最新版初三中考数学模拟试卷易错题及答案2965171
- 格式:doc
- 大小:549.50 KB
- 文档页数:17
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,下列说法中错误的是( )A .∠l 与∠2是同位角B .∠4与∠5是同旁内角C .∠2与∠4是对顶角D .∠l 与∠2是同旁内角2.下列计算中,正确的是( ) A .2a+3b=5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 23.1x -1=1x 2-1的解为( ) A .0B .1C .-1D .1或-14.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)平移得到的是( )5.如图,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( ) A .∠B=∠E,BC=EFB .BC=EF ,AC=DFC .∠A=∠D ,∠B=∠E D .∠A=∠D ,BC=EF 6.某人在平面镜里看到的时间是,此时实际时间是( ) A . 12:01B . 10:51C . 10:21D . 15:107. 若216x mx ++是完全平方式,则m 的值等于( ) A .-8B .8C .4D .8或一88.4张扑克牌如图①所示放在桌子上,小敏把其中一张旋转l80°后得到如图②所示的图形,则她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张9. 已知x 是整数,且222218339x x x x ++++--为整数,则所有符合条件的x 的值的和为( ) A .12 B .15 C .18 D .2010.已知方程3233x x x=---有增根,则这个增根一定是( ) A .2x =B .3x =C .4x =D .5x =11.小强、小亮、小文三位同学玩投硬币游戏,三人同时各投出一枚均匀硬币,若出现3个正面向上或3个反面向上,则小强赢;若出现2个正面向上,1 个反面向上,则小亮赢;若出现 1 个正面向上,2个反面向上,则小文赢. 下面说法正确的是( ) A .小强赢的概率最小 B .小文赢的概率最小 C .亮赢的概率最小 D .三人赢的概率都相等12.若m n >,则下列不等式中成立的是( ) A .m a n b +<+B .ma nb <C .22ma na >D .a m a n -<-13.如图,从图(1)到图(2)的变换是( ) A .轴对称变换B .平移变换C .旋转变换D .相似变换14.下列多项式中,不能用提取公因式法分解因式的是( )A .()()p q p q p q -++B .2()2()p q p q +-+C .2()()p q q p ---D .3()p q p q +-- 15.若∠1和∠3是同旁内角,∠1=78°,则下列说法正确的是( ) A .∠3=78°B .∠3=12°C.∠1+∠3=180°D.∠3的度数无法确定16.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E的度数为()A. 70 B. 80°C. 90°D. 100°17.如图,在等边△ABC中,BD、CE分别是AC、AB上的高,它们相交于点0,则∠BOC等于()A.100°B.ll0°C.120°D.130°18.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么2PP 等于()A.9 B.12 C.15 D.l819.判断两个直角三角形全等,下列方法中,不能应用的是()A. AAS B.HL C.SAS D. AAA20.有下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边和一角对应相等的两个三角形全等.其中正确的个数是()A.1 B.2 C.3 D.421.学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是()A.2.95元,3元 B.3元,3元 C.3元,4元 D.2.95元,4元22.在△ABC中,∠C=90°,tanA=13,则sinB=()AB .23C .34 D23. 设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图,那么这三种物体的质量按从大到小的顺序排列应为( )A .■、●、▲B .●、▲、■C .■、▲、●D .▲、■、●24.不等式组31413(3)024x x +<⎧⎪⎨+-<⎪⎩的最大整数解是( ) A .0 B .-1C .-2D .125.已知8m n +=,9mn =-,则22mn m n +的值是( ) A . 72B . -72C .0D . 626.下列各选项中,两个单项式不是同类项的是( ) A .23x y 和213yx -B .1与-2C .2m n 和22310nm ⨯D .213a b 与213b a27.为了解噪声污染的情况,某市环保局抽样调查了80个测量点的噪声声级(单位:分贝),并进行整理后分成五组,绘制出频数分布直方图如图所示.已知从左到右的前四组的频数分别为l2,20,24,16,且噪声高于69.5分贝就会影响工作和生活,那么影响到工作和生活而需对附近区域进行治理的测量点所占百分比为 ( ) A .10%B .15%C .20%D .25%28. 在数轴上,如果点A 在原点的右边,那么下列各数中,有可能是点 A 所表示的数的 相反数的是( ) A .5B .1C .0D .-1829. 已知下列说法:①数轴上原点右边的点所表示的数是正数;②数轴上的点都表示有理数;③非正数在教轴上所表示的点在原点左边;④所有的有理数都可以用数轴上的点来表示. 其中正确的有( ) A . 1 个B .2 个C .3 个D .4 个30.两个数的差为负数,这两个数( ) A .都是负数B .一个是正数,一个是负数C .减数大于被减数D . 减数小于被减数31.某单位第一季度账面结余-1. 3 万元,第二季度每月收支情况为(收入为正):+4. 1 万 元,+3. 5 万元,-2. 4 万元,则至第二季度末账面结余为( ) A .-0.3 万元B . 3.9 万元C .4.6 万元D .5.7 万元32. 下列各式中,运算结果为负数的是( ) A .(-2)×(-3)÷(+4) B .(+1)÷(-1)×(-1)÷(+1) C .1111()()()24816-⨯-÷-⨯D .(-3)×(-5)×(-7)÷(-9)33.近似数36.0是由四舍五入得到的近似数,在下列关于其精确度的叙述中正确的是 ( ) A .36.0与36精确度相同 B .36.0精确到个数 C .36.0有三个有效数字D .36.0有两个有效数字34.绝对值大于 1小于4的所有整数的和是( ) A . 0B .5C .-5D . 1035.若a =-时,a 是( ) A . 全体实数B . 正实数C .负实数D .零36.在 1.414、2π、2、113这些实数中,无理数有( ) A . 4个B .3个C .2个D .1个37.一只小狗正在平面镜前欣赏自己的全身像(如图),此时,它所看到的全身像是( )38.如果单项式m n xy z -和45n a b 都是五次单项式,那么m 、n 的值分别为( ) A .m=2,n=3B .m=3,n=2C . m=4 , n=1D .m=3,n=139.下面给出的是一些产品的商标图案,从几何图形的角度看(不考虑文字和字母),既是轴对称图形又能旋转180°后与原图重合的是( )40.轮船在静水中速度为20 km /h .水流速度为每小时4 km /h ,从甲码头顺流航行到乙码 头,再返回甲码头,共用5 h (不计停留时间),求甲、乙两码头的距离.设两码头间距离为x (km ),则列出方程正确的是( ) A .(20+4)x+(20-4) x =5 B .20 x+4 x =5 C .5204x x+= D .5204204x x+=+- 41.如图是某校食堂甲、乙、丙、丁四种午餐受欢迎程度的扇形统计图,则最受欢迎的午餐是 ( ) A .甲 B .乙 C .丙 D .丁42.已知线段AB=3 cm ,延长BA 到C 使BC=5 cm ,则AC 的长是( )A .11 cmB .8 cmC .3 cmD .2 cm43.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是( ) A .1号袋B .2号袋C .3号袋D .4号袋图 2丙25%丁30%乙25%甲20%44.如图,四边形EFGH 是四边形ABCD 平移后得到的,则下列结论中正确的个数是( )①平移的距离是线段AE 的长度;②平移的方向是点C 到点F ;③线段CF 与线段DG 是对应边;④平移的距离是线段DG 的长度. A .1个B .2个C .3个D .4个45.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是( )A . 4639611x y x y +=⎧⎨-=⎩B . 6396222x y x y +=⎧⎨-=⎩C . 4669633x y x y +=⎧⎨-=⎩D . 6936411x y x y +=⎧⎨-=⎩46.24a x +可表示为( ) A .24a x x +B .24a x x x ⋅⋅C .22a x x +⋅D .24()a x x ⋅47.下列运算中,正确的是( ) A .222()a b a b -=-B . 22()()a b b a a b --=-C . 22()()a b a b a b ---+=-D . 22()()a b a b a b +--=-48.当2x =-时,分式11x+的值为( ) A .1B .-1C .2D .-249.公因式是23ax -的多项式是( ) A .2225ax a --B .22236a x ax --C .2223612ax a x ax --+D .3261224ax ax a x ---50.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有( )条鱼 A .400条 B .500条 C .800条 D .1000条51. 用代数式表示“a 、b 两数和的平方的 2倍”,正确的表示是( ) A .222a b +B .22()a b +C .222a b +D .222()a b +52.掷两枚均匀的锬子,出现正面向上的点数和为4 的概率是( ) A .16B .112C .118D .13653.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( ) A .24B .20C .10D .554.如图,直角坐标系中,△ABC 的三个顶点都在小正方形的顶点上,则△ABC 的面积为( ) A .3 5 B .3 5 +5 C . 5 D .555.小伟五次数学考试成绩分别为86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的( ) A .平均数 B .众数C .中位数D .方差56.将抛物线21(1)22y x =-+先向右平移2个单位,再向上平移 3个单位得到的抛物线是( ) A .21(1)52y x =++ B .21(2)42y x =++ C .21(3)52y x =-+ D .21(3)12y x =--57.