第七章色谱分析法
- 格式:ppt
- 大小:2.47 MB
- 文档页数:126
第6章核磁1.填空和判断具有核磁矩的原子核有很多,目前研究和应用对广泛的核磁共振谱是____谱和____谱。
2.在1H NMR中,化合物CH3X质子的化学位移随卤素X的电负性的增加向_______移动。
3.在核磁共振波谱法中,影响相对化学位移的因素有___________、___________、________________和___________。
4.核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。
5.自旋量子数I =1的原子核在静磁场中,相对于外磁场可能有两种取向。
1具有以下自旋量子数的原子核中,目前研究最多、用途最广的是_____A. I = 1/2;B. I = 0;C. I = 1;D. I > 12.下列化合物中的质子,化学位移最小的是_____A. CH3Br;B. CH4;C. CH3I;D. CH3F3.下列原子核没有自旋角动量的是_____A. 14N7;B. 28Si14;C. 31P15;D. 33S164.当外磁场强度H0逐渐增大时,质子由低能级跃迁至高能级所需要的能量_____A. 不变;B. 变小;C. 变大;D. 均有可能5在核磁共振波谱分析中,当质子核外电子云密度增加时_____A.屏蔽效应增强,相对化学位移大,峰在高场出现;B.屏蔽效应减弱,相对化学位移大,峰在高场出现;C.屏蔽效应增强,相对化学位移小,峰在高场出现;D.屏蔽效应减弱,相对化学位移小,峰在低场出现。
6核磁共振波谱法在广义上说也是一种吸收光谱法,但它与紫外-可见及红外吸收光谱法的关键差异之一是_____A.吸收电磁辐射的频率区域不同;B检测信号的方式不同;C记录谱图的方式不同;D样品必须在强磁场中测定。
7.乙烯质子的相对化学位移与乙炔质子的相对化学位移相比_____,其原因是_____。
A较大;因为磁各向异性效应,使乙烯质子处在屏蔽区,乙炔质子处在去屏蔽区;B较大;因为磁各向异性效应,使乙烯质子处在去屏蔽区,乙炔质子处在屏蔽区;C较小;因为磁各向异性效应,使乙烯质子处在去屏蔽区,乙炔质子处在屏蔽区;D较小;因为磁各向异性效应,使乙烯质子处在屏蔽区,乙炔质子处在去屏蔽区。
第七章程序升温气相色谱法第一节方法概述对于沸点范围宽的多组分混合物可以采用程序升温方法。
即在一个分析周期内,柱温随时间不断升高,在程序开始时,柱温较低,低沸点的组分得到分离,中等沸点的组分移动很慢,高沸点的组分还停留在柱口附近;随着柱温的不断升高,组分由低沸点到高沸点依次得到分离。
一、方法特点恒温时最佳柱温的选择:组分沸点范围不宽时用恒温分析。
填充柱选择组分的平均沸点左右;毛细管柱选择比组分的平均沸点低30℃左右。
如果样品是宽沸程、多组分混合物(例如香料、酒类等),常采用程序升温毛细管柱气相色谱法。
图7-1是恒温分析(IGC)和程序升温(PTGC)的色谱图比较,(a)(b)是恒温分析,(a)柱温较低,恒温45℃时低沸点的组分得到分离,高沸点组分的峰出不来。
(b)柱温较高,恒温120℃时,低沸点的组分分离不好。
(C)采用了程序升温方法(30-180)℃,所有组分得到很好分离。
图7-1恒温分析和程序升温比较二、升温方式升温方式有单阶程序升温(恒温--线性--恒温)和多阶程序升温。
如图7-2所示,单阶程序升温在低温时分离低沸点的组分,再升温,高温时分离高沸点的组分。
图7-2单阶程序升温和多阶程序升温三、程序升温与恒温气相色谱法的比较:表7-1和图7-3、图7-4是恒温分析和程序升温的比较。
参数LGC PTGC样品与沸点范围不十分复杂,沸点范围窄样品复杂,沸点范围宽进样量<1-5μl≤10μl进样速度对第一个色谱峰,进样时间应小于0.05W h/2(半峰宽)进样方式直接进样分流进样柱上进样直接进样,分流-不分流进样,柱上进样,多维柱切换进样,顶空和裂解器进样载气纯度无严格要求需高纯载气峰容量≤10个组分>10个组分固定相选择可广泛选用固定相只能选用耐高温、低流失固定相对色谱峰的检测对保留时间长的组分检测较不灵敏随温度速率增加,可改进对保留时间长的高沸点组分的检测灵敏度载气流速控制方式恒压恒流(使用稳流阀)分析速度慢快分析结果重现性好重现性差图7-3正构烷烃的恒温分析和程序升温的比较图7-4 醇类的恒温分析和程序升温的比较第二节基本原理一、保留温度在程序升温中,组分极大点浓度流出色谱柱时的柱温叫保留温度,其重要性相当于恒温中的t R,V R。
