电力系统继电保护课程设计
- 格式:wps
- 大小:626.21 KB
- 文档页数:30
电力系统继电保护是电力系统中的重要组成部分,它起着保护电力设备、保障电力系统安全运行的作用。
通过对电力系统继电保护原理的研究和设计,可以更好地理解电力系统的工作原理,提高继电保护的可靠性和灵活性。
本文将对《电力系统继电保护原理》课程设计进行全面的介绍,包括课程设计的目的、内容、方法和实施步骤。
一、课程设计的目的电力系统继电保护原理课程设计的目的是帮助学生全面了解电力系统继电保护的基本原理,掌握继电保护的设计方法和实施步骤,培养学生的综合应用能力和解决问题的能力。
通过课程设计,学生将深入了解电力系统继电保护的重要性和必要性,培养对电力系统安全稳定运行的责任感和使命感。
二、课程设计的内容1. 电力系统继电保护概念和原理电力系统继电保护的概念、分类和基本原理,包括过流保护、欠频保护、过电压保护等。
2. 继电保护设备的选用和配置继电保护设备的功能和性能要求,如何选择合适的继电保护设备,以及如何配置继电保护设备。
3. 继电保护系统的设计方法继电保护系统的设计步骤和方法,包括对电力系统的分析、保护方案的选择和参数设置等。
4. 继电保护系统的实施与维护继电保护系统的实施步骤、调试方法和维护要点,以及继电保护系统的故障排除和改进方法。
三、课程设计的方法1. 理论学习通过课堂讲授、教科书学习和参考文献阅读等方式,让学生掌握电力系统继电保护的基本原理和方法。
2. 实践操作组织学生参与继电保护设备的调试和实验操作,加强学生对继电保护设备的理解和掌握。
3. 课程论文要求学生根据所学知识,进行课程设计论文的撰写,包括电力系统的继电保护方案设计、继电保护设备的参数设置和继电保护系统的实施方案等。
四、课程设计的实施步骤1. 教师讲解教师首先对电力系统继电保护的基本原理和方法进行讲解,向学生介绍继电保护的重要性和必要性。
2. 学生学习学生通过课堂学习和自主学习,掌握电力系统继电保护的相关知识,理解继电保护设备的选用和配置原则。
供电系统继电保护课程设计1. 介绍本课程设计旨在加深对于供电系统继电保护的理解和掌握,通过实际继电保护方案设计和仿真测试,提高电力系统工程师的实际操作能力和实际工作应用能力。
2. 设计思路本课程设计主要包括以下三个方面的内容: - 继电保护定制方案设计 - 继电保护仿真测试 - 继电保护应用实例2.1 继电保护定制方案设计通过了解不同的电力系统负载特性、供电系统拓扑结构和电力系统电源接入模式,结合各类电力设备本身的特性和操作要求,设计出合适的、可操作的继电保护方案。
2.2 继电保护仿真测试通过各类电力仿真软件,对设计的继电保护方案进行仿真测试,验证其可行性和稳定性,提高方案的设计质量和操作效果。
2.3 继电保护应用实例通过实际的电力系统应用实例,展示继电保护方案的应用和优势,同时总结出可供实际工作应用的继电保护方案和应用经验。
3. 设计步骤3.1 继电保护方案设计根据电力系统的实际需求,初步设计出继电保护方案,并结合各类电力设备本身的特性和操作要求,进行多方面的优化和完善,最终得到可操作性较高的继电保护方案,并分配各类继电保护设备的参数和接线。
3.2 继电保护仿真测试通过各类电力仿真软件(如Matlab、PSCAD等),对设计的继电保护方案进行仿真测试、优化和验证,辅助提高继电保护方案的可行性和稳定性,并进行详细的仿真数据分析和模型优化。
3.3 继电保护应用实例通过多组实际电力系统的应用实例,展示继电保护方案的应用,总结出可供实际工作应用的继电保护方案和应用经验,并提供实际工作中的继电保护操作建议和应急措施。
4. 课程结构本课程设计主要包括以下部分内容: 1. 继电保护基础概念介绍 2. 继电保护定制方案设计 3. 继电保护仿真测试 4. 继电保护应用实例 5. 继电保护工程实践技能训练 6. 继电保护总结与反思5. 课程目标通过本课程的学习和实践,学生应达到以下目标: - 掌握供电系统继电保护的基础概念和工作原理。
电力系统继电保护课程设计1设计原始资料1.1具体题目如下图所示网络,系统参数为:115/Eϕ=,1=15G X Ω,23==11G G X X Ω,12==61km L L 错误!未找到引用源。
km,3=41km L ,-=51km,B C L 错误!未找到引用源。
-=31km,C D L - =21km,D E L 线路阻抗0.4Ω/km ,1=0.8re K ,0.85II IIIrel rel K K ==错误!未找到引用源。