过任意四边形的三个顶点能画圆的个数最多有( ) A .1 个 B .2 个 C .3 个 D .4 个58.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是( ) A .45°B .60°C .90°D .180°59.如图,△ABC 中,CD ⊥AB 于 D ,DE ⊥AC 于 E ,则图中与△ADE 相似的三角形有( ) A .1 个B . 2 个C .3 个D .4 个60. 边长为4的正方形ABCD 的对称中心是坐标原点O,AB ∥x 轴,BC ∥y 轴, 反比例函数y =2x 与y =-2x 的图象均与正方形ABCD 的边相交,则图中的阴影部分的面积是( ) A .2B .4C .8D .661. 给出下列式子:① cos450>sin600;②sin780>cos780;③sin300>tan450;④ sin250=cos650,其中正确的是 ( ) A .①③B .②④C .①④D .③④62.如图,高速公路上有A 、B 、C 三个出口,A 、B 之间路程为a 千米,B 、C 之间的路程为b 千米,决定在A 、C 之间的任意一处增设一个服务区,则此服务区设在A 、B 之间的概率是( )A .a b B .baD .ba b + 63.顺次连接等腰梯形四边中点所得四边形是( )A .菱形B .正方形C .矩形D .等腰梯形64. 两名同学,他们的生日是同一个月的概率是( ) A .16B .112C .14D .1865.正方形内有一点A ,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是( ) A .10 B .20C .24D .2566.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( ) A .12 个B .9 个C .7 个D .6个67.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC △内一点P 到三边的距离都相等.则PC 为( )A .1BCD .68.如图,是一水库大坝横断面的一部分,坝高h=6m ,迎水斜坡AB=10m ,斜坡的坡角为α,则tan α的值为( ) A .53 B .54 C .34 D .4369.已知PA 是⊙O 的切线,A 为切点,PBC 是过点O 的割线,PA =10cm ,PB =5cm ,则⊙O 的半径长为( ) A .15cmB .10 cmC .7.5 cmD .5 cm70.下列图形经过折叠不能围成一个棱柱的是( )A .B .C .D .下列图形中,不是正方体平面展开图的是( )72.如图所示的的几何体的主视图是( )A .B .C .D .73.抛物线223y x x =--的顶点坐标是( ) A .(-1,-4) B .(3,0) C .(2,-3)D .(1,-4)74.如图,直线PA PB ,是⊙O 的两条切线,AB ,分别为切点,120APB =︒∠,10OP = 厘米,则弦AB 的长为( )A .厘米B .5厘米C .D 厘米75.如图,在直角坐标系中,⊙O 的半径为1,则直线y x =-+与⊙O 的位置关系是( ) A .相离 B .相交 C .相切 D .以上三种情形都有可能76.如图,已知锐角α的顶点在原点,始边在x 轴的正半轴上,终边上一点p 坐标为(1,3),那么tan α的值等于 ( )A .13B .3C D77.以下可以用来证明命题“若x+2y=0,则x=y=0”是假命题的反例的是( ) A .x=1,y=1 B .x=2,y=0C .x=-l ,y=2D .x=2,y=-l78.不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <379.如图,小手盖住的点的坐标可能为 ( ) A .(5,2)B .(一6,3)C .(一4,一6)D .(3,一4)80.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A .()4,3-B .()3,4--C .()3,4-D .()3,4-81.已知函数33y mx x =+-,要使函数值y 随自变量x 值的增大而增大,则m 的取值范围是 ( ) A .3m ≥-B .3m >-C .3m ≤-D .3m <-82.如图是由一些相同的小正方体构成的几何体的三视图.这些相同的小正方体的个数是 ( ) A .4个B .5个C .6个D .7个83.某服装销售商在进行市场占有情况的调查时,他应该最关注已售出服装型号的( )A .平均数B .众数C .中位数D .最小数84.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是( ) A .9B .12C .15D .12或1585.下列运算中正确的是( )A .5L =-B .2(5=-C .5=D 586. 有意义的x 的取值范围是( ) A .2x ≠-B . 12x ≤且2x ≠- C .12x <且2x ≠- D . 12x ≥且2x ≠- 87.下面的计算中错误..的是( )A 0.03±B .0.07=±C 015=⋅D .0.13=-88.下列各数中,与 )A .2B .2C .2-+D89.如图,过反比例函数3y x=(x>0)图象上任意两点A 、B 分别作x 铀的垂线,垂足分别为 C .D ,连结 QA 、OB ,设△AOC 与△BQD 的面积分别为 S 1与S 2, 比较它们的大小可得( )A .S 1=S 2B .S 1>S 2C .S 1<S 2D .S 1与S 2大小关系不能确定90.下列各式是二次根式的是( )A91.顺次连结菱形的各边中点所得到的四边形是( ) A .平行四边形B .菱形C .矩形D .正方形92.矩形、菱形、正方形都具有的性质是( ) A .一个角是直角B .对角线互相垂直C .两组对角分别相等D .一组邻边相等93.一个四边形如果有锐角,那么它的锐角的个数最多有( ) A .4个B .3个C .2个D .1个94.如果把多边形的边数增加l 倍,它的内角和是2160°,那么原多边形的边数是( )A .24B .12C .7D .695.三角形三边长分别为21n -,2n ,21n +(n 为自然数),这样的三角形是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .直角三角形或锐角三角形96.以下命题的逆命题为真命题的是( )A .三个角相等的三角形是等边三角形B .关于某点成中心对称的两个图形全等C .三角形的中位线平行于第三边D .全等三角形的对应角相等97.如图,AB ∥CD ,EG ⊥AB ,若∠1=58°,则∠E 的度数等于 ( )A .122°B .58°C .32°D .29°98.下列命题是假命题的有( )①两边及其夹角对应相等的两个三角形全等.②两条直线被第三条直线所截,同位角相等.③如果a>b ,b>0,那么a>0.④若两个三角形周长相等,则它们全等.A .1个B .2个C .3个D .4个99.某城市一年漏掉的水相当于建一个自来水厂,据不完全统计,全市至少有5610⨯个水龙头,5210⨯个抽水马漏水. 如果一个关不紧的水龙头一个月漏a (m 3)水,一个抽水马桶一个月漏掉b (m 3)水,那么一个月造成的水流失量至少是( )A .( 62a b +) m 3B .56210a b +⨯ m 3C .5[(62)10]a b +⨯ m 3D .5[8()10]a b +⨯m 3 100.下列事件中,属于必然事件的是( )A .打开电视机,正在播放新闻B .父亲的年龄比他儿子年龄大C .通过长期努力学习,你会成为数学家D .下雨天,每个人都打着伞101.如图AB=AC ,DE ⊥AB ,DF ⊥AC ,AD ⊥BC ,则图中的全等三角形有( )A .1对B .2对C .3对D .4对102.在3(3)-,2(3)-,(3)--,|3|--四个数中,负数个数有( )A .1 个B .2 个C .3 个D .4 个103.已知a 、b 两数在数轴上的对应点的位置如图所示,那么化简代数式12a b a b +--++结果是( )A . 1B .23b +C .23a -D .-1104.将某图形先向左平移3个单位,再向右平移4个单位,则相当于( )A .原图形向左平移l 个单位B .把原图形向左平移7个单位C .把原图形向右平移l 个单位D .把原图形向右平移7个单位105.下列用词中,与“一定发生”意思一致的是( )A . 可能发生B . 相当可能发生C .有可能发生D . 必然发生106.若2416()x x x ⋅⋅=,则括号内的代数式应为( )A . 2xB .4xC . 8xD .10x107.如图,水平放置的甲、乙两区域分别由若干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P (甲)表示小球停在甲中黑色三角形上的概率,P (乙)表示小球停在乙中黑色三角形上的概率,下列说法中正确的是( )A .P (甲)>P (乙)B . P (甲)= P (乙)C . P (甲)< P (乙)D . P (甲)与P (乙)的大小关系无法确定108.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )109.如图,直线y kx b =+与x 轴交于点(-4,0),则0y >时,x 的取值范围是( )A .4x >-B .0x >C .4x <-D .0x <110.下列各点中,在反比例函数2y x=-图象上的是( ) A .(21), B .233⎛⎫⎪⎝⎭, C .(21)--, D .(12)-,【参考答案】***试卷处理标记,请不要删除一、选择题4.C 5.D 6.B 7.D 8.A 9.A 10.B 11.A 12.D 13.D 14.A 15.D 16.C 17.C 18.D 19.D 20.B 21.A 22.D 23.C 24.C 25.B 26.D 27.A 28.D 29.B 30.C 31.B 32.C 33.C 34.A38.D 39.C 40.D 41.D 42.D 43.B 44.B 45.C 46.D 47.C 48.B 49.B 50.D 51.B 52.B 53.B 54.D 55.D 56.C 57.D 58.C 59.B 60.C 61.B 62.C 63.A 64.B 65.B 66.A 67.B 68.D72.B 73.D 74.A 75.C 76.B 77.D 78.D 79.D 80.C 81.B 82.B 83.B 84.C 85.D 86.B 87.A 88.D 89.A 90.C 91.C 92.C 93.B 94.C 95.B 96.A 97.C 98.B 99.C 100.B 101.C 102.B106.D 107.B 108.C 109.A 110.D。
