人教版高中数学 教案+学案综合汇编 第5章:平面向量 课时2
- 格式:doc
- 大小:116.44 KB
- 文档页数:2
高中数学人教版平面向量教案一、引言平面向量是高中数学中的重要内容之一。
本教案将以人教版教材为基础,以平面向量的定义、运算和性质为主线,结合具体例题,帮助学生深入理解和掌握平面向量的基本概念和运算方法。
二、教学目标1. 理解平面向量的定义,掌握向量的表示方法。
2. 掌握平面向量的加法、减法、数乘和数量积的运算法则。
3. 熟悉平面向量的基本性质和运算性质,能够灵活应用于实际问题的解决。
4. 培养学生的逻辑思维和问题解决能力,提高数学抽象思维和推理能力。
三、教学内容1. 向量的定义和表示(1) 向量的定义(2) 向量的表示:坐标表示、标量表示和分量表示;(3) 向量的相等和零向量。
2. 向量的运算(1) 向量的加法:几何法和坐标法;(2) 向量的减法:几何法和坐标法;(3) 向量的数乘;(4) 向量的数量积:定义、运算法则和性质。
3. 平面向量的性质和应用(1) 零向量的性质;(2) 相反向量的性质;(3) 平行向量和共线向量的性质;(4) 向量的模长、单位向量和方向角的计算;(5) 向量运算在几何问题中的应用。
四、教学过程1. 导入部分向学生介绍平面向量的概念和重要性,引导学生思考与向量相关的实际问题,并让学生列举几个例子。
2. 向量的定义和表示(1) 在黑板上给出向量的定义:有大小和方向的量称为向量。
(2) 引导学生通过几何法和坐标法来表示向量,与学生共同讨论向量表示的不同方法和意义。
(3) 教师通过示例向学生解释向量相等和零向量的概念。
3. 向量的运算(1) 向学生介绍向量的加法,通过几何法和坐标法来解释加法的过程和规则。
(2) 类似地,向学生介绍向量的减法和数乘运算,让学生通过例题来深入理解和掌握运算法则。
(3) 提醒学生注意向量运算的几何意义和规律性。
4. 平面向量的性质和应用(1) 引导学生发现并探讨零向量的性质,了解零向量在运算中的特殊作用。
(2) 让学生通过实例了解相反向量的性质和应用。
第二十七教时教材:复习六——解斜三角形目的:巩固对正弦、余弦的掌握,并能较熟练地应用解决具体问题。
过程:一、复习:1︒两个定理 2︒两个定理能解决的问题 二、 例题:1.证明射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A证一:右边 =a aa acbc a c ab c b a b==-++-+22222222222= 左边 证二:右边 = 2Rsin B cos C + 2Rsin C cos B =2Rsin(B +C )=2Rsin A = a = 左边其余两式同 2.已知:在△ABC 中,∠A =45︒,AB =6,BC =2,解此三角形。
解一:232226sin sin sin sin sin =⨯==⇒==BC A AB C B AC A BC C AB ∴当∠C = 60︒时, ∠B = 75︒ ∴13sin sin +==A BBC AC ∴当∠C = 120︒时, ∠B = 15︒ ∴13sin sin -==ABBC AC 解二:设AC = b ,由余弦定理: 45cos 62)6(422b b -+=即:02322=+-b b 解得:13±=b再由余弦定理:21cos ±=C ∴∠C = 60︒或120︒, ∠B = 75︒或15︒3.在△ABC 中,若22tan tan b a B A =,判断△ABC 的形状。
解一:由正弦定理:B A BAA A AB B A 2sin 2sin sin sin cosA cosB sin sin cos sin cos sin 22=∴==即:∴2A = 2B 或 2A = 180︒ - 2B 即:A = B 或 A + B = 90︒ ∴△ABC 为等腰或直角三角形解二: 由题设:22222222222222sin cos cos sin ba Rb bc a c b ac b c a R a b a B A B A =⋅-+-+⋅⇒= 化简:b 2(a 2 + c 2 - b 2) = a 2(b 2 + c 2 - a 2) ∴(a 2 -b 2)(a 2 + b 2 - c 2)=0 ∴a = b 或 a 2 + b 2 = c 2 ∴△ABC 为等腰或直角三角形4.如图:在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端C 对于山坡的斜度为 15︒,向山顶前进100m 后,又从点B 测得斜度为45︒,假设建筑物高50m , 求此山对于地平面的斜度θ。
第五章 平面向量第一教时教材:向量目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。
过程:一、开场白:课本P93(略)实例:老鼠由A 向西北逃窜,猫在B 处向东追去,问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了。
