物线的解析式;(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,两辆同样的上述货车相对而行,是否可以同时在隧道内顺利通过,为什么?20.如图所示.三孔桥横截面的三个孔是都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB为10m,顶点M距水面6m(即6mMO=),小孔顶点N 距水面4m(即4mNC=),建立如图所示的平面直角坐标系.(1)求出大孔抛物线的解析式;(2)现有一艘船高度是4.5m,宽度是4m,为了保证安全,船顶距离桥拱顶部至少0.5m,则这艘船在正常水位时能否安全通过拱桥大孔?(3)当水位上涨到刚好淹没小孔时,求出此时大孔的水面宽度EF.答案第1页,共1页 参考答案:1.C2.D3.B4.D5.B6.C7.D8.A9.810.0.6411.4m12.2154y x =-13.2414.4615.10m16.17.(1)5;(3)能安全通过18.(1)2114y x =-+(2)(3)能通过19.(1)抛物线为:y =﹣21(4)4x -+6; (2)货车可以通过(3)货车可以通过 20.(1)26625y x =-+ (2)这艘船在正常水位时能安全通过拱桥大孔。
人教版 九年级数学上册一课一练 22.3.3 拱桥问题和运动中的抛物线一.选择题1.一足球被踢出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数解析式:h =-(t -2)2+5,则当足球距离地面的高度最大时,飞行时间为( ) A .2秒 B .3秒 C .4秒 D .5秒2. 如图,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y =-(x -2)2+6,则水柱的最大高度是( )A . 2B . 4C . 6 D. 2+63. 已知抛物线y =x 2+bx +c 的顶点坐标为(1,-3),则抛物线对应的函数解析式为( )A. y =x 2-2x +2B. y =x 2-2x -2C. y =-x 2-2x +1D. y =x 2-2x +1,4. 对于抛物线y =x 2-2x -1,下列说法正确的是( )A. 对称轴是直线x =-1B. 顶点坐标为(1,-2)C. 与x 轴交于(0,-1)D. 当x =1时,y 有最小值25.某店加工烤鸡时,烤鸡的口感系数y 和加工时间t (h )之间的关系式为y =-0.2t 2+1.4t -2,口感系数越大,口感越好,则最佳加工时间为( )A .3B .3或4C .3.5D .3或5二.填空题1.九年级某班一女生在一次投掷实心球的测试中,实心球所经过的路线为如图的抛物线y =-19x 2+23x +169的一部分,则该同学的成绩是 m .2.如图,一抛物线形拱桥,当拱顶到水面的距离为2 m 时,水面宽度为4 m ,那么当水位下降2 m 后,水面的宽度增加 m .3.有一个抛物线形拱桥的最大高度为16 m ,跨度为40 m ,把它放在如图所示的直角坐标系里,若要在离跨度中心点M 的距离5 m 处垂直竖一根铁柱支撑这个拱顶,铁柱的长为 m .4.小华酷爱足球运动.一次训练时,他将足球从地面向上踢出,足球距地面的高度h (m )与足球被踢出后经过的时间t (s )之间的关系为h =-5t 2+12t ,则足球距地面的最大高度 是 m .三.解答题1. 如图,某运动员在2016年里约奥运会10米跳台跳水比赛时,估测身体(看成一点)在空中的运动路线是抛物线y =-256x 2+103x (图中标出的数据为已知条件),求该运动员在空中运动时离水面的最大高度是多少.2.. 要在一个圆形广场中央修建一个音乐喷泉,在广场中央竖直安装一根水管. 在水管的顶点安一个喷水头,使喷出的抛物线水柱在与广场中央的水平距离为1 m处达到最高,且最高为3 m,水柱落地处离广场中央3 m,建立如图的直角坐标系.(1)求抛物线的解析式;(2)求水管的长度.3. 一座隧道的截面由抛物线和长方形组成,长方形的长为8 m,宽为2 m,隧道的最高点P 位于AB的中央且距地面6 m,建立如图的坐标系.(1)求抛物线的解析式;(2)一辆货车高4 m,宽2 m,通过计算说明其能否从该隧道内通过;(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过?为什么?人教版九年级数学上册一课一练22.3.3 拱桥问题和运动中的抛物线参考答案一.选择题1.一足球被踢出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数解析式:h=-(t -2)2+5,则当足球距离地面的高度最大时,飞行时间为( A )A.2秒B.3秒C.4秒D.5秒2. 如图,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=-(x-2)2+6,则水柱的最大高度是( C )A. 2B. 4C. 6D. 2+63. 