中招考试数学模拟考试卷(附有答案解析)一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.22.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7 4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a65.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>17.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°8.已知方程组,则x﹣y=()A.5B.2C.3D.49.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<110.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有个.13.圆内接正方形的边长为3,则该圆的直径长为.14.计算:(+a)•=.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了人,扇形统计图中表示“C”的圆心角为°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.参考答案与解析一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.2【分析】直接估算无理数大小的方法以及实数比较大小的方法分析得出答案.【解答】解:∵1<<2;∴0<<1;故﹣2<﹣<<1<2;故选:D.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.【解答】解:从上面看,得到的视图是:;故选:A.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000202=2.02×10﹣7.故选:D.4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a6【分析】根据合并同类项的运算法则、同底数幂的除法、积的乘方分别进行计算即可得出答案.【解答】解:A、2a﹣a=a,故本选项错误;B、6a2÷2a=3a,故本选项正确;C、6a+2a=8a,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误;故选:B.5.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个【分析】根据众数和中位数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知7个出现次数最多,所以众数为7个;因为共有50个数据;所以中位数为第25个和第26个数据的平均数,即中位数为7个.故选:A.6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1;解不等式2x﹣4≤1,得:x≤;则1<x≤;故选:B.7.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】利用对顶角相等及三角形内角和定理,可求出∠4的度数,由直线l1∥l2,利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:∵∠A+∠3+∠4=180°,∠A=30°,∠3=∠1=85°;∴∠4=65°.∵直线l1∥l2;∴∠2=∠4=65°.故选:D.8.已知方程组,则x﹣y=()A.5B.2C.3D.4【分析】方程组两方程相减即可求出所求.【解答】解:;①﹣②得:(2x+3y)﹣(x+4y)=16﹣13;整理得:2x+3y﹣x﹣4y=3,即x﹣y=3;故选:C.9.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<1【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.【解答】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D选项错误.故选:C.10.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.【分析】根据题意,作出合适的辅助线,然后根据矩形的性质和正方形的性质,可以得到BG和EG的长,从而可以得到tan∠EBC的值.【解答】解:作EF⊥DC于点F,作EG⊥BC交BC的延长线于点G;则四边形CGEF是矩形;设AB=2a;∵在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE;∴EF=a,BC=2a;∴EG=a,CG=a;∴tan∠EBC=;故选:A.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2;=2(x2﹣2xy+y2);=2(x﹣y)2.故答案为:2(x﹣y)2.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有20个.【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个;∵摸到红色球的频率稳定在0.2左右;∴口袋中得到红色球的概率为0.2=;∴=;解得:x=20;即白球的个数为20个;故答案为:20.13.圆内接正方形的边长为3,则该圆的直径长为3.【分析】连接BD,利用圆周角定理得到BD是圆的直径,然后根据边长利用勾股定理求得直径的长即可.【解答】解:如图;∵四边形ABCD是⊙O的内接正方形;∴∠C=90°,BC=DC;∴BD是圆的直径;∵BC=3;∴BD===3;故答案为:3.14.计算:(+a)•=.【分析】先把括号内通分,然后约分得到原式的值.【解答】解:原式=•=•=.故答案为.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为32m2.【分析】设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,首先列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8;∵墙长为15m;∴16﹣2x≤15;∴0.5≤x<8;∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.【分析】过点F作FH⊥AD于H,易证∠DFH=30°,设CF=x,则DF=6﹣x,DH=(6﹣x),HF =(6﹣x),EH=DE+DH=5﹣,由折叠的性质得EF=CF=x,在Rt△EFH中,EF2=EH2+HF2,即可得出答案.【解答】解:过点F作FH⊥AD于H,如图所示:∵四边形ABCD是菱形,∠A=60°;∴AB=CD=6,∠EDF=120°;∴∠FDH=60°;∴∠DFH=30°;设CF=x;则DF=6﹣x,DH=DF=(6﹣x),HF=(6﹣x);∴EH=DE+DH=2+(6﹣x)=5﹣;由折叠的性质得:EF=CF=x;在Rt△EFH中,EF2=EH2+HF2;即x2=(5﹣)2+[(6﹣x)]2;解得:x=;∴CF=;故答案为:.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣2+1﹣2=﹣.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.【分析】先根据题意列举出所有可能的结果与取出的两个球上的汉字恰能组成“中国”或“加油”的情况,再利用概率公式即可求得答案.【解答】解:列举如下:中国加油中/(国,中)(加,中)(油,中)国(中,国)/(加,国)(油,国)加(中,加)(国,加)/(油,加)油(中,油)(国,油)(加,油)/所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“中国”或“加油”的情况有4种;则取出的两个球上的汉字恰能组成“中国”或“龙岩加油”的概率为=.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答】(1)证明:∵BE⊥CE,AD⊥CE;∴∠E=∠ADC=90°;∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°;∴∠EBC=∠DCA.在△BCE和△CAD中;;∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7;∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13;∴△ACD的周长为:5+12+13=30;故答案为:30.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了500人,扇形统计图中表示“C”的圆心角为72°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.【分析】(1)从两个统计图中可知“A非常了解”的人数为150人,占调查人数的30%,可求出调查人数;用360°乘以“C”所占的百分比即可得出“C”的圆心角度数;(2)用总人数减去其它等级的人数求出B等级的人数,从而补全条形统计图;(3)用总人数乘以不太了解垃圾分类人数所占的百分比即可.【解答】解:(1)小明共调查的总人数是:150÷30%=500(人);扇形统计图中表示“C”的圆心角为:360°×=72°;故答案为:500,72;(2)B等级的人数有:500×40%=200人,补全条形统计图如图所示:(3)根据题意得:50000×=5000(人);答:估计50000名市民中不太了解垃圾分类相关知识的人数有5000人.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为(50﹣x)元,平均每天的销量为(20+2x)件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?【分析】(1)根据“这种衬衫的售价每降低1元时,平均每天能多售出2件”结合每件衬衫的原利润及降价x元,即可得出降价后每件衬衫的利润及销量;(2)根据总利润=每件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵每件衬衫降价x元;∴每件衬衫的利润为(50﹣x)元,销量为(20+2x)件.故答案为:(50﹣x);(20+2x).(2)依题意,得:(50﹣x)(20+2x)=1600;整理,得:x2﹣40x+300=0;解得:x1=10,x2=30.∵为了扩大销售,尽快减少库存;∴x=30.答:每件衬衫应降价30元.22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.【分析】(1)连接OD,AD,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,推出OD∥AC,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)设AD=3k,BD=4k,根据勾股定理得到AB=5k,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,AD;∵AB是⊙O的直径;∴AD⊥BC;∵AB=AC;∴∠BAD=∠CAD;∵OA=OD;∴∠OAD=∠ODA;∴∠DAC=∠ADO;∴OD∥AC;∵DE⊥AC;∴OD⊥DE;∴DE是⊙O的切线;(2)∵tan B==;∴设AD=3k,BD=4k;∴AB=5k;∵∠AED=∠ADB=90°,∠BAD=∠DAE;∴△ABD∽△DAE;∴=;∴=;∴k=;∴AB=5k=.