B-C.max -.max -.max =311A, =211A, =151A, =1.5C D D E ss I I I K ,=1.85re K ,试对线路L1、L2、L3进行距离保护的设计。
AB图1 线路接线图1.2完成内容我们要完成的内容是实现对线路的距离保护,而在本题中我们要完成线路L1保护和保护3保护2相关的距离保护。
距离保护是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反应故障点到保护安装处的距离而工作的保护。
2分析课题设计内容2.1设计规程根据继电保护在电力系统中所担负的任务,一般情况下,对动作于跳闸的继电保护在技术上应满足四个基本要求:选择性、速动性、灵敏性、可靠性。
这几“性”之间,紧密联系,既矛盾又统一,按照电力系统运行的具体情况配置、配合、整定。
2.2保护配置2.2.1主保护配置距离保护Ⅰ段和距离保护Ⅱ段构成距离保护的主保护。
(1) 距离保护的Ⅰ段ABC图2.1 距离保护网络接线图瞬时动作,Ⅰt 是保护本身的固有动作时间。
保护1的整定值应满足:Ιset1AB Z <Z 考虑到阻抗继电器和电流、电压互感器的误差,引入可靠系数Ιrel K (一般取0.8-0.85),一般第I 段保护范围为本线路AB 长度的80%-85%,即A B Ιrel Ι1set Z K Z =⋅同理,保护2的I 段整定值为:BC Ιrel Ι2set Z K Z =⋅(2) 距离Ⅱ段与相邻线路距离保护I 段相配合。
电力系统继电保护课程设计1、主变保护:变压器纵联差动保护纵连差动保护原理:差动保护是一种依据被保护电气设备进出线两端电流差值的变化所构成的对电气设备的保护装置,一般可分为纵联差动保护和横联差动保护。
动作特性:只在保护区内短路时才动作,不存在与系统中相邻元件的保护的选择性配合问题,因而可以切除保护区内的任何一点短路事故。
整定计算;电流互感器的变比选择14.33511021===T T T n n n 48.105.1011031'===T T T n n n 考虑到不平衡电流等的影响,为增加可靠性可以采取以下措施:可以让电流互感器的变比大一点;在差动回路中接入具有饱和特性的中间变流器的方法;采用相同的互感器等。
原理图:电力系统继电保护(第二版)张保会167页2、110KV 母线的保护:完全电流母线差动保护母线保护的的原则:1、在110kv 及以上的双母线和分段母线上,为保证有选择性的切除任一组(或段)母线上发生的故障,而另一组(或段)无故障的的母线仍能继续运行,应装设专用的母线保护。
2、110kv 及以上的单母线,重要发电厂的35kv 母线或高压侧为110kv 及以上的重要降压变电所的35kv 母线,按照装设全线速动保护的要求必须快速切除母线上的故障时,应装设专用的母线保护。
完全电流母线差动保护的原理接线图:电力系统继电保护(第二版)张保会228页。
整定计算:TA MAX K REL SET R N I K I .1.1.0×=TAMAX L RSET N I KRELI .2×=KA I MAX L 235.011085.022.=÷=TATA SET N N I /282.0/2.1235.0=×=∴3、35KV 出线的保护配置:零序电流速段保护原因:对于35kv 出线处的保护,在出口处如果发生三相短路时,保护可能会出现死区。
零序电流保护的特点在于保护不存在死区,零序阻抗大,保护灵敏性高;除此之外受运行方式的影响较小。
电力系统继电保护课程设计电力系统继电保护课程设计是电力系统专业学生的重要基础课程之一,旨在培养学生对电力系统继电保护的理论知识和应用能力。
下面将从课程的目标、内容和参考教材三个方面进行介绍。
一、课程目标1. 理解电力系统继电保护的基本概念、原理和分类;2. 掌握电力系统继电保护的各种保护方式和保护装置的基本原理和运行特点;3. 学会电力系统继电保护的设计方法和计算模型,能够进行常规保护方案的设计;4. 具备电力系统继电保护故障分析和故障处理的能力;5.了解当前电力系统继电保护的发展趋势和新技术。