已知抛物线y=x2+bx+c的顶点坐标为(1,-3),则抛物线对应的函数解析式为( B )A. y=x2-2x+2B. y=x2-2x-2C. y=-x2-2x+1D. y=x2-2x+1,4. 对于抛物线y=x2-2x-1,下列说法正确的是( B )A. 对称轴是直线x=-1B. 顶点坐标为(1,-2)C. 与x轴交于(0,-1)D. 当x=1时,y有最小值25.某店加工烤鸡时,烤鸡的口感系数y和加工时间t(h)之间的关系式为y=-0.2t2+1.4t -2,口感系数越大,口感越好,则最佳加工时间为( C)A.3 B.3或4 C.3.5 D.3或5二.填空题1.九年级某班一女生在一次投掷实心球的测试中,实心球所经过的路线为如图的抛物线y=-19x 2+23x +169的一部分,则该同学的成绩是 8 m .2.如图,一抛物线形拱桥,当拱顶到水面的距离为2 m 时,水面宽度为4 m ,那么当水位下降2 m 后,水面的宽度增加.3.有一个抛物线形拱桥的最大高度为16 m ,跨度为40 m ,把它放在如图所示的直角坐标系里,若要在离跨度中心点M 的距离5 m 处垂直竖一根铁柱支撑这个拱顶,铁柱的长为 15 m .4.小华酷爱足球运动.一次训练时,他将足球从地面向上踢出,足球距地面的高度h (m )与足球被踢出后经过的时间t (s )之间的关系为h =-5t 2+12t ,则足球距地面的最大高度是 7.2 m .三.解答题1. 如图,某运动员在2016年里约奥运会10米跳台跳水比赛时,估测身体(看成一点)在空中的运动路线是抛物线y =-256x 2+103x (图中标出的数据为已知条件),求该运动员在空中运动时离水面的最大高度是多少.解:∵y =-256x 2+103x =-256⎝ ⎛⎭⎪⎫x -252+23,∴y 的最大值为23.∴运动员在空中运动时离水面的最大高度为10+23=1023(m ).2.. 要在一个圆形广场中央修建一个音乐喷泉,在广场中央竖直安装一根水管. 在水管的顶点安一个喷水头,使喷出的抛物线水柱在与广场中央的水平距离为1 m 处达到最高,且最高为3 m ,水柱落地处离广场中央3 m ,建立如图的直角坐标系.(1)求抛物线的解析式; (2)求水管的长度.解:(1)设y =a(x -1)2+3. ∵点(3,0)在此抛物线上, ∴0=a(3-1)2+3.解得a =-34,即抛物线的解析式为y =-34(x -1)2+3.(2)当x =0时,y =-34(0-1)2+3=214.答:水管的长度是214 m .3. 一座隧道的截面由抛物线和长方形组成,长方形的长为8 m ,宽为2 m ,隧道的最高点P位于AB 的中央且距地面6 m ,建立如图的坐标系.(1)求抛物线的解析式;(2)一辆货车高4 m ,宽2 m ,通过计算说明其能否从该隧道内通过; (3)如果隧道内设双行道,那么这辆货车是否可以顺利通过?为什么?解:(1)y =-14(x -4)2+6.(2)由图象可知,当y =4时,x 1=4-22,x 2=4+22, ∴||x 1-x 2=42>2.∴一辆货车高4 m ,宽2 m ,能从该隧道内通过. (3)由(2)知,12||x 1-x 2=22>2,∴这辆货车可以顺利通过.。
人教版九年级数学上册课时练 第二十二章 二次函数 22.3 实际问题与二次函数一、选择题1.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x =B .2425y x =C .225y x =D .245y x =2.如图,图中是抛物线形拱桥,当拱顶离水面2m 时水面宽4m .水面下降1m ,水面宽度为( )A .mB .C mD m3.如图为某菜农搭建的一个横截面为抛物线的大棚,有关尺寸如图所示,某菜农身高1.6米,则他在不弯腰的情况下在大棚内左右活动的范围是( )A 米 BC .1.6米D .0.8米4.某一商人进货价便宜8%,而售价不变,那么他的利润率(按进货价而定)可由目前x 增加到(x+10%),则x 是( ) A .12%B .15%C .30%D .50%5.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y (件)与销售单价x (元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为 A .60元 B .70元 C .80元 D .90元6.太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经120度影子最短的时刻.在一定条件下,直杆的太阳影子长度(l 单位:米)与时刻(t 单位:时)的关系满足函数关系2(l at bt c a b c ,,=++是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻t 是))A.12.75 B .13 C .13.33 D .13.57.