故答案为:.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.【分析】(1)设直线AB的解析式为y=kx+b,把A,B两点坐标代入,转化为解方程组即可.(2)由题意M(m,m+1),N(m,﹣m+4),根据MN=MP,构建方程解决问题即可.(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.由BT∥OJ,推出∠BJO =∠TBJ,推出tan∠TBJ=tan∠BJO=,推出=,设EK=m,BK=2m,则BE=m,推出EK =BE,由点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK,推出当D,E,K 共线,DE+EK的值最小.【解答】解:(1)设直线AB的解析式为y=kx+b;∵点A的坐标是(﹣1,0),点B(2,3);∴;解得:;∴直线AB的解析式为y=x+1;(2)∵点B(2,3),点C(3,);∴直线BC的解析式为y=﹣x+4;∵点P(m,0),PM∥y轴,交直线AB于点M,交直线BC于点N;∴M(m,m+1),N(m,﹣m+4);∵MN=MP;∴m+1=(﹣m+4)﹣(m+1);解得:m=;∴M(,);(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.∵直线BC的解析式为y=﹣x+4;∴tan∠BJO=;∵BT∥OJ;∴∠BJO=∠TBJ;∴tan∠TBJ=tan∠BJO=;∴=,设EK=m,BK=2m,则BE=m;∴EK=BE;∵点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK;∴当D,E,K共线,DE+EK的值最小,此时DE=DJ=2,EK=BK=1;∴点P在整个运动过程中的运动时间的最小值为2+1=3秒,此时E(4,2).24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是AD=BE,位置关系是AD⊥BE;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.【分析】(1)由等腰直角三角形的性质可得AO=BO,DO=EO,∠AOB=∠DOE=90°,由“SAS”可证△BOE≌△AOD,可得AD=BE,∠OBE=∠OAD,由直角三角形的性质可得AD⊥BE;(2)通过证明△AOD∽△BOE,可得=,∠OAD=∠OBE,可得结论;(3)如图3,连接AO,DO,由勾股定理可求AO的长,由(2)可知:△BEO∽△ADO,可求AD=2BE,由勾股定理可求解.【解答】解:(1)如图1,延长AD,BE交于点H;∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF;∴AO=BO,DO=EO,∠AOB=∠DOE=90°;∴∠BOE=∠AOD;∴△BOE≌△AOD(SAS);∴AD=BE,∠OBE=∠OAD;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;故答案为:AD=BE,AD⊥BE;(2)AD=BE不成立,AD⊥BE仍然成立;理由如下:如图2,连接AO,DO;∵AB=AC,DE=DF,∠BAC=∠EDF=60°;∴△ABC和△DEF是等边三角形;∵OB=OC,OE=OF;∴∠DOE=90°=∠AOB,DO=EO,AO=BO;∴∠AOD=∠BOE,;∴△AOD∽△BOE;∴=,∠OAD=∠OBE;∴AD=BE;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;(3)如图3,连接AO,DO;∵AC=3=AB,OB=OC,BC=6;∴AO⊥BC,BO=3;∴AO===6;由(2)可知:△BEO∽△ADO,AD⊥BE;∴==2;∴AD=2BE;∵AB2=AD2+BD2;∴45=4BE2+(5+BE)2;∴BE=﹣1;∴AD=2﹣2;∴sin∠ABD==.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.【分析】(1)将点A,B坐标代入抛物线解析式中,求解即可得出结论;(2)先求出点E坐标,进而表示出OM,利用三角形面积公式建立方程求解即可得出结论;(3)先判断出△MON∽△DEM,得出;再分点M在线段OE上和EO的延长线上,表示出ME,ON,进而得出n=,即可得出结论.【解答】解:∵抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0);∴设抛物线的解析式为y=a(x+1)(x﹣4)=ax2﹣3ax﹣4a;∴﹣4a=2;∴a=﹣;∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知,抛物线的解析式为y=﹣x2+x+2;∴C(0,2),对称轴为x=;∵点D和点C关于对称轴对称;∴D(3,2);∵DE⊥OB;∴E(3,0);∵N(0,n),且N在线段OC上;∴CN=OC﹣ON=2﹣n;∵ME=ON=n;∴OM=OE﹣ME=3﹣n;∵△CMN的面积是;∴S△CMN=CN•OM=(2﹣n)(3﹣n)=;∴n=或n=(舍去);∴M(,0);(3)∵∠DME=∠MNO=α,∠MON=∠DEM;∴△MON∽△DEM;∴;∵D(3,2);∴DE=2;设M(m,0);当m=0时,点M和点O重合,不能构成三角形MON;当点M在线段OE上时,则0<m<3;∴OM=m,ME=3﹣m;∴ON=n;∴;∴n===;∴0<n<;当点M在x轴负半轴时,则m<0;∴OM=﹣m,ME=3﹣m;∴ON=﹣n;∴;∴n===;∴n<0;即n的取值范围n<且n≠0.。
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则AOD ∠等于( ) A .55B .45C .40D .352.如图所示的图形都是轴对称图形,其中对称轴条数最少的是( )3.如图所示的虚线中,是对称轴的是( ) A .①②③④B .①②③C .①③D .②4.222(3)()(6)3a ab b -⋅⋅的计算结果为( ) A . 2472a b -B . 2412a b -C . 2412a bD . 2434a b5.计算23(2)a -的结果是( ) A .56a -B .66a -C .58a -D .68a -6. 计算32()x 的结果是( ) A .5xB .6xC .8xD .9x7.王老师的一块三角形教学用玻璃不小心打破了(如图),他想再到玻璃店划一块,为了方便他只要带哪一块就可以了( ) A .①B .②C .③D .④8.下列计算中,正确的是( ) A .2a+3b=5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 29.2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是( ) A .2)5(b a -B .2)5(b a +C .)23)(23(b a b a +-D .2)25(b a -10.下列多项式中,含有因式)1(+y 的多项式是( ) A .2232x xy y -- B .22)1()1(--+y y C .)1()1(22--+y yD .1)1(2)1(2++++y y11.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( ) A .PD=PC B .PD ≠PCC .PD 、PC 有时相等,有时不等 D .PD >PC12.从甲、乙两班分别任抽10名学生进行英语口语测验,其测试成绩的方差是213.2S =甲,226.36S =乙,则 ( ) A .甲班l0名学生的成绩比乙班10名学生的成绩整齐 B .乙班l0名学生的成绩比甲班10名学生的成绩整齐 C .甲、乙两班10名学生的成绩一样整齐 D .不能比较甲、乙两班学生成绩的整齐程度13.如图,AD 、AE 分别是△ABC 的高和角平分线,∠DAE=20°,∠B=65°,则∠C 等于( ) A .25°B .30°C .35°D .40°14. 一架飞机在无风的情况下每小时飞行 1200千米,若逆风飞完长为x 千米的航线用 3小时,而顺风飞完这条航线只需 2小时. 根据题意列方程,得1200120032x x-=-.这个方程所表示的意义是( ) A .飞机往返一次的总时间不变B .顺风与逆风飞行,飞机自身的速度不变C .飞机往返一次的总路程不变D .顺风与逆风的风速相等 15.下列运算正确的是( ) A .0(3)1-=-B .236-=- C .9)3(2-=-D .932-=-16.在一副完整的扑克牌中摸牌,第一张是红桃3,第二张黑桃7,第三张方片4,第四张是小王,那么第五张出现可能性最大的是( ) A .红桃B .黑桃C .方片D .梅花17.计算2483(21)(21)(21)⨯+++的结果为( ) A .841- B .6421-C .1621-D .3221-18.已知2x y m =⎧⎨=⎩是二元一次方程531x y +=的一组解,则m 的值是( ) A . 3B . -3C .113D .113-19.如图所示,下列判断正确的是( ) A .若∠1 =∠2,则1l ∥2l B .若∠1 =∠4,则3l ∥4l C .若∠2=∠3,则1l ∥2l D .若∠2=∠4,则1l ∥2l20.下列四个图形中,轴对称图形的个数是( )①等腰三角形, ②等边三角形, ③直角三角形, ④等腰直角三角形 A . 1个B .2个C .3个D .4个21.一个三角形的两条边分别为1和2,若要使这个三角形成为直角三角形,则应满足下列各个条件中的( ) A .第三边长为3B .第三边的平方为3C .第三边的平方为5D .第三边的平方为3或522.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .B .4cmC D .3cm23.如图,8×8方格纸的两条对称轴EF ,MN 相交于点0,对图a 分别作下列变换:①先以直线MN 为对称轴作轴对称图形,再向上平移4格;②先以点0为中心旋转180°,再向右平移1格;③先以直线EF 为对称轴作轴对称图形,再向右平移4格,其中能将图a变换成图b的是()A.①②B.①③C.②③D.③24.如图所示,是由一些相同的小立方体构成的几何体的三视图,这些相同小立方体的个数是()A.3个B.4个C.5个D.6个25.如图,⊙O的直径 AB 与弦 AC 的夹角为35°,过C点的切线 PC 与 AB 的延长线交于点 P,那么∠P 等于()A.15°B.20°C.25°D.30°26.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF27.一个五次多项式,它的任何一项的次数()A.都小于5 B.都等于5 C.都不大于5 D.都不小于528.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③29.下列各组量中具有相反意义的量是()A.向东行 4km 与向南行4 kmB.队伍前进与队伍后退C .6 个小人与 5 个大人D .增长3%与减少2%30. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( ) A .0 个B .1 个C .2 个D .3 个31.