二、课程内容1. 电力系统继电保护概述a. 继电保护的定义和基本原理b. 继电保护的分类和发展历程2. 电力系统继电保护装置a. 出线保护装置b. 过流保护装置c. 距离保护装置d. 差动保护装置e. 频率保护装置f. 转子开路保护装置g. 母线保护装置3. 电力系统继电保护的设计方法a. 保护原则和设计准则b. 选用保护装置的依据和方法c. 保护的设置和参数的选择4. 继电保护的特殊问题a. 自动重新合闸保护b. 同期重切保护c. 同期选址抗饱和保护d. 光纤继电保护及其应用5. 继电保护设备的试验与调整a. 保护设备的试验方法b. 保护设备的调整和校验6. 电力系统继电保护的实例和案例分析三、参考教材1.《电力系统自动化技术基础》(高等教育出版社):该书包含了电力系统自动化技术的基础知识,包括电力系统继电保护的基本原理和设计方法等内容,适合作为该课程的主要教材。
2.《电力系统继电保护》(中国电力出版社):该书对电力系统继电保护的各种保护方式和保护装置进行了详细介绍,结合实例进行了深入的分析,有助于学生理解和掌握继电保护的设计和应用。
3.《电力系统继电保护》(机械工程出版社):该教材从电力系统继电保护概念到保护装置的详细原理,系统地介绍了继电保护的相关知识,且配有大量的案例分析,适合作为该课程的参考教材。
双电源网络线路继电保护设计一、原始资料某双电源网络如图所示:EAa) 线路AB (A 侧)和BC 的最大负荷电流分别为120安和100安;负荷的自起动系数为1.8。
b) 可靠系数1 1.25rel K =,2 1.15rel K =,3 1.2rel K =, 1.15rel K =(躲开最大振荡电流时采用),返回系数0.85re K =。
c) A 电源的.min 15s X =欧,.max 20s X =欧,B 电源的.min 20s X =欧,.max 25s X =欧;其它参数如图中所示。
试设计线路AB (A 侧)的三段式电流保护。
二、设计任务a) 线路AB (A 侧)继电保护的规划配置;b) CT 变比的选择;c) 短路电流计算和继电保护的整定计算;d) 用autocad 或visio 软件绘制线路继电保护原理图。
三、设计成品a) 编写设计报告书(包括短路电流计算和继电保护的整定计算);b) 用autocad 或visio 软件绘制线路继电保护原理图。
总体要求:根据设计指导教师的要求,参加设计指导课,独立完成各项设计任务,设计成果包括设计报告书和图纸,完成后上交给指导教师。
通过课程设计,掌握电力系统中电流保护、距离保护、纵联差动保护、变压器保护等的基本原理和实现方法。
主要参考书:《电力系统继电保护》,张明君主编,人民邮电出版社,2012《电力系统继电保护原理》(第三版), 张保会、尹项根主编,中国电力出版社,1996《电力系统继电保护原理》(第三版), 贺家李主编,中国电力出版社,1996《计算机继电保护原理与技术》,陈德树主编,中国电力出版社,1992《电力系统继电保护》,陈生贵主编,重庆大学出版社,2004《电力系统继电保护设计原理》,吕继绍主编,电力工业出版社,1990。
电力系统继电保护课程设计电力系统是现代社会中不可或缺的基础设施之一,它为人们提供了安全、可靠的电力供应。
然而,电力系统中存在着各种各样的故障和事故,如短路、过载、接地故障等,这些故障和事故可能会对电力系统造成严重的损害,甚至可能导致停电。
因此,为了保障电力系统的安全运行,必须采取一系列的继电保护措施。
本文旨在介绍电力系统继电保护课程设计的相关内容,包括课程设计的目的、内容、教学方法和评价方法等。
二、课程设计的目的电力系统继电保护课程设计的主要目的是培养学生对电力系统继电保护的基本概念、原理、技术和方法的理解和掌握,使其具备分析和解决电力系统继电保护问题的能力。
具体目标包括:1. 熟悉电力系统的基本结构和运行特点,理解电力系统继电保护的重要性和必要性;2. 掌握电力系统继电保护的基本原理和技术,了解各种继电保护设备的工作原理和特点;3. 理解电力系统继电保护的应用和实践,了解电力系统继电保护的设计和调试方法;4. 具备分析和解决电力系统继电保护问题的能力,能够根据电力系统的特点和继电保护的原理,设计和优化电力系统的继电保护方案。
三、课程设计的内容电力系统继电保护课程设计的内容主要包括以下几个方面:1. 电力系统的基本结构和运行特点:介绍电力系统的基本结构和运行特点,包括电力系统的组成、运行模式、负荷特性等;2. 继电保护的基本原理和技术:介绍继电保护的基本原理和技术,包括继电保护的分类、工作原理、特点等;3. 继电保护设备的工作原理和特点:介绍各种继电保护设备的工作原理和特点,包括过流保护、距离保护、差动保护等;4. 继电保护的应用和实践:介绍继电保护的应用和实践,包括继电保护的设计和调试方法、继电保护的故障分析和处理等;5. 继电保护方案的设计和优化:介绍继电保护方案的设计和优化方法,包括根据电力系统的特点和继电保护的原理,设计和优化电力系统的继电保护方案等。