二、 提出课题:平面向量1.意义:既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等注意:1︒数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。
2︒从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2. 向量的表示方法: 1︒几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度记作(注意起讫)2︒字母表示法:AB 可表示为a (印刷时用黑体字)P95 例 用1cm 表示5n mail (海里)3. 模的概念:向量AB 记作:|AB | 模是可以比较大小的4. 两个特殊的向量:1︒零向量——长度(模)为0的向量,记作0。
0的方向是任意的。
注意0与0的区别2︒单位向量——长度(模)为1个单位长度的向量叫做单位向量。
例:温度有零上零下之分,“温度”是否向量?答:不是。
因为零上零下也只是大小之分。
例:AB 与BA 是否同一向量?A BA(起点)B (终点) a答:不是同一向量。
例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
三、 向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。
记作:a ∥b ∥c规定:0与任一向量平行2. 相等向量:长度相等且方向相同的向量叫做相等向量。
记作:a =b规定:0=0任两相等的非零向量都可用一有向线段表示,与起点无关。
3. 共线向量:任一组平行向量都可移到同一条直线上 ,所以平行向量也叫共线向量。
第十九教时教材:正弦定理和余弦定理的复习《教学与测试》76、77课目的:通过复习、小结要求学生对两个定理的掌握更加牢固,应用更自如。
过程:一、复习正弦定理、余弦定理及解斜三角形 二、例一 证明在△ABC 中A a sin =B b sin =Ccsin =2R ,其中R 是三角形外接圆半径 证略 见P159注意:1.这是正弦定理的又一种证法(现在共用三种方法证明)2.正弦定理的三种表示方法(P159)例二 在任一△ABC 中求证:0)sin (sin )sin (sin )sin (sin =-+-+-B A c A C b C B a证:左边=)sin (sin sin 2)sin (sin sin 2)sin (sin sin 2B A C R A C B R C B A R -+-+-=]sin sin sin sin sin sin sin sin sin sin sin [sin 2B C A C A B C B C A B A R -+-+-=0=右边例三 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c解一:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒ 当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===B C b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解二:设c =x 由余弦定理 B ac c a b cos 2222-+= 将已知条件代入,整理:0162=+-x x解之:226±=x 当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 从而A=60︒ C=75︒当226-=c 时同理可求得:A=120︒ C=15︒ 例四 试用坐标法证明余弦定理 证略见P161例五 在△ABC 中,BC=a , AC=b , a, b 是方程02322=+-x x 的两个根,且2cos(A+B)=1 求 1︒角C 的度数 2︒AB 的长度 3︒△ABC 的面积 解:1︒cosC=cos[π-(A+B)]=-cos(A+B)=-21∴C=120︒ 2︒由题设:⎩⎨⎧=-=+232b a b a∴AB 2=AC 2+BC 2-2AC •BC •osC120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a 即AB=103︒S △ABC =2323221120sin 21sin 21=⋅⋅== ab C ab例六 如图,在四边形ABCD 中,已知AD ⊥CD, AD=10, AB=14, ∠BDA=60︒,∠BCD=135︒ 求BC 的长 解:在△ABD 中,设BD=x则BDA AD BD AD BD BA ∠⋅⋅-+=cos 2222DCBA即 60cos 1021014222⋅⋅-+=x x 整理得:096102=--x x解之:161=x 62-=x (舍去) 由余弦定理:BCD BD CDB BC ∠=∠sin sin ∴2830sin 135sin 16=⋅=BC 例七 (备用)△ABC 中,若已知三边为连续正整数,最大角为钝角,1︒求最大角 2︒求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积。