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )A .10x =,14y =B .14x =,10y =C .12x =,15y =D .15x =,12y =8.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A .1个B .2个C .3个D .49.若()0f x >,符号 ()baf x dx ⎰表示函数()y f x =的图象与过点(),0a ,(),0b 且和x 轴垂直的直线及x 轴围成图形的面积.如图,21(1)x dx +⎰表示梯形ABCD 的面积.设212A dx x =⎰,21(3)B x dx =-+⎰,22137()22C x x dx =-+⎰,则A ,B ,C 中最大的是( )A .AB .BC .CD .无法比较10.如图,抛物线21322y x x =--与直线2y x =-交于A 、B 两点(点A 在点B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E ,再到达x 轴上的某点F ,最后运动到点.B 若使点P 运动的总路径最短,则点P 运动的总路径的长为( )A B C .52 D .53二、填空题11.如图,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为____.12.如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE x =,正方形EFGH 的面积为y ,则y 与x 的函数关系为______ .13.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 的坐标分别为(0,2)、(1,0),顶点C 在函数y =13x 2+bx -1的图象上,将正方形ABCD 沿x 轴正方向平移后得到正方形A′B′C′D′,点D 的对应点D′落在抛物线上,则点D 与其对应点D′之间的距离为 ______.14.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A 、B 两种商品的价格之和为27元,小明计划购买B 商品的数量比A 商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A 商品正打九折销售,而B 商品的价格提高了20%,小明决定将A 、B 产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为_____元.15.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.三、解答题16.如图1,地面BD 上两根等长立柱AB ,CD 之间有一根绳子可看成抛物线y =0.1x 2﹣0.8x +5. (1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为5米的位置处用一根立柱MN 撑起绳子(如图2),使左边抛物线F 1的最低点距MN 为1米,离地面2米,求MN 的长;(3)将立柱MN 的长度提升为5米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为13.设MN 离AB 的距离为m ,抛物线F 2的顶点离地面距离为k ,但2≤k ≤3时,求m 的取值范围.17.网络销售已经成为一种热门的销售方式为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg ,每日销售量(kg)y 与销售单价x (元/kg )满足关系式:1005000y x =-+.经销售发现,销售单价不低于成本价格且不高于30元/kg .当每日销售量不低于4000kg 时,每千克成本将降低1元设板栗公司销售该板栗的日获利为W (元).(1)请求出日获利W 与销售单价x 之间的函数关系式(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当40000W ≥元时,网络平台将向板栗公可收取a 元/kg(4)a <的相关费用,若此时日获利的最大值为42100元,求a 的值.18.如图,抛物线21144y x x c =++与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点C (6,152)在抛物线上,直线AC 与y 轴交于点D(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点.①求证:APM AON ∽)②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).19.某企业接到一批产品的生产任务,按要求必须在15天内完成.