最新九年级数学下册-解三角形锐角三角函数教案-人教新课标版
- 格式:doc
- 大小:89.00 KB
- 文档页数:3
锐角三角函数教学目标:⑴经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
⑵能根据正弦概念正确进行计算教学重点:能根据正弦概念正确进行计算教学过程:情景引入问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?二、合作交流1、思考一:如果使出水口的高度为50m,那么需要准备多长的水管?;如果使出水口的高度为a m,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的如何,这个角的对边与斜边的比值都等于2、思考二:如图,任意画一个Rt△ABC,使∠C=90o,∠A=45o,计算∠A的对边与斜边的比,能得到什么结论?结论:直角三角形中,45°角的对边与斜边的比值3、思考三:一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠A=∠A`=α,那么与有什么关系?结论:在直角三角形中,当锐角A的度数一定时,不管三角形的如何,∠A的对边与斜边的比是。
4、正弦函数概念:定义:在Rt△ABC中,∠C=90°,我们把锐角A的的比叫做∠A的正弦。
记作sinA=例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°= 2、如图,R t△ABC中,∠C=90度,CD⊥AB,图中sinB可由哪两条线段比求得。
例2:如图,在Rt△ABC中,∠C=90°,AC=6,sinB=1312,求sinA。
跟踪训练:如图,在Rt△ABC中,∠C=90°,BC=2,sinA=32,则AB= .AC= 。
人教版数学九年级下册教学设计28.1《锐角三角函数》一. 教材分析人教版数学九年级下册第28.1节《锐角三角函数》是初中数学的重要内容,主要介绍了锐角三角函数的概念、定义及应用。
本节内容是学生对三角形知识深入理解的基础上进行学习的,对于培养学生的逻辑思维能力、空间想象能力和数学应用能力具有重要意义。
教材通过丰富的实例,引导学生探究锐角三角函数的定义,并运用函数思想解决实际问题。
二. 学情分析九年级的学生已经掌握了三角形的基本知识,具有较好的逻辑思维能力和空间想象能力。
但是,对于锐角三角函数的概念和应用,部分学生可能会感到抽象和难以理解。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的特点进行针对性的教学。
三. 教学目标1.知识与技能:使学生掌握锐角三角函数的概念、定义及性质,能够运用锐角三角函数解决实际问题。
2.过程与方法:通过探究活动,培养学生合作交流、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力和创新意识。
四. 教学重难点1.重点:锐角三角函数的概念、定义及性质。
2.难点:锐角三角函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识锐角三角函数,激发学生的学习兴趣。
2.探究教学法:学生进行小组讨论,共同探究锐角三角函数的性质,培养学生的合作意识。
3.案例教学法:通过典型例题,讲解锐角三角函数在实际问题中的应用,提高学生的解决问题的能力。
六. 教学准备1.教学PPT:制作精美的教学PPT,展示锐角三角函数的相关概念、定义及应用。
2.教学案例:挑选具有代表性的例题,供课堂讲解和练习使用。
3.学习素材:为学生提供相关的学习资料,帮助学生巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑设计、工程测量等,引导学生认识锐角三角函数,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示锐角三角函数的概念、定义及性质,让学生初步了解并掌握相关知识。
锐角三角函数(1)【教学目标】1.探索直角三角形中锐角三角函数值与三边之间的关系。
2.掌握三角函数定义式:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠, 【重点难点】重点:三角函数定义的理解。
难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。
【教学过程】 一、情境导入如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB 和A ′B ′相等,∠α和∠β大小不同, 那么它们的高度AC 和 A ′C ′相等吗?AB 、AC 、BC 与∠α,A ′B ′、A ′C ′、B ′C ′与∠β之间有什么关系呢? ------导出新课二、新课教学 1、合作探究(1) Rt △AB 1C 1和Rt △ABC 有什么关系? B 1C 1AB 1,AC AB 和AC 1AB 1,BC AC 和B 1C 1AC 1有什么关系?(2)和(3)如果改变B 在AB 1上的位置呢?2、三角函数的定义在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA =斜边的对边A ∠ ∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即cosA=斜边的邻边A ∠ ∠A 的对边与∠A 的邻边的比叫做∠A 的正切(tangent),记作tanA ,即 锐角A 的正弦、余弦和正切统称∠A 的三角函数.C′B′A′C B A 213米3米2米4米βaBC AB a BB 1C 1C A tanA=∠A的对边∠A的邻边tanA=∠A的对边∠A的邻边注意:sinA ,cosA ,tanA 都是一个完整的符号,单独的 “sin ”没有意义,其中A 前面的“∠”一般省略不写。