[人教版]高一数学第五章 平面向量 第五童平面向量 敎材:向量目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与 已知向量相等,根据图形判定向量是否平行、共线、相等。
a®:一、 开场白:课本P93 (略)实例:老鼠由A 向西北逃窜,猫在B 处向东追去, 问:猫能否追到老一鼠?(画图)结论:猫的速度再快也没用,因为方向借,了。
二、 提出课题:平面向量1-意义:既有大小又有方向的量叫向量。
例:力、速度、加速度、冲 量等 注意:1。
数量与向量的区别:.数量只有大小,是一个代数量,可以进行代数运算、比较 大小:向量有方向,大小,双重性,不能比较大小。
2。
从19世纪末到20世纪初,向量就成为一套优度通性的数学 体系,用以研究空间性质。
2. 向,量•的表示方法: 1。
几何表示法:点一射线有向线段——具有一定方向的线段有向线段的三要素:起点、方向、长 记作(注意起讫) 2。
字母表示法:48可表示为a (印刷时用黑体字)记作:|A8| 模是可以比较大小的4.两个特殊的向量:1。
零向量一■长度(模)为0的向量,记作6。
6的方向是任意的。
注意6与0的区别2。
单位向量一一长度(模)为1个单位长度的向量叫做单位向量。
例:温度有零上零下之分,“温度”是否向量? 答:不是。
因为零上零下也只是大小之分。
例:旨百与万冒是否同一向量?P95例 用1cm 表示5n mail (海里)3.模的概念:向量新方的大小一长度称为向量的模。
A (起点)B(终北答:不是同一向量“°例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
三、向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。
记作:a //b // c规定:6与任一.向量平行2.相等向量:长度相等且方向相同的向量叫做相等向量。
/记作:a=b规定:6=6任两相,等的非零向量都可用一有向线段表示,与起点无关。
第九教时教材:向量平行的坐标表示目的:复习巩固平面向量坐标的概念,掌握平行向量充要条件的坐标表示,并且能用它解决向量平行(共线)的有关问题。
过程:一、复习:1.向量的坐标表示 (强调基底不共线,《教学与测试》P145例三)2.平面向量的坐标运算法则练习:1.若M(3, -2) N(-5, -1) 且 21=MP MN , 求P 点的坐标; 解:设P(x, y) 则(x-3, y+2)=21(-8, 1)=(-4, 21) ⎪⎩⎪⎨⎧=+-=-21243y x ∴⎪⎩⎪⎨⎧-=-=231y x ∴P 点坐标为(-1, -23) 2.若A(0, 1), B(1, 2), C(3, 4) 则AB -2BC =(-3,-3)3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD 是梯形。
解:∵AB =(-2, 3) DC =(-4, 6) ∴AB =2DC ∴AB ∥DC 且 |AB |≠|DC | ∴四边形ABCD 是梯形二、1.提出问题:共线向量的充要条件是有且只有一个实数λ使得b ρ=λa ρ,那么这个充要条件如何用坐标来表示呢?2.推导:设a ρ=(x 1, y 1) b ρ=(x 2, y 2) 其中b ρ≠a ρ由a ρ=λb ρ (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ:x 1y 2-x 2y 1=0结论:a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=0注意:1︒消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ρ≠0∴x 2, y 2中至少有一个不为02︒充要条件不能写成2211x y x y = ∵x 1, x 2有可能为03︒从而向量共线的充要条件有两种形式:a ρ∥b ρ (b ρ≠0)01221=-=⇔y x y x b a λ三、应用举例例一(P111例四) 例二(P111例五)例三 若向量a ρ=(-1,x)与b ρ=(-x, 2)共线且方向相同,求x 解:∵a ρ=(-1,x)与b ρ=(-x, 2) 共线 ∴(-1)×2- x •(-x )=0∴x=±2 ∵a ρ与b ρ方向相同 ∴x=2例四 已知A(-1, -1) B(1,3) C(1,5) D(2,7) 向量AB 与CD 平行吗?直线AB与平行于直线CD 吗?解:∵AB =(1-(-1), 3-(-1))=(2, 4) CD =(2-1,7-5)=(1,2) 又:∵2×2-4-1=0 ∴AB ∥CD又:AC =(1-(-1), 5-(-1))=(2,6) AB =(2, 4) 2×4-2×6≠0 ∴AC 与AB 不平行∴A ,B ,C 不共线 ∴AB 与CD 不重合 ∴AB ∥CD四、练习:1.已知点A(0,1) B(1,0) C(1,2) D(2,1) 求证:AB ∥CD2.证明下列各组点共线:1︒ A(1,2) B(-3,4) C(2,3.5) 2︒ P(-1,2) Q(0.5,0) R(5,-6)3.已知向量a ρ=(-1,3) b ρ=(x,-1)且a ρ∥b ρ 求x五、小结:向量平行的充要条件(坐标表示)六、作业:P112 练习 4 习题5.4 7、8、9《教学与测试》P146 4、5、6、7、8及思考题。
