27.2.1相似三角形 333333的判定(第一课时)
- 格式:ppt
- 大小:1.73 MB
- 文档页数:26
27.2.1 相似三角形的判定(1)一、温故互查1.什么叫做相似多边形?2.相似多边形的性质和判定各是什么?3.成比例线段:对于四条线段a ,b ,c ,d ,如果其中两条线段的比与另两条线段的比 ,即:ab= (或:a b = ),我们就说这四条线段是成比例线段,简称比例线段.或者说四条线段a ,b ,c ,d 成比例.二、情境导入 问题:判定两个三角形全等时,除了可以验证它们三组对应角,三组对应边分别相等外,还可以使用简便的判定方法(_____,_____,_____,_____).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?为了证明相似三角形的判定定理,我们先来学习平行线分线段成比例的基本事实.三、自主探究1.在相似多边形中,最简单的就是相似三角形.在△ABC 与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且k A C CA C B BC B A AB =''=''=''.我们就说△ABC 与△A′B′C′相似,记作△ABC ∽△A′B′C′,k 就是它们的相似比.反之如果△ABC ∽△A′B′C′,则有∠A=_____, ∠B=_____, ∠C=____, 且A C CA C B BC B A AB ''=''=''.☆ 问题:如果k =1,这两个三角形☆ 当△ABC 与△A′B′C′的相似比为k 时,△A′B′C′与△ABC 的相似比为 .2. 探究1: 如图,任意画两条直线l 1 , l 2,,再画三条与l 1 , l 2 相交的平行线l 3 , l 4, l 5..分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条线段DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗?AB ︰AC=DE ︰( ),BC ︰AC=( )︰DF .归纳总结:平行线分线段成比例基本事实 两条直线被___ ______所截,所得的________线段成比例.(平行线分线段成比例基本事实中相比线段同线)3.探究2:如果把所画的两条相交直线的交点A 刚好落到“横线”上,如图⑴,⑵所示,所得的对应线段成比例吗?依据是什么?把平行线分线段成比例的基本事实应用到三角形中,那么我们可以得到结论: _______于三角形一边的直线截其他两边(或两边的延长线),所得的_____线段__ ____ .四、尝试解题如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,求CEBC的值.五、巩固训练1.如图,在△ABC 中,DE ∥BC ,AC=4 ,AB=3,EC=1,求AD 和BD.2.如图,DE ∥BC ,(1)如果AD=2,DB=3,求AE :AC 的值;(2)如果AD=8,DB=12,AC=15,求AE 和EC 的长.六、归纳小结七、当堂检测1. 如图,1l ∥2l ∥3l 若AB=3cm ,BC=5cm ,EK=4cm ,则EK KF= _____ =_____,FK=__________.AB AC=____=____,2.如图,△ABC ∽△ADE ,其中∠ADE=∠B ,找出对应角并写出对应边的比例式.3.如图,△ABC 中,DE ∥BC ,分别交BA ,CA 的延长线于点E ,点D ,AB =5,AD =2,AE =3,求AC.4.已知:梯形ABCD 中,AD ∥BC ,EF ∥BC ,AE=FC ,364EB =,153DF =,求AE 的长.。
人教初中数学九年级下册《27-2-1 相似三角形的判定(第一课时)》(教学设计)一. 教材分析《27-2-1 相似三角形的判定(第一课时)》是人教初中数学九年级下册的教学内容。
本节课的主要任务是让学生掌握相似三角形的判定方法,并能够运用这些方法解决实际问题。
教材通过引入生活中的实例,激发学生的学习兴趣,引导学生探究相似三角形的判定方法,从而提高学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了相似形的概念和性质,具备了一定的几何知识基础。
但是,对于相似三角形的判定方法,学生可能还没有完全理解和掌握。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.知识与技能目标:使学生掌握相似三角形的判定方法,能够正确判定两个三角形是否相似。
2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和探究精神。
四. 教学重难点1.教学重点:相似三角形的判定方法。
2.教学难点:如何引导学生理解并掌握相似三角形的判定方法,以及如何运用这些方法解决实际问题。