四、教学方法电力系统继电保护课程设计采用多种教学方法,包括讲授、案例分析、实验、小组讨论等。
电力系统继电保护课程设计电力系统继电保护课程设计电力系统继电保护是电力系统运行和发展过程中必不可少的一项重要技术手段。
在电力系统中,电气设备和线路的安全稳定运行需要继电保护技术的应用,而学习电力系统继电保护课程可以让学生深入了解电力系统的保护原理、保护方法和保护设备等方面的知识。
本文将就电力系统继电保护课程设计进行探讨。
一、课程背景电力系统属于大型复杂系统,具有分布、多层次、多种类型的特征,其中包括输电线路、变电站、变电设备等,这些设备都需要有一定的继电保护机制。
电力系统的稳定运行和可靠性需要继电保护技术的应用,因此电力系统继电保护是电力工程技术的重要组成部分。
二、课程目标1. 着重介绍电力系统故障及故障类型,传统保护与微机保护技术等基础知识,引导学生深入学习继电保护技术的实质和细节。
2. 让学生了解电力系统中故障监测技术,保护技术的系统set 置等方面的知识,以及高压线路的绝缘与弧光特性,接地故障产生机理等。
3. 学习各种保护设备的原理、构造、实现及功能、其保护对象和保护类型,以及设备的特殊保护等相关知识,为了达到监控实时状态及预防故障问题的目的。
4. 了解电力系统的自动化技术与智能化控制技术等,将继电保护技术和这两种技术相结合,形成一套完整的电力系统保护及控制方案。
三、课程模块1. 电力系统故障及故障类型2. 继电保护技术的实质和细节3. 电力系统中故障监测技术和保护技术的系统set 置4. 保护设备的构造和实现5. 保护设备的保护对象和保护类型6. 设备的特殊保护7. 电力系统的自动化技术与智能化控制技术四、课程教学方法1. 讲授理论知识,主要采用课件和讲解相结合的方式,让学生对理论知识有更好的理解和掌握。
2. 实践环节,安排实验、课程设计、毕业论文等实践性课程,让学生将所学知识应用到实践当中,掌握技能和解决问题的能力。
3. 群体讨论,通过小组讨论、学生演讲、案例探讨等方式,让学生在融合互动的过程中,激发思维和创新精神。
河南科技大学课程设计说明书课程名称电力系统继电保护题目 110kV单电源环形网络相间短路保护的整定计算学院班级学生姓名指导教师日期 2015年12月26日110kV单电源环形网络相间短路保护的整定计算摘要本次设计是针对与110KV电网在不同运行方式以及短路故障类型的情况下进行的分析计算和整定的。
通过具体的短路阻抗的计算发现电流的三段式保护不能满足要求,故根据本次设计的实际要求,以及继电保护“四性”的总要求故采用了反应相间短路的距离保护。
由于本次设计涉及到不同运行方式下的不同类型的短路阻抗的计算,这对本次设计增加了难度。
在进行设计时首先要将各元件参数标准化,而后对每一个保护线路未端短路时进行三相短路阻抗的计算,二相短路阻抗的计算。
在整定时对每一个保护距离保护阻抗的整定,并且对其进行灵敏度较验。
这要求进行短路计算,其中包括系统的运行方式,短路点与短路类型的确定原则或依据;要求进行保护方式的选择及整定计算,其中包括保护方式的原则,各保护的整定计算条件,并用表格列出整定计算结果;要求进行绘制保护原理接线图,包括三相原理接线图及某一元件保护原理展开图;并要求从可靠性、选择性、速动性和灵敏性四个方面来评价所采用的保护质量。
尝试决定保护1、3、5、7的保护方式,作出保护3的原理图和展开图,并对本网络所采用的保护进行评价。
关键词:短路保护整定计算单电源环形网络继电保护运行方式目录第一章绪论 (1)1.1 电力系统继电保护发展现状 (1)1.1.1 继电保护发展历程 (1)1.1.2 继电保护的未来发展 (2)第二章系统初始条件 (3)2.1 主接线图 (3)2.2 相关参数 (3)第三章三段式电流保护整定计算 (5)3.1 计算网络参数 (5)3.2 最大短路电流计算和整定计算 (6)3.2.1 K1点发生的三相短路 (6)3.2.2 K2点发生三相短路 (9)3.2.3 K3点发生三相短路 (11)3.2.4保护1QF的整定 (13)第四章距离保护整定计算 (14)4.1 计算网络参数 (14)4.2 整定值计算 (14)4.2.1 7QF距离保护整定值计算 (14)4.2.2 5QF的距离保护整定 (15)4.2.3 3QF的距离保护整定 (16)第五章电网的保护装置和自动装置设计 (18)5.1 保护装置配置 (18)5.2 自动装置配置 (18)5.3 电流、电压互感器选择 (19)第六章电压互感器二次回路断线闭锁装置 (22)6.1 闭锁装置作用 (22)6.2 闭锁装置设计 (22)第七章保护3接线图 (24)7.1 3QF原理图 (24)7.2 3QF接线图 (24)第八章总结 (25)参考文献 (26)第一章绪论1.1 电力系统继电保护发展现状电力系统作为一个庞大复杂的系统,它由发电机、变压器、母线、输配线路及用电设备通过各种方式连接配置而成,各元件之间通过电或磁发生联系,任何元件发生故障都将在不同程度上影响系统的正常运行。
继电保护作为电力技术的一环,它对保障电力系统安全运行、提高社会经济效益起到举足轻重的作用。
1.1.1 继电保护发展历程我国继电保护技术在建国后随着电力行业的飞速发展得到了长足进步,在电子技术、计算机应用、通讯技术不断更新完善的情况下,在40余年的时间里继电保护技术完成了发展的4个历史阶段。
50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。
期间阿城继电器厂根据国外先进的继电器制造技术,结合国内电力行业发展状况,建立了我国自己的继电器制造业,这是机电式继电保护繁荣的时代。
60年代到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代,其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上,结束了我国500kV线路保护完全依靠从国外进口的时代,这是晶体管继电保护时代。
70年代中,基于集成运算放大器的集成电路保护已开始研究。
到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。
到90年代初集成电路保护的研制、生产、应用已处于主导地位,这是集成电路保护时代。
我国从20世纪70年代末即已开始了计算机继电保护的研究,1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在电力系统中获得应用,就此揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。
从90年代开始我国继电保护技术已进入了微机保护的时代,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全且工作可靠的继电保护装置。
随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。
1.1.2 继电保护的未来发展随着计算机、区域网、互联网技术的发展应用,继电保护技术未来趋势已转向计算机化、网络化、智能化,保护、控制、测量和数据通信一体化发展。
第二章 系统初始条件2.1 主接线图下图为某电力系统主接线。
该系统由某发电厂的三台发电机经三台升压变压器由A 母线与单侧电源环形网络相连,其电能通过电网送至B 、C 、D 三个降压变电所给用户供电。
2×20MVA60MVA cosφ=0.85X″3×50MVA2×40MVA 20MVA2×20MVA图2.1.1 电力系统主接线图2.2 相关参数1.网络中各线路采用带方向或不带方向的电流电压保护,所有变压器及母线均装有纵差动保护,变压器均为Y/ ∆ -11接线;2.发电厂的最大发电容量为3×50MW ,最小发电容量为2×50MW ;3.网络的正常运行方式为发电厂发电容量最大且闭环运行;4.允许的最大故障切除时间为0.85s ;5.110kV 断路器均采用DW 2-110型断路器,它的跳闸时间为0.05~0.08s ;6.线路AB 、BC 、AD 和CD 的最大负荷电流分别为230、150、230和140A ,负荷自起动系数K ss =1.5;60MV 50KM 65KM45KM7.各变电所引出线上后备保护的动作时间如图所示,∆t=0.5s;8.线路的正序电抗均为0.35Ω/km;9.电压互感器的变比n PT= 110000/100;10.其它参数如图所示。