第十三教时教材:平面向量的数量积的坐标表示目的:要求学生掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示的充要条件。
过程:一、复习:1.平面向量的坐标表示及加、减、实数与向量的乘积的坐标表示 2.平面向量数量积的运算 3.两平面向量垂直的充要条件 4.两向量共线的坐标表示: 二、 课题:平面两向量数量积的坐标表示1.设a = (x 1, y 1),b = (x 2, y 2),x 轴上单位向量i ,y 轴上单位向量j , 则:i ⋅i = 1,j ⋅j = 1,i ⋅j = j ⋅i = 0 2.推导坐标公式:∵a = x 1i + y 1j , b = x 2i + y 2j∴a ⋅b = (x 1i + y 1j )(x 2i + y 2j ) = x 1x 2i 2 + x 1y 1i ⋅j + x 2y 1i ⋅j + y 1y 2j 2 = x 1x 2 + y 1y 2从而获得公式:a ⋅b = x 1x 2 + y 1y 2例一、设a = (5, -7),b = (-6, -4),求a ⋅b解:a ⋅b = 5×(-6) + (-7)×(-4) = -30 + 28 = -2 3.长度、角度、垂直的坐标表示1︒a = (x , y ) ⇒ |a|2 = x 2 + y 2 ⇒ |a | =22y x +2︒若A = (x 1, y 1),B = (x 2, y 2),则=221221)()(y y x x -+-3︒ co s θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=4︒∵a ⊥b ⇔ a ⋅b = 0 即x 1x 2 + y 1y 2 = 0(注意与向量共线的坐标表示原则)4.例二、已知A (1, 2),B (2, 3),C (-2, 5),求证:△ABC 是直角三角形。
证:∵=(2-1, 3-2) = (1, 1), = (-2-1, 5-2) = (-3, 3) ∴⋅=1×(-3) + 1×3 = 0 ∴⊥∴△ABC 是直角三角形三、补充例题:处理《教学与测试》P153 第73课例三、已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x 。
第十八教时教材:余弦定理目的:要求学生掌握余弦定理及其证明,并能应用余弦定理解斜三角形。
过程:一、复习正弦定理及正弦定理能够解决的两类问题。
提出问题:1.已知两边和它们的夹角能否解三角形?2.在Rt △ABC 中(若C=90︒)有:222b a c += 在斜三角形中一边的平方与其余两边平方和及其夹角还有什么关系呢?二、提出课题:余弦定理 1.余弦定理的向量证明: 设△ABC 三边长分别为a, b, c AC =AB +BC•=(+)•(+)=2+2•+ 2=| |2+2||•||cos(180︒- B)+||2=22cos 2a B ac c +-即:B ac c a b cos 2222-+=同理可得:A bc c b a cos 2222-+= C ab b a c cos 2222-+=2.语言叙述:三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍。
3.强调几个问题:1︒熟悉定理的结构,注意“平方”“夹角”“余弦”等 2︒知三求一3︒当夹角为90︒时,即三角形为直角三角形时即为勾股定理(特例)4︒变形:bc a c b A 2cos 222-+= ac b c a B 2cos 222-+= acc b a C 2cos 222-+=三、余弦定理的应用能解决的问题:1.已知三边求角2.已知三边和它们的夹角求第三边例一、(P130例4) 在△ABC 中,已知a =7, b =10, c =6 求A,B,C (精确到期1︒) 解略例二、(P131例5) 在△ABC 中,已知a =2.730, b =3.696, C=82︒28’解这个三角形(边长保留四个有效数字,角度精确到期1’) 解略例三、设a =(x 1, y 1) b =(x 2, y 2) a与b 的夹角为θ (0≤θ≤π),求证:x 1x 2+ y 1y 2=|a ||b|cos θ证:如图:设a , b起点在原点,终点为A ,B则A=(x 1, y 1) B=(x 2, y 2) =b -a在△ABC 中,由余弦定理 |b -a |2=|a |2+|b |2-2|a ||b| cos θ∵|b -a |2=|AB |2=|(x 2-x 1, y 2-y 1)|2=(x 2-x 1)2+( y 2-y 1)2 |a |2=x 12+y 12|b |2= x 22+y 22 ∴(x 2-x 1)2+( y 2-y 1)2= x 12+y 12+ x 22+y 22-2|a||b| cos θ∴x 1x 2+ y 1y 2=|a ||b |cos θ 即有a •b = x 1x 2+ y 1y 2=|a ||b|cos θ四、小结:余弦定理及其应用五、作业:P131练习 P132 习题5.9 余下部分ABCcabOBAab。