师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗? 师:(点拨)直角三角形中,斜边大于直角边. 生:独立思考,尝试回答,交流结果.明确:0<sina <1,0<cosa <1.巩固练习:课本第6页课内练习T1、作业题T1、2 3、例题教学:课本第5页中例1.例1 如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3, 求∠A, ∠B 的正弦,余弦和正切. 分析:由勾股定理求出AC 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
锐角三角函数
教学目标
1、初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
2、逐步培养学生观察、比较、分析,概括的思维能力。
3、提高学生对几何图形美的认识。
教学重点: 正弦,余弦,正切概念
教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切
教学过程:
一.探究活动
1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边
的对边A A ∠∠ 3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3
二.探究活动二
1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°
归纳结果
2. 求下列各式的值
(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°
三.拓展提高P82例4.(略)
1. 如图在⊿ABC 中,∠A=30°,tanB=
23,AC=23,求AB 四.小结
五.作业课本p85-86 2,3,6,7,8,10。
人教版九年级数学下册: 28.1 《锐角三角函数》教学设计5一. 教材分析人教版九年级数学下册第28.1节《锐角三角函数》是初中学段数学教学的重要内容,属于锐角三角函数的初步认识和应用。
本节课通过介绍锐角三角函数的概念、定义以及各锐角三角函数间的关系,让学生掌握锐角三角函数的基本知识。
教材内容主要包括:锐角三角函数的定义,正弦、余弦、正切函数的定义及它们之间的关系。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。
但是,对于锐角三角函数这一部分内容,由于涉及到三角函数的初步认识,学生可能存在一定的困难。
因此,在教学过程中,需要注重对学生概念的理解和知识的运用,通过具体例子让学生感受锐角三角函数在实际问题中的应用。
三. 教学目标1.知识与技能:使学生了解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及它们之间的关系。
2.过程与方法:通过观察、分析、归纳等方法,让学生自主探究锐角三角函数的性质,提高学生的问题解决能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的合作精神,使学生感受到数学在实际生活中的应用。
四. 教学重难点1.重点:锐角三角函数的概念及其关系。
2.难点:正弦、余弦、正切函数的定义及其应用。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,让学生感受数学与生活的紧密联系。
2.自主探究法:引导学生观察、分析、归纳锐角三角函数的性质,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,分享学习心得,提高学生的合作能力。
六. 教学准备1.教师准备:熟练掌握锐角三角函数的相关知识,准备教学课件和教学素材。
2.学生准备:预习锐角三角函数的相关内容,了解函数的概念。
七. 教学过程1.导入(5分钟)教师通过生活实例,如测量国旗旗杆的高度,引入锐角三角函数的概念。
引导学生思考:如何利用数学知识解决这个问题?激发学生的学习兴趣。
2.呈现(10分钟)教师讲解锐角三角函数的定义,引导学生观察正弦、余弦、正切函数的图像,让学生初步认识这三个函数的性质。
人教版九年级下册28.1锐角三角函数教学设计
一、教学目标
1.了解锐角三角函数的定义;
2.掌握正弦函数、余弦函数和正切函数的性质和变化规律;
3.能够利用锐角三角函数计算简单的三角函数值。
二、教学重点
1.锐角三角函数的定义;
2.正弦函数、余弦函数和正切函数的性质和变化规律。
三、教学难点
1.利用锐角三角函数计算简单的三角函数值;
2.掌握三角函数的概念和性质。
四、教学过程设计
4.1 概念引入
通过实例,引入锐角三角函数的概念,生动形象地解释三角函数的定义。
4.2 属性讲解
讲解正弦函数、余弦函数和正切函数的属性,包括函数图像、定义域、值域、单调性、奇偶性、周期等。
4.3 计算练习
通过习题,进行计算练习,包括利用平面直角坐标系求出三角函数的值、利用特殊角的值计算三角函数的值、确定简单三角函数的符号等。
4.4 知识拓展
通过深度拓展,引入三角函数与解三角形及相关技术应用(测量、物理、航空等)的联系,拓展学生的数学视野。
并在学生的合理与系统化的请求下,讲解关于三角函数由定义到图像形态演进的历史、人物、流派和成就。
五、教学反思
在教学过程中,充分发挥学生的主体作用,通过探究、研究、创新的方法,培养学生分析问题和解决问题的能力,使学生在学习锐角三角函数的过程中能够自主思考,积极参与活动,充分发挥其潜能。