下列运算中,结果为负数的是( ) A .(-5)×(-3) B .(-8)×O ×(-6)C . (-6)+(-8)D . (-6)-(-8)32.+8 比 -5 大( ) A .13B .-13C .8D .5.33.若0b <,则a ,a b -,a b +中,最大的是( ) A .aB .a b -C .a b +D .不能确定34.五个有理数的积是负数,这五个数中负因数个数是( ) A .1 个 B .3 个 C .5 个D .以上选项都有可能35.若3-=b a ,则a b -的值是( ) A .3B .3-C .0D .636.已知3x =,2y =,0x y ⋅<,则x y +的值为( ) A .5或-5B .1或-1C .5或1D .-5或-137.如图.在△ABC 中,AB AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,如果BC=10,△BDC 的周长为22,那么△ABC 的周长是( ) A .24B .30C .32D .3438.已知a 、b 、c 是三角形的三条边,那么代数式2222a ab b c -+-的值是( ) A .小于0B . 等于0C .大于0D .不能确定39.三角形一边上的中线把原三角形分成两个( ) A .形状相同的三角形 B .面积相等的三角形 C .直角三角形 D .周长相等的三角形40.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x41.某商场为促销将一种商品 A 按标价的九析出售,仍可获利润 10%. 若商品A 的标价是33元,那么该商品的进价为( ) A .31元B .30.2元C .29.7元D .27元42.如果关于m 的方程 2m+b=m-1 的解是-4,那么b 的值是( ) A .3 B .5C . -3D .-543.方程11012xx -+=-去分母后,得( ) A .1-x+10=-x B .1-x+10=-12x C .1+x+10=-12x D .1-x+120=-l2x44.要锻造直径为200 mm ,厚为18 mm 的钢圆盘,现有直径为40 mm 的圆钢,不计损耗,则应截取的圆钢长为 ( ) A .350 mmB .400 mmC .450 mmD .500 mm45.若1x =是方程20x a -=的根,则a =( ) A .1B .1-C .2D .2-46.如图,P 是线段MN 的中点,Q 是MN 上的点,判断下列说法中:①PQ=12PN ;②PQ=MP-QN ;③PQ=MQ-PN ;④PQ=12MN-QN ,其中正确的有( )A .1个B .2个C .3个D .4个47.把图中的角表示成下列形式:①∠AP0;②∠P ;③∠0PC ;④∠0;⑤∠CP0;⑥∠AOP . 其中正确的有 ( ) A .6个B .5个C .4个D .3个48.如图,将长方形ABCD 沿AE 折叠,使点D 落在BC 边上的点F .若∠BAF=60°,则∠DAE= ( ) A .150B .30°C . 45°D .60°49.如图,∠1=15°,∠AOC=90°,B 、O 、D 三点在一直线上,则∠l 的余角的补角是( ) A .15°B .75°C .105°D .165°50.以下是甲、乙、丙三人看地图时对四个地标的描述: 甲:从学校向北直走500米,再向东直走 100米可到图书馆; 乙:从学校向西直走300米,再向北直走200米可到邮局; 丙:邮局在火车站正西方向200米处.根据三人的描述,若从图书馆出发,下列走法中,终点是火车站的是( ) A .向南直走300米,再向西直走200米 B .向南直走300米,再向西直走600米 C .向南直走700米,再向西直走200米, D .向南直走700米,再向西直走600米 51.下列判断正确的是 ( )①在数轴上,原点两旁的两个点所表示的数都是互为相反数; ②任何正数必定大于它的倒数;③5ab ,12x ,4a 都是整式;④x 2-xy+y 2是二次多项式 A .①②B .②③C .③④D .①④52.为了考查某城市老年人参加体育锻炼的情况,调查了其中100名老年人每天参加体育锻炼的时间,其中100是这个问题的( ) A .一个样本B .样本容量C .总体D .个体53.如图,阴影部分的面积是( ) A .112xy B .132xy C .6xyD .3xy54.两个相似菱形的边长比是 1:4,那么它们的面积比是( )D A .1:2B .1:4C .1:8D .1:1655.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于( ) A .65B .95C .125D .16556.下列各图中,是轴对称图案的是( )AN57.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( )A .5cmB .8cmC .9cmD .10cm58.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( ) A .24B .20C .10D .559.如图,函数1y x=-图象大致是( )A .B .C .D .60.如果点 P 是反比例函数6y x=图象上的点,PQ ⊥x 轴,垂足为 Q ,那么△POQ 的面积是( ) A . 12B .6C .3D . 261.桌子上放了一个lO0 N 的物体,则桌面受到的压强 P (Pa )与物体和桌子的接触面的面积 S (m 2)的函数图象大致是( )A .B .C .D .62.抛物线222y x x =-+的顶点坐标是( ) A .(1,1)B .R (一1,1)C .(一 1,一1)D .(1,一1)63.下列四个函数:①2y x =+;②6y x=;③23y x =;④2(26)y x x =--≤≤,四个函数图 象中是中心对称图形,且对称中心是原点的共有( ) A .1 个B .2 个C .3 个D .4 个64.如图,OA 、OB 、OC 都是⊙O 的半径,∠ACB =∠CAB ,则下列结论错误的是( )A .∠AOB=∠BOCB .AB=BCC .AM=MCD .OM=MB65.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是( ) A .45°B .60°C .90°D .180°66.直角梯形的一腰长为l0 cm ,这条腰与底所成的角为30°,则它的另一腰长为 ( ) A .2.5 cmB .5 cmC .10 cmD .15 cm67.如图,D 、E 、F 分别在△ABC 的三边上,DE ∥BC ,DF ∥AC ,下列比例式中一定成立的是( ) A .AD DBBC DF=B .AE BFEC FC=C .DF DEAC BC=D .EC BFAE BC=68.已知直角三角形的面积为30,斜边上的中线是6.5,则两直角边的和是( ) A .19B .17C .16D .15.569.如图,P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( ) A .1条B .2条C .3条D .4条70.(针孔成像问题)根据图中尺寸(AB ∥AB'),那么物像长y (A'B'的长)与物长x (AB 的长)之间函数关系的图象大致是( )71.已知外婆家在小明家的正东方,学校在外婆家的北偏西40°,外婆家到学校与小明家到学校的距离相等,则学校在小明家的( ) A .南偏东50°B .南偏东40°C .北偏东50°D .北偏东40°72.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118 B .112 C .19 D .1673.与 cos70°值相等的是( ) A .sin70°B .cos20°C .sin20°D .tan70°74.在Rt △ABC 中,∠C=90°,下列式子不一定成立的是( )A .sinA=cosB B .sinB=cosAC .tanA=tanBD .sin 2A+sin 2B=175.布袋中装有 3个红球和 2个白球,从中任抽两球,恰好有 1 个红球、 1 个白球的概率是( ) A .35B .30l C .12D .1476.生活处处皆学问.如图,眼镜镜片所在的两圆的位置关系是( ) A .外离B .外切C .内含D .内切77.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC △内一点P 到三边的距离都相等.则PC 为( )A .1BC .2D .78.直线l 与半径为r 的⊙O 相交,且点0到直线l 的距离为 5,则r 的取值是( ) A . r>5B .r=5C . r<5D . r ≤ 579.2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有( ) A .相交或相切B .相交或内含C .相交或相离D .相切或相离80.下列命题中为真命题的是( ) A .三点确定一个圆 B .度数相等的弧相等C .圆周角是直角的角所对的弦是直径D .相等的圆心角所对的弧相等,所对的弦也相等81.如图所示,AB ∥CD ,CE 平分∠ACD ,∠A=110°,则∠ECD 的度数等于( ) A .110°B .70°C .55°D .35°82.一次函数34y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限83.如图,直线a ∥b ,∠2=95°,则∠1等于( ) A .100°B . 95°C . 99°D .85°84.下列立体图形中,是多面体的是( )85.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD ,BC 于E ,F 点,连结CE ,则△CDE 的周长为( ) A .5cmB .8cmC .9cmD .10cm86.已知函数y =x -5,令x =21、1、23、2、25、3、27、4、29、5,可得函数图象上的十个点.在这十个点中随机取两个点P (x 1,y 1)、Q (x 2,y 2),则P 、Q 两点在同一反比例函数图象上的概率是( ) A .91B .454 C .457 D .5287.下列函数中,是二次函数的是( ) A .1y x=-B .y x =-C .1y x =-+D .21y x =-+88.已知22222()3()40a b a b +-+-=,则22a b +=( ) A .-l B .4C .4或-lD .任意实数89.有意义的x 的取值范围是( ) A .2x ≠-B . 12x ≤且2x ≠- C .12x <且2x ≠- D . 12x ≥且2x ≠- 90.不等式组2130x x ≤⎧⎨+>⎩的解在数轴上可表示为( )A .B .C .D .91.关于x 的一元二次方程21(1)420m m x x ++++=的解为( ) A .11x =,21x =-B .121x x ==C .121x x ==-D .无解92.某服装销售商在进行市场占有情况的调查时,他应该最关注已售出服装型号的( ) A .平均数B .众数C .中位数D .最小数93.已知AABC 的三个内角度数比为2:3:4,则这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形94.