第十四教时教材:平移目的:要求学生理解“平移”的概念和平移的几何意义,并掌握平移公式,能运用公式解决有关具体问题。
过程:一、平移的概念:点的位置、图形的位置改变,而形状、大小没有改变,从而导致函数的解析式也随着改变。
这个过程称做图形的平移。
(作图、讲解) 二、 平移公式的推导:1.设P (x , y )是图形F图象F ’上的对应点为P ’(x ’, y ’)——可以看出一个平移实质上是一个向量。
2.设= (h , k ),即:'+=∴(x ’, y ’) = (x , y ) + (h , k ) ∴⎩⎨⎧+=+=ky y hx x '' —— 平移公式3.注意:1︒它反映了平移后的新坐标与原坐标间的关系 2︒知二求一3︒这个公式是坐标系不动,点P (x , y )按向量a = (h , k )平移到点P ’(x ’, y ’)。
另一种平移是:点不动,把坐标系平移向量-a ,即:⎩⎨⎧-=-=k y y hx x ''。
这两种变换使点在坐标系中的相对位置是一样的, 这两个公式作用是一致的。
三、应用:例一、(P 121 例一)1.把点A (-2, 1)按a = (3, 2)平移,求对应点A ’的坐标(x ’, y ’)。
2.点M (8, -10)按a 平移后对应点M ’的坐标为(-7, 4),求a 。
解:1.由平移公式:⎩⎨⎧=+==+-=321y'132x' 即对应点A ’的坐标为(1, 3)2.由平移公式:⎩⎨⎧=-=⇒⎩⎨⎧+-=+=-141510487k h k h 即a 的坐标为(-15, 14) 例二、将函数y = 2x 的图象l 按a = (0, 3)平移到l ’,求l ’的函数解析式。
解:设P (x , y )为l 上任一点,它在l ’上的对应点为P ’(x ’, y ’)由平移公式:⎩⎨⎧⎩⎨⎧-==⇒+=+=3''3'0'y y x x y y x x代入y = 2x 得:y ’ - 3 = 2x ’ 即:y ’ = 2x ’ + 3按习惯,将x ’、y ’写成x 、y 得l ’的解析式:y = 2x + 3(实际上是图象向上平移了3个单位) 例三、已知抛物线y = x 2+ 4x + 7,1.求抛物线顶点坐标。
第五章 平面向量§5.1 平面向量的概念及其线性运算【典题导引】例1.如图,在平行四边形OADB 中,设OA a =uu r r ,OB b =uu u r r ,13BM BC =,13CN CD =.试用a r , b r 表示OM uuu r ,ON uuu r ,MN uuu r .例2.设两个非零向量a 与b 不共线.(1)若AB a b =+,28BC a b =+,3()CD a b =-.求证:,,A B D 三点共线;(2)试确定实数k ,使ka b +和a kb +共线.O A B M N C (例1图)例3.已知,,O A B 是不共线的三点,且OP mOA nOB =+(,)m n R ∈.(1)若1m n +=,求证:,,A P B 三点共线;(2)若,,A P B 三点共线,求证:1m n +=.例4.已知点G 是ABO ∆的重心,M 是AB 边的中点.(1)求GA GB GO ++;(2)若PQ 过ABO ∆的重心G ,且O A a =,OB b =,OP ma =,OQ nb =,求证:113m n+=.§5.2 平面向量的基本定理与坐标表示【典题导引】例1.已知(1,1)A 、(3,1)B -、(,)C a b .(1)若,,A B C 三点共线,求,a b 的关系式;(2)若2AC AB =,求点C 的坐标.例2.(2016⋅淮安四模)已知()()()cos ,sin ,3,1,0,m n ααα==-∈π. (1)若m n ⊥,求角α的值;(2)求||m n +的最小值.例3.在平面直角坐标系xOy 中,已知(1,2)p =-u r ,(8,0)A ,(,)B n t ,(sin ,)C k t θ,其中02πθ≤≤.(1)若AB p ⊥u u u r u r ,且AB =uu u r ,求向量OB uu u r ;(2)若向量//AC p uuu r u r ,当k 为大于4的某个常数时,sin t θ取最大值4,求此时OA uur 与OC uuu r夹角的正切值.例4.(2017⋅苏锡常镇二模改编)在ABC ∆中,AB AC ⊥,1AB t=,AC t =,P 是ABC ∆所 在平面内一点,若4||||AB AC AP AB AC =+,求PBC ∆面积的最小值.§5.3 平面向量的数量积【典题导引】例1.(2017⋅苏锡常镇二模)已知向量m ,1)x =-,n 2(sin ,cos )x x =.(1)当π3x =时,求⋅m n 的值;(2)若π0,4x ⎡⎤∈⎢⎥⎣⎦,且⋅m n 12=,求cos 2x 的值.例2.