已知每件产品的售价为65元,工人甲第x 天生产的产品数量为y 件,y 与x 满足如下关系: y=8(05)510(515)x x x x ≤≤⎧⎨+<≤⎩.)1)工人甲第几天生产的产品数量为80件?)2)设第x 天(0≤x≤15)生产的产品成本为P 元/件,P 与x 的函数图象如图,工人甲第x 天创造的利润为W 元. ①求P 与x 的函数关系式;②求W 与x 的函数关系式,并求出第几天时,利润最大,最大利润是多少?20.已知在平面直角坐标系xOy 中,O 为坐标原点,线段AB 的两个端点A(0)2))B(1)0)分别在y 轴和x 轴的正半轴上,点C 为线段AB 的中点.现将线段BA 绕点B 按顺时针方向旋转90°得到线段BD ,抛物线y)ax 2)bx)c(a≠0)经过点D)如图,若该抛物线经过原点O ,且a))13. (1)求点D 的坐标及该抛物线的解析式;(2)连结CD)问:在抛物线上是否存在点P ,使得∠POB 与∠BCD 互余?若存在,请求出所有满足条件的点P 的坐标;若不存在,请说明理由.21.某企业为打入国际市场,决定从A 、B 两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)其中年固定成本与年生产的件数无关,m 为待定常数,其值由生产A 产品的原材料价格决定,预计68m ≤≤.另外,年销售x 件B 产品时需上交20.05x 万美元的特别关税.假设生产出来的产品都能在当年销售出去.()1写出该厂分别投资生产A 、B 两种产品的年利润1y ,2y 与生产相应产品的件数x 之间的函数关系并指明其自变量取值范围;()2如何投资才可获得最大年利润?请你做出规划.22.如图()1,在平面直角坐标系中,抛物线23y ax bx a =+-经过()1,0A -、()0,3B 两点,与x 轴交于另一点C ,顶点为D .()1求该抛物线的解析式及点C 、D 的坐标;()2经过点B 、D 两点的直线与x 轴交于点E ,若点F 是抛物线上一点,以A 、B 、E 、F 为顶点的四边形是平行四边形,求点F 的坐标;()3如图()()22,3P 是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求APQ 的最大面积和此时Q 点的坐标.23.如图,抛物线()220y ax ax c a =-+≠与y 轴交于点()0,4C ,与x 轴交于点A 、B ,点A 坐标为()4,0.()1求该抛物线的解析式;()2抛物线的顶点为N ,在x 轴上找一点K ,使CK KN +最小,并求出点K 的坐标; ()3点Q 是线段AB 上的动点,过点Q 作//QE AC ,交BC 于点E ,连接CQ .当CQE 的面积最大时,求点Q 的坐标;()4若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为()2,0.问:是否存在这样的直线l ,使得ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【参考答案】1.C 2.A 3.B 4.B 5.C 6.C 7.D 8.D 9.C 10.A 11.412.2244y x x =-+ 13.2 14.312. 15.1.216.(1)175米;(2)3516米;(3)2≤m ≤8﹣. 17.(1)22100550027000(610)100560032000(1030)x x x w x x x ⎧-+-≤≤=⎨-+-<≤⎩;(2)当销售单价定为28元时,日获利最大,且最大为46400元;(3)2a =18.(1)c=-3; 直线AC 的表达式为:y=34x+3))2)①略;②52024m m ++19.(1)第14天))2)①P)40(05)35(515)x x x ≤≤⎧⎨+<≤⎩)②W)2200(05)5140300(515)x x x x x ≤≤⎧⎨-++<≤⎩)第14天时,利润最大,最大利润为1280元.20.)1)D 点的坐标是(3)1))y ))13x 2)43x ))2)在抛物线上存在点P 1(52)54))P 2(112))114),使得∠POB 与∠BCD互余.21.()()11?1020y m x =--,()0200x ≤≤,220.051040y x x =-+-,()0120x ≤≤;()2当67.6m ≤<时,投资生产A 产品200件可获得最大年利润;当7.6m =时,生产A 产品与生产B 产品均可获得最大年利润;当7.68m <≤时,投资生产B 产品100件可获得最大年利润.22.(1)()()3,01,4C D ,;(2)()2,3F ;(3)当12a =时,PQA S 的最大面积为278, 此时115,24Q ⎛⎫⎪⎝⎭. 23.(1)2142y x x =-++;(2)点K 的坐标为8,017⎛⎫ ⎪⎝⎭;(3)。