现代食品检测技术第一部分——色谱分析——高效液相色谱第七章高效液相色谱分析法High performance liquid chromatograph 第一节高效液相色谱的特点与仪器第二节主要分离类型与原理第三节液相色谱的固定相与流动相第四节影响分离的因素与操作条件的选择第五节新型液相色谱简介2010-1-25第一节高效液相色谱的特点与仪器2010-1-25一、高效液相色谱法的特点在经典的液体柱色谱法基础上,引入了气相色谱法的理论。
在技术上采用了高压泵、高效固定相和高灵敏度检测器,实现了分析速度快、分离效率高和操作自动化。
高效液相色谱法的突出特点:1)高效(柱效约为30000n /米)2)高速(较经典色谱法))3)高压(150 -350*105Pa4)高灵敏度(高灵敏度的检测器:紫外10-9g,荧光:10-11g )2010-1-251. HPLC与经典LC区别主要区别:固定相差别,输液设备和检测手段1)经典LC:仅做为一种分离手段柱内径1~3cm,固定相粒径>100μm 且不均匀;常压输送流动相,柱效低(H↑,n↓);分析周期长、无法在线检测。
2)HPLC:分离和分析柱内径2~6mm,固定相粒径<10μm(球形,匀浆装柱);高压泵输送流动相,柱效高(H↓,n↑);分析时间大大缩短、可以在线检测。
2010-1-252. HPLC与GC差别9相同:兼有分离和分析功能,均可以在线检测9主要差别:分析对象、流动相及操作条件的差别1)分析对象GC:能气化、热稳定性好、且沸点较低的样品;高沸点、挥发性差、热稳定性差、离子型及高聚物的样品不可检测,仅能分析有机物的20%。
HPLC:溶解后能制成溶液的样品,不受样品挥发性和热稳定性的限制;分子量大、难气化、热稳定性差及高分子和离子型样品均可检测,用途广泛,占有机物的80%。
2010-1-252)流动相差别GC:流动相为惰性气体组分与流动相无亲合作用力,只与固定相作用HPLC:流动相为液体流动相与组分间有亲合作用力,为提高柱的选择性、改善分离度增加了因素,对分离起很大作用流动相种类较多,选择余地广流动相极性和pH值的选择也对分离起到重要作用选用不同比例的两种或两种以上液体作为流动相可以增大分离选择性3)操作条件差别GC:加温操作HPLC:室温;高压(液体粘度大)2010-1-25二、液相色谱仪器2010-1-25三、流程及主要部件Process and main assembly of HPLC 1.流程2010-1-252.主要部件(1) 高压输液泵♥主要部件之一,压力:150~350×105Pa。
本章是仪器分析传统分类中的色谱分析部分,主要分析对象是有机化合物,该方法的使用范围广,实用价值强。
内容包括气相色谱和液相色谱,不仅介绍色谱分析方法的理论知识,还强调它的实际应用。
本章计划学时数为8学时。
第一节概述一、色谱法简介色谱法是1901年由俄国植物学家茨维特提出,最初的认识是在于它的分离价值,用于分离植物中的色素等有色物质。
现代的发展,不再局限于有色物质,而且大量用于分离无色物质。
二、色谱法分类按不同的条件有多种分离方法⑴按两相物理状态分类用气体作流动相称为气相色谱,用液体作流动相称为液相色谱。
⑵按固定相的形式分类柱色谱纸色谱:薄层色谱:⒊按分离过程中物理化学原理分类吸附色谱:如气—固吸附色谱、液—固吸附色谱分配色谱:如气—液分配色谱、液—液分配色谱按其它原理:离子色谱、凝胶色谱、亲和色谱三、气相色谱分离过程及有关术语⒈气相色谱分离过程A、B两组分组成的混合物,由载气携带进入色谱柱。
由于A、B两组分在固定相和流动相之间的分配系数不同,当A、B两组分随载气沿柱出口方向不断移动时,就会产生差速迁移而逐渐分离。
⒉气相色谱常用术语⑴色谱峰:组分从色谱柱流出,检测器对该组分的响应信号随时间变化所形成的峰形曲线。
⑵基线:仅有载气通过色谱柱时,检测响应信号随时间变化的曲线。
稳定的基线应该是一条平行于时间坐标的直线。
⑶色谱峰高h:色谱峰顶点与基线之间的垂直距离⑷色谱峰区域宽度标准偏差δ:它是0.607倍峰高处色谱峰宽度的一半半高峰宽W1/2:峰高一半处对应的色谱峰宽W1/2=2.354δ色谱峰底宽wb:色谱峰两侧拐点作切线与基线交点间距离wb=4δ⑸保留值保留时间tR:组分通过色谱柱所需的时间死时间t0:不被保留的组分从进样到色谱峰最大值出现的时间调整保留时间tRˊ:扣除死时间后的保留时间tRˊ=tR-t0保留体积VR:VR=tR F0—色谱柱出口载气流量死体积V0:V0=t0F0调整保留体积VRˊ:VRˊ=VR-V0相对保留值rz.1第二节气相色谱理论基础内容提要:塔板理论、速率理论、色谱基本分离方程重点、难点:速率理论授课方式:讲授一、塔极理论⒈分配平衡:用分配系数、分配比来描述组分在给定两相间的分配行为。