第三章 三段式电流保护整定计算3.1 计算网络参数选取基准功率SB =100MV A 和基准电压为V B =Vav发电机G 的参数:258.050100129.0S S X X X X N B F(N)*G3(B)*G2(B)*G1(B)*=⨯=⨯=== 升压变压器的参数: 175.0601001005.10S S X X X X N B T1(N)*T3(B)T2(B)*T1(B)**=⨯=⨯=== 50KM 线路的参数: 132.01151005035.0V S XL X X 22NB 1(B)*L3L1(B)*=⨯⨯=⨯== 65KM 线路参数: 172.01151005035.0V S XL X 22NB 2(B)*L2=⨯⨯=⨯= 45KM 线路参数: 119.01151005035.0V S XL X 22NB 4(B)*L4=⨯⨯=⨯= 降压变压器的参数:525.020*******.10S S X X X X X N B T4(N)*)*(8T7(B)*6(B)*T T5(B)*4(B)*T =⨯=⨯=====B T X 最大运行方式下的最大电源阻抗:145.0433.0||217.0175.0258.0||2175.02258.0X 1==++=)()(最小运行方式下的最大电源阻抗:217.02175.02258.0X 1=+= 3.2 最大短路电流计算和整定计算为计算动作电流,应该计算最大运行方式下的三相短路电流,为校验灵敏度要计算最小运行运行方式下两相短路电流。
为计算1OF 、3OF 、5QF 、7QF 的整定值根据如上系统图可知,最大运行方式要求1QF 断开,等值阻抗图如下: k3Xsmin=0.145Xsmax=0.217E 0.1190.5250.1320.1750.1720.1320.262k1k2图3.2.1 系统等值电抗图 3.2.1 K1点发生的三相短路(1)电力系统网络等值电抗图为:Xsmin=0.145Xsmax=0.217E 0.119图3.2.2 K1点短路时等值电抗图最大运行方式时:计算K1点短路时的短路电流,系统的等效阻抗为:264.0119.0145.01=+=X 由上面已经计算出,基准电流为:KVA 502.01153100V 3=⨯==B B B S I ,基准电抗为:Ω=⨯==26.132502.031153Z B B B I V ; 三相短路电流标幺值为:978.3264.005.11)3(max1===X E I k 三相短路电流的有名值为: KA I I I B k K 99.1502.0978.3)3(max 1)3(max 1=⨯=*=最小运行方式时:336.0119.0217.01=+=X 三相短路电流的标幺值为:125.3336.005.11)3(min 1===X E I k 三相短路电流的有名值为:KA I I I B k K 57.1502.0125.3)3(min 1)3(min 1=⨯=*=2)保护7QF 的整定对保护7QF 的三段式电流保护整定计算,三段式包括:瞬时性电流速断保护、限时电流速断保护以及定时限电流速断保护。
下面首先对7QF 进行瞬时性电流速断保护的整定:下面对一段保护的灵敏度进行校验:s 0t KA 49.299.125.1I K I 73K1max rel set7==⨯=⨯=I II )(1max 7min 23z X I E L s set -=I 带入已知数据得:0261.0978.32.105.1232311max 7min <-⨯=-=I z z X I E L s set 由于Lmin<0,因此灵敏度不够。
7QF 的限时电流速断保护整定:KA I K K I K I K Irel rel set rel set 85.129.125.115.1max 157=⨯⨯===II I II II s t t t 5.077=∆+=III对7QF 的二段保护进行灵敏度校验: 3.185.085.157.17min 17<===II II set K sen I I K ,可知不满足条件 因此,针对上面的情况,则7QF 与相邻下一段的二段保护相互配合,则得到其整定值为:KA I K K K I K I K rel rel rel set rel set 36.182.025.115.115.1max 357=⨯⨯⨯===III II II II II 灵敏度校验: 3.194.036.128.17min 17<===II II set K sen I I K ,仍然不能满足要求。