人教版九年级上册数学22.3实际问题与二次函数同步练习一、单选题1.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,若第二个月的增长率是x ,第三个月的增长率是第二个月的两倍,那么y 与x 的函数关系是 ( ) A .()()112y a x x =++ B .()21y a x =+ C .()221y a x =+ D .22y x a =+2.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为( )A .35元B .36元C .37元D .36或37元 3.抛物线22y x x =+-与x 轴交于A 、B 两点,A 点在B 点左侧,与y 轴交于点C .若点E 在x 轴上,点P 在抛物线上,且以A 、C 、E 、P 为顶点的四边形是平行四边形,则符合条件的点E 有( )A .1个B .2个C .3个D .4个 4.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( ) A .10s B .20s C .30s D .40s 5.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y 亿元人民币,设每年投资的增长率为x ,则可得( )A .5(12)y x =+B .25y x =C .()251y x =+D .()251y x =+ 6.如图,若被击打的小球飞行高度h (单位:)m 与飞行时间t (单位:)s 具有函数关系为2205h t t =-,则小球从飞出到落地的所用时间为( )A.3s B.4s C.5s D.6s7.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.若水面再下降1.5m,水面宽度为()m.8.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()二、填空题面宽为12m,这时水面离桥拱顶端的高度是____________________.10.半径是2的圆,如果半径增加x 时,增加的面积s 与x 之间的关系表达式为__________. 11.如图,用一段长为10米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD ,设AB 为x 米,则菜园的面积y (平方米)与x (米)的关系式为______.(不要求写出自变量x 的取值范围)12.一个涵洞成抛物线形,它的截面如图,当水面宽AB =1.6米时,涵洞顶点与水面的距离为2.4m .涵洞所在抛物线的解析式是_____________.13.足球被从地面上踢起,它距地面的高度h (m )可用公式h =-4.9t 2+19.6t 来表示,其中t (s )表示足球被踢出后经过的时间,则球在______s 后落地.14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2241y x x =-++,喷出水珠的最大高度是______m .15.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为___________元.16.如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等.小强骑自行车从桥的一端0沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需_____________秒.三、解答题17.某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?18.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?19.国庆假期期间,某酒店有20个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,酒店需对每个房间每天支出20元的各种费用,设每间房间定价x 元()100x ≥.(1)每天有游客居住的房间数为__________(用含x 的代数式表示);(2)当每间房价为多少元时,酒店当天的利润为1800元?(3)当每间房价定为多少元时,酒店的利润m (元)最大,最大利润是多少?20.如图是某隧道截面示意图,它是由抛物线和长方形构成,已知12OA =米,4OB =米,抛物线顶点D 到地面OA 的垂直距离为10米,以OA 所在直线为x 轴,以OB 所在直线为y 轴建立直角坐标系,(1)求抛物线的解析式;(2)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4米,最高处与地面距离为6米,隧道内设双向行车道,双向行车道间隔距离为2米,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5米,才能安全B通行,问这辆特殊货车能否安全通过隧道?参考答案:。