同时,加强教师的指导和引导,帮助学生理解掌握知识,提高学生的综合素质和能力,为学生今后的发展打下坚实的数学基础。
人教版数学九年级下册28.1《锐角三角函数》教学设计4一. 教材分析人教版数学九年级下册28.1《锐角三角函数》是本节课的主要内容。
通过本节课的学习,学生能够了解锐角三角函数的概念,理解正弦、余弦、正切函数的定义及它们之间的关系,并能运用这些知识解决一些实际问题。
本节课的内容是学生对三角函数的初步认识,对于学生来说比较抽象,需要通过实例和实际操作来帮助学生理解和掌握。
二. 学情分析九年级的学生已经具备了一定的代数和几何基础,对于一些基本函数的概念和性质有一定的了解。
但是,对于三角函数这一部分内容,由于比较抽象,学生可能会有理解上的困难。
因此,在教学过程中,需要通过实例和实际操作来帮助学生理解和掌握。
三. 教学目标1.了解锐角三角函数的概念,理解正弦、余弦、正切函数的定义及它们之间的关系。
2.能够运用锐角三角函数的知识解决一些实际问题。
3.通过学习,提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:锐角三角函数的概念,正弦、余弦、正切函数的定义及它们之间的关系。
2.难点:对锐角三角函数的理解和应用。
五. 教学方法1.实例教学法:通过具体的实例,让学生了解和理解锐角三角函数的概念和性质。
2.问题驱动法:通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
3.小组合作学习:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,包括锐角三角函数的定义、性质和应用等方面的内容。
2.实例材料:准备一些具体的实例,用于讲解和展示锐角三角函数的概念和性质。
3.练习题:准备一些练习题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个具体的实例,如测量一个未知角度的三角板,引出锐角三角函数的概念。
让学生思考:如何通过已知的角度和边长来求解未知的角度和边长?2.呈现(15分钟)讲解锐角三角函数的定义和性质,包括正弦、余弦、正切函数的定义及它们之间的关系。
新人教版九年级数学锐角三角函数教案新人教版九年级数学锐角三角函数教案1一、复习巩固:1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。
2、在△ABC中,∠C=90°。
(1)已知∠A=30°,BC=8cm, (2)已知∠A=60°,AC= cm,求:AB与AC的长; 求:AB与BC的长。
二、例题学习:问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。
小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)?拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?思考与探索1:如图,东西两炮台A、B相距2000米,同时发现敌舰C,炮台A测得敌舰C在它的南偏东60°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离。
概念:仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。
右图中的∠1就是仰角,∠2就是俯角。
问题2:为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为30°,然后他向气球方向前进了50m,此时观测气球,测得仰角为45°。
若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?思考与探索(2):大海中某小岛的周围10km范围内有暗礁。
一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。
如果该海轮继续向东行驶,会有触礁的危险吗?三、板演练习1、如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?2、飞机在一定高度上飞行,先测得正前方某小岛的俯角为30°,飞行10km后,测得该小岛的俯角为60°,求飞机的高度。
锐角三角函数教学目标:1、 明白得锐角三角函数的概念,把握锐角三角函数的表示法;2、 能依照锐角三角函数的概念计算一个锐角的各个三角函数的值;3、 把握Rt △中的锐角三角函数的表示:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠4、把握锐角三角函数的取值范围;五、通过经历三角函数概念的形成进程,培育学生从特殊到一样及数形结合的思想方式。
教学重点:锐角三角函数相关概念的明白得及依照概念计算锐角三角函数的值。
教学难点:锐角三角函数概念的形成。
教学进程: 一、创设情境:鞋跟多高适合?美国人体工程学研究人员卡特·克雷加文调查发觉,70%以上的女性喜爱穿鞋跟高度为6至7厘米左右的高跟鞋。
但专家以为穿6厘米以上的高跟鞋腿肚、背部等处的肌肉超级容易疲劳。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,不难算出鞋跟在3厘米左右高度为最佳。
问:你明白专家是如何计算的吗? 显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回忆直角三角形的已学知识,引出课题。
二、探讨新知:一、下面咱们一路来探讨一下。