五. 教学方法1.情境教学法:通过引入生活中的实例,激发学生的学习兴趣,引导学生探究相似三角形的判定方法。
2.问题驱动法:教师提出问题,引导学生进行思考和讨论,从而促进学生对知识的理解和掌握。
3.合作学习法:学生分组进行讨论和实践,培养学生的团队合作意识和交流能力。
六. 教学准备1.教学素材:准备与相似三角形相关的图片、实例等教学素材。
2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。
七. 教学过程1.导入(5分钟)–教师通过展示一些生活中的实例,如相似的图形、建筑物的比例等,引导学生观察和思考相似形的应用。
–提问:你们知道什么是相似三角形吗?相似三角形有什么性质和判定方法呢?2.呈现(10分钟)–教师通过多媒体展示相似三角形的定义和性质,引导学生理解和掌握相似三角形的概念。
《27.2.1相似三角形的判定(1)》教学模式介绍:数学的核心素养包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。
这些数学学科素养既相对独立,又互相交融,是一个有机的整体。
核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的数学核心素质,重视学生在学习活动中的主体地位,让学生在积极参与学习活动的过程中得到发展。
教师创设情境设计问题,或通过富有启发性的讲授,或引导学生独立思考、自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,有效地启发学生思考,使学生成为学习的主体,学会学习。
课堂教学中,要注重让学生理解和掌握数学的基础知识和基本技能,让学生感悟数学思想,积累数学活动经验,在学习数学和应用数学的过程中,发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养,让学生能与他人建立良好关系,有效地管理自己的学习、生活,能够发掘自身潜力,战胜学习数学中的困难,让学生能够适应未来社会、进行终身学习,实现全面发展。
设计思路说明:“相似三角形的判定”是在学习了相似图形之后,有了相似图形、相似多边形的基础,学生不难理解相似三角形的基本性质及相似比的有关规定。
教学中结合相似多边形也不难知道相似三角形的对应角相等,对应边的比例相等。
在用符号“∽”表示两个三角形相似时,应注意把表示对应顶点的字母写在对应位置,以便相对容易找出对应角和对应边。
全等是相似的特殊情形(相似比为1),这一点有必要让学生明白。
判断两个三角形相似的三个定理之间有内在的关联。
于是我们用测量的方法来直接归纳出结论,为了达到比较好的效果,我们设计了几道题目进行巩固。
随后利用平行线分线段成比例定理引出其推论,进而得到三角形相似的预备定理。
我们把重点放在证明预备定理上,因为其方法是非常重要的。
最后,再总结结论,拓展练习,以巩固知识的掌握程度。
教材分析本节课内容属于《全日制义务教育数学课程标准2011版》中的“图形与几何”,相似图形是现实生活中广泛存在的现象,探索并证明相似三角形的判定定理。
《相似三角形的判定》说课稿各位评委老师:大家好!我今天说课的内容是《相似三角形的判定》,下面我将从说教材、说学生、说教学方法、说教学过程、板书设计五个大板块来给大家阐述我的教学思路和教学设计。
一、说教材首先进入我的第一个大板块“说教材”。
我把说教材这个板块分为三个小环节来进行,它们分别是教材分析、教学目标、教学重难点。
1、教材分析本节课《相似三角形的判定》是选自新人教版九年级下册第二十七章第二节第二课时的内容。
是在学习了第一节相似多边形的概念、第一课时平行线分线段成比例的定理及推论后,研究相似三角形的定义以及三角形一边的平行线的判定定理。
本节课是判定三角形相似的起始课,是本章的重点之一。
一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以把它叫做相似三角形判定定理的“预备定理”。
因此,这节课在本章中有着举足轻重的地位。
2、教学目标根据教学大纲的要求和贯彻全面发展的教育方针,我制定了如下的教学目标:(1)知识与技能:理解相似三角形的定义,掌握相似三角形判定定理的“预备定理”。
(2)过程与方法:让学生经历观察---探索----猜想----验证----运用----巩固的过程,渗透类比的思想方法,培养学生探究新知识、提高分析问题和解决问题的能力。
(3)情感态度和价值观:通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,通过主动探究、合作交流,在学习活动中体验获得成功的喜悦。
3、教学重难点为了达到以上的教学目标,我制定了以下的教学重难点:教学重点:相似三角形的定义,判定两个三角形相似的预备定理。
教学难点:探究两个三角形相似的预备定理的过程。
二、说学生说完了教材,我想跟大家分析一下我所授课的学生所具有的特点,也就是学情分析。
老师们,我们都知道九年级的学生接受能力相比七八年级强,想得到老师的鼓励。