下列各不等式中,变形正确的是( ) A .36102x x +>+变形得54x > B .121163x x -+<,变形得612(21)x x --<+ C .3214x x -<+变形得3x <- D .733x x +>-,变形得5x <95.当代数式235x x ++的值为 7时,代数式2392x x +-的值是( ) A .4B .0C .-2D .-4 96.将100个数据分成8个组,如下表:则第六组的频数为( ) A .12B .13C .14D .1597.从500个数据中用适当的方法抽取50个作为样本进行统计,126.5~130.5之间数据的频率在频数分布表是0.12,那么估计总体数据落在126.5~130.5之间个数为( ) A .60B .120C .12D .698.下列图形中,中心对称图形的是( ) A .B .C .D .99.在□ABCD 中,若∠A=60°,则∠C 的度数为( ) A .30°B .60°C .90°D .120°100.顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是( ) A .矩形 B 对角线相等的四边形C .对角线垂直的四边形D .平行四边形101.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x (x+1)=2550B .x (x-1)=2550C .2x (x+1)=2550D .x (x-1)=2550×2102.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( ) A .13B .12C .23D .34103.袋中有4个除颜色外其余都相同的小球,其中1个红色,1个黑色,2个白色. 现随机从袋中摸取一球,则摸出的球为白色的概率为( ) A .1B .21 C .31D .41104.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( ) A .79B .29C . 23D . 59105.校七年级有 13名同学参加百米竞赛,预赛成绩各不相同,要取前 6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A . 中位数B .众数C .平均数D .方差106. 如果a<b<0,下列不等式中错误..的是( ) A . ab >0B . a+b<0C .ba<1 D . a-b<0【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.B 3.D4.A5.D6.B7.A8.D9.A 10.C 11.A 12.A 13.A 14.D 15.D16.D 17.C 18.B 19.C 20.C 21.D 22.A 23.D 24.B 25.B 26.D 27.C28.C29.D 30.C 31.CA . 圆锥B . 圆柱C . 球D .空心圆柱108.己如,已知1l ∥2l ,AB ∥CD ,CE ⊥2l 于点E ,FG ⊥2l 于点 G ,下列说法中不正确的是( ) A .∠B .C .A 、AB 的长度 D .1l 与2l 之间的距离就是线段CD 的长度109.判断四边形是菱形应满足的条件是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线互相垂直平分110.如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin ∠APO 等于( )A .54B .53C .34D .43解析:答案A79.C 80.C 81.D 82.B 83.D 解析:答案: D84.B 85.D 86.B 87.D 88.B 89.B 90.A 91.C 92.B 93.A 94.D95.A 96.D 97.A 98.B 99.B 100.C 101.B 102.C 103.B 104.C 105.A 106.C 107.C 108.D 109.D 110.B。
九年级数学中考模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中, 只有一项是符合题目要求,请将正确选项前的字母代号填写在答题卡相应位置.......上) 1.-32的相反数为 ( )A .9B .-9C .-6D .62.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是 ( )3.下列运算正确的是 ()A .x 2+x 4=x 6B .x 2·x 3=x 6C .(x 3) 3=x 6D .25+35=5 5 4.下列说法不正确的是 ( )A .一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形 5.如图是一个三视图,则此三视图所对应的直观图是 ()6.将一副三角板按图中的方式叠放,则角 等于 ( ) A .75 B .60 C .45 D .307. 如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为 ( )A .22B .2C .1D .2A .B .C .D . A .B .C .D .第6题NMBA第10题图P O8. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论: ( ) ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有A. ①④B. ①③④C. ①②④D. ①②③④二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 因式分解:x 3y -xy 3= .10. 中国旅游研究院发布的2011年“五一”小长假旅游人气排行报告显示,江苏接待游客总人数约为1817.1万人次,1817.1万人次用科学计数法表示为 人次. 11. 函数y =3-x x 中自变量x 的取值范围是__________.12. 函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是__________. 13.已知一个圆锥的底面直径是6cm 、母线长8cm ,求得它的表面积为 cm 2.14. 如果两个相似三角形的一组对应边分别为3cm 和5cm ,且较小三角形的周长为15cm ,则较大三角形的周长为__________cm . 15. 有一组数据如下: 3, a, 4, 6, 7. 它们的平均数是5,那么这组数据的方差_________. 16. 直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点.17.如图,ABC ∆内接于⊙O ,90,B AB BC ∠==,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连结AD DC AP 、、.已知4=AB ,1=CP ,Q 是线第7题第17题段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,且满足AP BR =,则BQQR的值为_______________.18. 如图,在△ABC 中,AB =AC ,点E 、F 分别在AB 和AC 上,CE 与BF 相交于点D ,若AE =CF ,D 为BF 的中点,则AE ∶AF 的值为 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(6分)先化简,再求值: x x x x x 2444222+-÷⎪⎪⎭⎫ ⎝⎛-+,其中1-=x .20. (8分)在如图所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题: (1) 图中格点A B C '''△是由格点ABC △通过怎样变换得到的?(2) 如果建立直角坐标系后,点A 的坐标为(5-,2),点B 的坐标为(50)-,,请求出过A 点的正比例函数的解析式,并写出图中格点DEF △各顶点的坐标.各班种树情况70405010203040506070801234班级种树棵数21. (8分)如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.22. (10分)红星中学开展了“绿化家乡,植树造林 ”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图①和图②两幅尚不完整的统计图. 请根据图中提供的信息,完成下列问题:(1)这四个班共种树__________棵树. (2)请你补全两幅统计图.(3)若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵?甲 乙 丙 丁各班种树棵树的百分比 甲 35% 丁 丙乙 20%A BDO C H 23. (10分)如图,AB 为O 的直径,CD 为弦,且CD AB ⊥,垂足为H . (1)如果O 的半径为4,143CD =,求BAC ∠的度数;(2)在(1)的条件下,圆周上到直线AC 距离为3的点有多少个?并说明理由.24. (10分)某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD 是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米, ∠DCF=40°.请计算停车位所占道路的宽度EF (结果精确到0.1米). 参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84.25. (10分)某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B 地,乙车从B地直达A地,下图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图像;(3)乙车出发多长时间,两车相距150千米?26. (10分)如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG 于点F.(1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3) 若点G为CB延长线上一点,其余条件不变.请画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).27. (12分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.28.(12分)如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,2),∠BCO=60°,OH⊥BC于点H.动点P从点C在x轴正半轴上,点B坐标为(2,3点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)求OH的长;(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值.②探究线段OM长度的最大值是多少,直接写出结论.答案选择题:1A 2. C 3.D 4. D 5B 6. A 7.B 8. C 填空题 9 xy(x+y)(x-y) 10 1.8171710⨯ 11 x>3 12 k>1 13 33π 14 25 15 2 16 16073 17 1或1312 185+12解答题:19. 