实践一:作一个30°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
⑴计算AB BC ,AB AC ,ACBC的值,并将所得的结果与你同伴所得的结果进行比较。
∠A=30°时AB BC AB AC ACBC学生1结果 学生2结果 学生3结果 学生4结果⑵将你所取的AB 的值和你的同伴比较。
实践二:作一个50°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
(1)量出AB ,AC ,BC 的长度(精准到1mm )。
(2)计算AB BC ,AB AC ,ACBC的值(结果保留2个有效数字),并将所得的结果与你同伴所得的结果进行比较。
∠A=50°时 AB AC BCAB BC AB AC ACBCAC B学生1结果 学生2结果 学生3结果学生4结果(3)将你所取的AB 的值和你的同伴比较。
第二十八章锐角三角函数28.1 锐角三角函数(1)教学目标:1、知识与技能:通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
能根据正弦概念正确进行计算。
2、过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.3、情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.教学重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.教学难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦341米10米二、探索新知 【活动一】问题的引入【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC 中,∠C=90o ,∠A=30o ,BC=35m,求AB 根据“在直角三角形中,30o 角所对的边等于斜边的一半”,即可得AB=2BC=70m.即需要准备70m 长的水管结论:在一个直角三角形中,如果一个锐角等于30o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于21【问题二】如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比ABBC,能得到什么结论?(学生思考) 结论:在一个直角三角形中,如果一个锐角等于45o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于22。
锐角三角函数教学目标知识与技能:初步了解锐角三角函数的意义,理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦的意义,会求已知直角三角形的边长时的一个锐角的正弦并会利用正弦求直角三角形的边长.过程与方法:通过从特殊的角度到任意角度来探究,发现在直角三角形中一个确定的锐角的对边与斜边的比值是不变的规律.情感、态度与价值观:经历在探究直角三角形中一个确定的锐角的对边与斜边的比值是不变的规律的过程,体会研究数学问题的一般方法和所采取的思考问题的方式.教学重点理解锐角的正弦的概念,通过探究让学生知道在直角三角形中一个确定的锐角的对边与斜边的比值是不变的规律。
教学难点引导学生探究发现:在直角三角形中一个确定的锐角的对边与斜边的比值是不变的规律。
教学步骤、内容一、情景引入站在伟人的面前,我很渺小。
我身高1.8米,铜像高7.4米,当我站在A处时,目测铜像顶部,视线与水平线的夹角为34度,我想知道我的头顶C处到铜像头顶E处的距离。
二、实践探索问题小明和小亮一起从A点出发爬山,半个小时后,小明到达B处,小亮到达D 处,现在知道斜坡与水平面所成角的度数是30°,B点的高度为300米,D点的高度为500米,这时小明和小亮距离有多远?500mABC300mDE┌┌探究如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比BCAB,你能得出什么结论?猜想一般地,当∠ A取其它一定度数的锐角时,A∠的对边斜边是否也是一个固定值呢?(几何画板探究)探索任意画Rt△ABC和Rt△A’B’C’,使得∠C=∠C’=90°,其中∠A=∠A‘=α,那么BCAB与''''B CA B有什么关系,你能解释一下吗?三、认识正弦如图,在Rt△ABC中,∠C=90°,122230°45°∠AA∠的对边斜边我们把锐角A 的对边与斜边的比叫做∠A 的正弦(sine ),记作sin A 即 sin A a A c ∠==的对边斜边 1sin 302= 2sin 452= 注意: 1、s inA 不是 sin 与A 的乘积,而是一个整体;2、正弦的三种表示方式:sinA 、sin56°、sin ∠BAC3、sinA 是线段之间的一个比值, 没有单位。