(1)已知向量()1,1=a ,()1,1=-b ,设向量c 满足()()230-⋅-=a c b c ,则c 的最大值为 .(2)点M 的边长为2的正方形ABCD 内或边界上一动点,N 是边BC 的中点,则AN AM ⋅的最大值是________;(3)若,,a b c 均为单位向量,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的最大值为________.例3.如图,平面四边形ABCD 中,点E ,F 分别是边AD ,BC 的中点,设AB a =,DC b =.(1)求证:AD BC a b -=-;(2)若4AB =,CD =, 3EF =.①求a b ⋅的值;②若15AD BC ⋅=,求AC BD ⋅的值.例4.已知ABC ∆中,2AB =,BC =3AC =. (1)求AC AB ⋅的值;(2)设点O 是ABC ∆的外心.①求证:212AO AB AB ⋅=,212AO AC AC ⋅=; ②当AO pAB qAC =+时,求实数p 、q 的值.§5.4 平面向量的综合应用【典题导引】例1.如图,在平面直角坐标系xOy 中,点(1,0)A ,点B 在单位圆上,AOB θ∠=(0θπ<<).(1)若点34(,)55B -,求tan()4πθ+的值; (2)若OA OB OC +=,1813OB OC ⋅=,求cos()3πθ-.例2.已知向量1(cos cos )x x m =,,1(sin )222x x n =,[0,]x π∈. (1)设函数()f x m n =⋅,求函数()f x 的最大值和最小值以及对应的x 值;(2)若//m n ,求tan x 的值.例3.(2015⋅扬州期末)已知点(1,0)A -,(0,1)B ,点(,)P x y 为直线1y x =-上的一个动点.(1)求证:APB ∠恒为锐角; (2)若四边形ABPQ 为菱形,求BQ AQ ⋅u u u r u u u r 的值.例4.在ABC ∆中,已知(sin sin sin )(sin sin sin )3sin sin A B C B C A B C +++-=.(1)求角A 的大小;(2)设D 为BC 的中点,O 为ABC ∆的外心(三角形各边中垂线的交点).①当BC =ABC ∆的面积为AO AD ⋅uuu r uuu r 的值;②设AD 为ABC ∆的中线,当BC =时,求AD 长的最大值.。
人教版高中数学 教案+学案 综合汇编
第4章 三角函数
第二教时
教材:向量的加法
目的:要求学生掌握向量加法的意义,并能运用三角形法则和平行四边形法则作几个向量的和向量。
能表述向量加法的交换律和结合律,并运用它进行向量计算。
过程:
一、复习:向量的定义以及有关概念
强调:1︒向量是既有大小又有方向的量。
长度相等、方向相同的向量相等。
2︒正因为如此,我们研究的向量是与起点无关的自由向量,即任何向量可以在
不改变它的方向和大小的前提下,移到任何位置。
二、 提出课题:向量是否能进行运算?
1.某人从A 到B ,再从B 按原方向到C ,
则两次的位移和:AC BC AB =+
2.若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:AC BC AB =+ 3.某车从A 到B ,再从B 改变方向到C , 则两次的位移和:AC BC AB =+ 4.船速为AB ,水速为BC , 则两速度和:AC BC AB =+
提出课题:向量的加法
三、1.定义:求两个向量的和的运算,叫做向量的加法。
注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则:
强调: 1︒“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2︒可以推广到n 个向量连加 3︒a a a =+=+00
A B C
C A B
A B
C
A B
C
a +
b A
A A
B B B
C C C a +b a +b a a b b b a a
4︒不共线向量都可以采用这种法则——三角形法则 3.例一、已知向量a 、b ,求作向量a +b 作法:在平面内取一点, 作a OA = b AB = 则b a OB +=
4.加法的交换律和平行四边形法则
上题中b +a 的结果与a +b 是否相同 验证结果相同 从而得到:1︒向量加法的平行四边形法则 2︒向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =
则(a +b ) +c =AD CD AC =+ a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行。
四、例二(P98—99)略
五、小结:1︒向量加法的几何法则 2︒交换律和结合律
3︒注意:|a +b | > |a | + |b |不一定成立,因为共线向量不然。
六、作业:P99—100 练习 P102 习题5.2 1—3
O
A
B
a
a
a
b
b
b
A
B
C
D
a
c
a +b+c
b a +b b+c。