解:原式)2()2)(2(442+-+÷-+=x x x x x x x )2)(2()2()2(2-++⋅-=x x x x x x 2-=x …………………4分 当1-=x 时,321-=--=原式.…………………6分20. 1)格点△A ′B ′C ′是由格点△ABC 先绕B 点逆时针旋转90,然后向右平移13个长度单位(或格)得到的.(先平移后旋转也行)…………………3分(2)设过A 点的正比例函数解析式为y =kx , 将A (-5,2)代入上式得 2=-5k , k =-52. ∴过A 点的正比例函数的解析式为:x y 52-= …………………5分 △DEF 各顶点的坐标为:D (2,-4),E (0,-8),F (7,-7). …………………8分21.(1)ABOCH列表如下:树状图………………… 4分(2)数字之和分别为:2,4,7,4,6,9,7,9,12.算术平方根分别是:2,2,7,2,6,3,7,3,23 设两数字之和的算术平方根为无理数是事件A ∴5()9P A……………………………8分22. (1)200 ………………………………2分(2)如图 ………………………………8分(3)90%×2000=1800(棵) 答:成活1800棵树. ………………10分 23. 解:解:(1)∵ AB 为⊙O 的直径,CD ⊥AB ∴ CH =21CD =23 在Rt △COH 中,sin ∠COH =OC CH =23∴ ∠COH =60° ∵ OA =OC ∴∠BAC =21∠COH =30° …………………5分 (2)圆周上到直线AC 的距离为3的点有2个.各班种树棵树的百分比甲35%丁25%丙20%乙20%种树苗棵数70404050010203040506070801234班级甲 乙 丙 丁因为劣弧AC 上的点到直线AC 的最大距离为2, ADC 上的点到直线AC 的最大距离为6,236<<,根据圆的轴对称性,A D C 到直线AC 距离为3的点有2个. …………………10分24. 解:在Rt △CDF 中,DC=5.4m∴DF=CD •sin40°≈5.4×0.64≈3.46 …………………3分 在Rt △ADE 中,AD=2.2,∠ADE=∠DCF=40°∴DE=AD •cos40°≈2.2×0.77≈1.69 …………………6分 ∴EF=DF+DE ≈5.15≈5.2(m )即车位所占街道的宽度为5.2m …………………10分 25(1)300,1.5; …………………2分 (2)由题知道:乙的速度为30602 1.5=-(千米/小时),甲乙速度和为300301801.5-=(千米/小时),所以甲速度为120千米/小时. 2小时这一时刻,甲乙相遇,在2到2.5小时,甲停乙动;2.5到3.5小时,甲乙都运动,3.5到5小时甲走完全程,乙在运动, 则D (2.5,30),E(3.5,210),F(5,300). 设CD 解析式为y kx b =+,则有202.530k b k b +=⎧⎨+=⎩,解得60120k b =⎧⎨=-⎩,60120y x ∴=-;同理可以求得:DE 解析式为180420y x =-;EF 解析式为60y x =.综上60120,(2 2.5)180420,(2.5 3.5)60,(3.55)x x y x x x x -<≤⎧⎪=-<≤⎨⎪<≤⎩. …………………6分图象如下.…………………7分(3)当0 1.5x <<时,可以求得AB 解析式为180300y x =-+, 当y=150时,得56x =小时,当2.5 3.5x <<时,代入180420y x =-得196x =小时. …………………10分26. (1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA =AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE ∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF …………………3分(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG∴2===FGBF BF AF BF AB ∴ AF = 2BF , BF = 2 FG 由(1)知, AE = BF ,∴ EF = BF = 2 FG …………………8分(3) DE + BF = EF …………………10分27.(1 )变小 ………………1分(2)问题一:AD=(3412-)cm问题二:设AD=x当FC 为斜边时,631=x 当AD 为斜边时,8649>=x 不合题意 当BC 为斜边 ,无解综上所述:当AD 的长是631时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形 …………………9分问题三:假设∠FCD=15° 作∠CFE 角平分线可求得CD=12348>+不存在这样的位置,使得∠FCD=15°…………………12分28解:(1)∵AB ∥OC∴∠OAB=∠AOC=90°在Rt △OAB 中,AB=2,AO=23∴OB=4,∠ABO=60°∴∠BOC=60°而∠BCO=60°∴△BOC 为等边三角形∴OH=OBcos30°=4×23=23; …………………2分(2)∵OP=OH-PH=2 3-t∴Xp=OPcos30°=3- 23t Yp=OPsin30°= 3-∴S= 21•OQ•Xp= •t•(3-23 t ) =t t 23432+-(o <t <23)当t=3时,S 最大=; ………………5分(3)①若△OPM 为等腰三角形,则:(i )若OM=PM ,∠MPO=∠MOP=∠POC∴PQ ∥OC∴OQ=yp 即t=3- 解得:t=332 此时S=332 (ii )若OP=OM ,∠OPM=∠OMP=75°∴∠OQP=45° 过P 点作PE ⊥OA ,垂足为E ,则有:EQ=EP即t-(3 - t )=3-23t 解得:t=2此时S=33-(iii )若OP=PM ,∠POM=∠PMO=∠AOB ∴PQ ∥OA此时Q 在AB 上,不满足题意. …………………10分②线段PM 长的最大值为 . …………………12分。
中考数学模拟试题(一)一、选择题(本题共10小题,每小题3分,共30分)1.3的相反数是()A.﹣ B.﹣3 C.3 D.2.下列图形既是轴对称图形又是中心对称图形的是()A. B.C.D.3.函数y=中自变量x的取值范围是()A.x≥3 B.x>3 C.x≤3 D.x<34.下图所示几何体的主视图是()A.B.C.D.5.下列运算正确的是()A.a2+4a﹣4=(a+2)2B.a2+a2=a4 C.(﹣2ab)2=﹣4a2b2D.a4÷a=a36.一次函数y=2x﹣4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB的面积是()A.2 B.4 C.6 D.87.下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量8.下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100℃时,水沸腾C.任意画一个三角形,其内角和是360°D.射击运动员射击一次,命中靶心9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.410.如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C 在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣12二、填空题(本题共8小题,每小题3分,共24分)11.2019年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为________.12.分解因式:a2b﹣2ab+b=________.13.不等式组的解集是________.14.某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分)15﹣19 20﹣24 25﹣29 30人数 1 5 9 25从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为________.15.八年三班五名男生的身高(单位:米)分别为1.68,1.70,1.68,1.72,1.75,则这五名男生身高的中位数是________米.16.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.17.如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为________.18.如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为________.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:÷(1+),其中x=﹣1.20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.四、解答题(第21题12分,第22题12分,共24分)21.某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________,“综艺节目”在扇形统计图中所对应的圆心角的度数为________;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.22.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD ⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.五、解答题(满分12分)23.小明要测量公园北湖水隔开的两棵大树A和B之间的距离,他在A处测得大树B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C的北偏西60°方向.(1)求∠ABC的度数;(2)求两棵大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)六、解答题(满分12分)24.有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?七、解答题(满分12分)25.如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.八、解答题(满分14分)26.如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),作CD∥x 轴交抛物线于点D,作DE⊥x轴,垂足为E,动点M从点E出发在线段EA上以每秒2个单位长度的速度向点A运动,同时动点N从点A出发在线段AC上以每秒1个单位长度的速度向点C运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t秒.(1)求抛物线的解析式;(2)设△DMN的面积为S,求S与t的函数关系式;(3)①当MN∥DE时,直接写出t的值;②在点M和点N运动过程中,是否存在某一时刻,使MN⊥AD?