28.1.1锐角三角函数(1)教学设计一、教学目标:知识与技能目标:1.初步了解锐角三角函数的意义,理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦,当锐角固定时,它的正弦值是定值;2.能根据已知直角三角形的边长求一个锐角的正弦值.过程与方法目标:经历探究锐角三角函数的定义的过程,逐步发现一个锐角的对边与斜边的比值不变的规律,从中思考这种规律所揭示的数学内涵.情感态度价值目标:使学生体验数学活动中的探索与发现,培养学生由特殊到一般的演绎推理能力,学会用数学的思维方式思考,发现,总结,验证.二、教学重点正确理解正弦概念,会根据直角三角形的边长求一个锐角的正弦值三、教学难点理解在直角三角形中,对于任意一个锐角,它的对边与斜边的比值是固定值.四、教学方法自主学习、合作探究 五、教学用具 多媒体课件、三角板 六、教学过程(一)、前置性预习作业1、 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为30m ,那么需要准备多长的水管?(分析:这个问题可以归结为,在Rt △ABC 中,∠C =90°,∠A =30°,BC =35m ,求AB )2、在上面的问题中,如果使出水口的高度为50m ,那么需要准备多长的水管? 结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 (二)、自主学习如图,任意画一个Rt △ABC ,使∠C =90°,∠A =45°,计算∠A 的对边与斜边的比 AB BC,你能得出什么结论?即在直角三角形中,当一个锐角等于45°时,不管这个直角ABC21斜边c对边abC BA三角形的大小如何,这个角的对边与斜边的比都等于22 综上可知,在一个Rt △ABC 中,∠C =90°,当∠A =30°时,∠A 的对边与斜边的比都等于21 ,是一个固定值;当∠A =45°时,∠A 的对边与斜边的比都等于 22 ,也是一个固定值.(三)、合作探究任意画Rt △ABC 和Rt △A'B'C',使得∠C =∠C'=90°,∠A =∠A'=α,那么ABBC与ABBC有什么关系.你能解释一下吗?结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比都是一个固定值. 正弦函数概念:在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦(sine ),记作sinA , 即sinA =A a A c∠=∠的对边的斜边(四)、当堂检测 1.判断对错:1.判断对错: 1) 如图 (1) sinA= ABBC( ) (2)sinB=ABBC( )(3)sinA=0.6m ( ) (4)SinB=0.8 ( )2.在Rt △ABC 中,把三角形的三边同时扩大100倍,sinA 的值( )A.扩大100倍B.缩小C.不变D.不能确定3.如图,在Rt △ABC 中,∠C=90°,AB=13,BC=5,则 sinB= 。
锐角三角函数(1)
【教学目标】
1.探索直角三角形中锐角三角函数值与三边之间的关系。
2.掌握三角函数定义式:sinA=斜边的对边A ∠, cosA=斜边
的邻边A ∠, 【重点难点】
重点:三角函数定义的理解。
难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。
【教学过程】 一、情境导入
如图是两个自动扶梯,甲、乙两人分别从1、2号
自动扶梯上楼,谁先到达楼顶?如果AB 和A ′B ′相等,∠α和∠β大小不同, 那么它们的高度AC 和 A ′C ′相等吗?AB 、AC 、BC 与∠α,A ′B ′、A ′C ′、B ′C ′与∠β之间有什么关系呢? ------导出新课
二、新课教学 1、合作探究
(1) Rt △AB 1C 1和Rt △ABC 有什么关系? B 1C 1
AB 1,AC AB 和AC 1AB 1,BC AC 和B 1C 1AC 1有什么关系?
(2)和(3)如果改变B 在AB 1上的位置呢?
2、三角函数的定义
在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.
∠A 的对边与邻边的比叫做∠A 的正弦(sine),记
作sinA ,即sinA =斜边
的对边A ∠ ∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),
记作cosA ,即cosA=
斜边
的邻边A ∠ ∠A 的对边与∠A 的邻边的比叫做∠A 的正切(tangent),记作tanA ,即 锐角A 的正弦、余弦和正切统称∠A 的三角函数
.
C′B′
A′C B A 21
3米3米2米
4米βa
BC AB a B
B 1
C 1C A tanA=∠A的对边∠A的邻边tanA=∠A的对边∠A的邻边
注意:sinA ,cosA ,tanA 都是一个完整的符号,单独的 “sin ”没有意义,其中A 前面
的“∠”一般省略不写。
师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗? 师:(点拨)直角三角形中,斜边大于直角边. 生:独立思考,尝试回答,交流结果.
明确:0<sina <1,0<cosa <1.
巩固练习:课本第6页课内练习T1、作业题T1、2 3、例题教学:课本第5页中例1.
例1 如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3, 求∠A, ∠B 的正弦,余弦和正切. 分析:由勾股定理求出AC 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
师:观察以上计算结果,你发现了什么?
生:独立思考,交流结果,举手板演.
明确:sinA=cosB ,cosA=sinB ,tanA ·tanB=1
4、课堂练习:课本第6页课内练习T2、3,作业题T3、4、5
三、课堂小结:谈谈今天的收获
1、内容总结
(1)在Rt ΔABC 中,设∠C=900,∠α为Rt ΔABC 的一个锐角,则
∠α的正弦斜边的对边αα∠=sin , ∠α的余弦 斜边
的邻边αα∠=cos , ∠α的正切的邻边的对边ααα∠∠=
tan (2)一般地,在Rt △ABC 中, 当∠C=90°时,sinA=cosB ,cosA=sinB ,tanA ·tanB=1
2、方法归纳
在涉及直角三角形边角关系时,常借助三角函数定义来解
四、布置作业:见作业本
【板书设计】
C B A。