若存在,直接写出此时t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.3的相反数是()A.﹣B.﹣3 C.3 D.【考点】相反数.【分析】根据相反数的定义即可求解.【解答】解:3的相反数是﹣3,故选B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形既是轴对称图形又是中心对称图形,故本选项正确;B、该图形是轴对称图形,但不是中心对称图形,故本选项错误;C、该图形是中心对称图形,但不是轴对称图形,故本选项错误;D、该图形既不是中心对称图形,也不是轴对称图形,故本选项错误;故选:A.3.函数y=中自变量x的取值范围是()A.x≥3 B.x>3 C.x≤3 D.x<3【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得3﹣x≥0,解得x≤3.故选:C.4.下图所示几何体的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据主视图的意义和几何体得出即可.【解答】解:几何体的主视图是,故选A.5.下列运算正确的是()A.a2+4a﹣4=(a+2)2B.a2+a2=a4 C.(﹣2ab)2=﹣4a2b2D.a4÷a=a3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;因式分解-运用公式法.【分析】根据完全平方公式;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2+4a+4=(a+2)2,故A错误;B、a2+a2=2a2,故B错误;C、(﹣2ab)2=4a2b2,故C错误;D、a4÷a=a3,故D正确.故选:D.6.一次函数y=2x﹣4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB的面积是()A.2 B.4 C.6 D.8【考点】一次函数图象上点的坐标特征.【分析】由直线解析式可求得A、B两点的坐标,从而可求得OA和OB的长,再利用三角形的面积可求得答案.【解答】解:在y=2x﹣4中,令y=0可得x=2,令x=0可得y=﹣4,∴A(2,0),B(0,﹣4),∴OA=2,OB=4,=OA•OB=×2×4=4,∴S△AOB故选B.7.下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查某批次汽车的抗撞击能力,破坏力强,适宜抽查;B、端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况,范围比较广,适宜抽查;C、调查某班40名同学的视力情况,调查范围比较小,适宜全面调查;D、调查某池塘中现有鱼的数量,调查难度大,适宜抽查,故选C.8.下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100℃时,水沸腾C.任意画一个三角形,其内角和是360°D.射击运动员射击一次,命中靶心【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、购买一张彩票,中奖,是随机事件;B、通常加热到100℃时,水沸腾,是必然事件;C、任意画一个三角形,其内角和是360°,是不可能事件;D、射击运动员射击一次,命中靶心,是随机事件;故选:B.9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【考点】由实际问题抽象出一元二次方程.【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.10.如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C 在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣12【考点】反比例函数系数k的几何意义;矩形的性质;平行线分线段成比例.【分析】先设D(a,b),得出CO=﹣a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,得出=,即BC•EO=AB•CO,求得ab 的值即可.【解答】解:设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴=,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选(D).二、填空题(本题共8小题,每小题3分,共24分)11.2019年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为9.4×106.【考点】科学记数法—表示较大的数.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:9 400 000=9.4×106;故答案为:9.4×106.12.分解因式:a2b﹣2ab+b= b(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式b,再利用完全平方公式进行二次分解.【解答】解:a2b﹣2ab+b,=b(a2﹣2a+1),…(提取公因式)=b(a﹣1)2.…(完全平方公式)13.不等式组的解集是﹣7<x≤1 .【考点】解一元一次不等式组.【分析】分别解出不等式组中两个不等式的解,合在一起即可得出不等式组的解集.【解答】解:.解不等式①,得x≤1;解不等式②,得x>﹣7.∴不等式组的解集为﹣7<x≤1.故答案为:﹣7<x≤1.14.某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分)15﹣19 20﹣24 25﹣29 30人数 1 5 9 25从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为.【考点】概率公式.【分析】根据统计表的意义,将各组的频数相加可得班级的总人数;读表可得恰好是获得30分的学生的频数,计算可得答案.【解答】解:该班共有1+5+9+25=40人.P(30)==,故答案为:.15.八年三班五名男生的身高(单位:米)分别为1.68,1.70,1.68,1.72,1.75,则这五名男生身高的中位数是 1.70 米.【考点】中位数.【分析】先把这些数从小到大排列,找出最中间的数即可得出答案.【解答】解:把这些数从小到大排列为:1.68,1.68,1.70,1.72,1.75,最中间的数是1.70,则这五名男生身高的中位数是1.70米;故答案为:1.70.16.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为a≤且a≠1.【考点】根的判别式.【分析】由一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a﹣1≠0,即a≠1,且△≥0,即△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,然后解两个不等式得到a的取值范围.【解答】解:∵一元二次方程(a﹣1)x2﹣x+1=0有实数根,∴a﹣1≠0即a≠1,且△≥0,即有△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,解得a ≤,∴a的取值范围是a≤且a≠1.故答案为:a≤且a≠1.17.如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为(2,4)或(4,2).【考点】全等三角形的判定与性质;坐标与图形性质.【分析】分两种情况①当点P在正方形的边AB上时,根据正方形的性质用HL 判断出Rt△OCD≌Rt△OAP,得出AP=2,得出点P的坐标,②当点P在正方形的边BC上时,同①的方法即可.【解答】解:①当点P在正方形的边AB上时,在Rt△OCD和Rt△OAP中,∴Rt△OCD≌Rt△OAP,∴OD=AP,∵点D是OA中点,∴OD=AD=OA,∴AP=AB=2,∴P(4,2),②当点P在正方形的边BC上时,同①的方法,得出CP=BC=2,∴P(2,4)∴P(2,4)或(4,2)故答案为(2,4)或(4,2)18.如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为(0,448).【考点】等边三角形的性质;规律型:点的坐标.【分析】先关键等边三角形的性质和已知条件得出A3的坐标,根据每一个三角形有三个顶点确定出A2016所在的三角形,再求出相应的三角形的边长以及A2016的纵坐标的长度,即可得解;【解答】解:∵,△A1A2A3为等边三角形,边长为2,点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,∴A3的坐标为(0,),∵2016÷3=672,∴A2016是第672个等边三角形的第3个顶点,∴点A2016的坐标为(0,×),即点A2016的坐标为(0,448);故答案为:(0,448).三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【考点】菱形的判定.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.四、解答题(第21题12分,第22题12分,共24分)21.某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了200 名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为40% ,“综艺节目”在扇形统计图中所对应的圆心角的度数为63°;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数;(2)用喜爱“新闻节目”的人数除以调查总人数得到它所占的百分比,然后用360度乘以喜欢“综艺节目”的人数所占的百分比得到综艺节目”在扇形统计图中所对应的圆心角的度数;(3)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;(4)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B”和“C”两位观众的结果数,然后根据概率公式求解.【解答】解:(1)本次问卷调查共调查的观众数为45÷22.5%=200(人);(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为50÷200=40%;“综艺节目”在扇形统计图中所对应的圆心角的度数为360°×=63°;故答案为200,40%,63°;(3)最喜爱“新闻节目”的人数为200﹣50﹣35﹣45=70(人),如图,(4)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众的概率==.22.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD ⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)先证明OC∥AM,由CD⊥AM,推出OC⊥CD即可解决问题.(2)根据S阴=S△ACD﹣(S扇形OAC﹣S△AOC)计算即可.【解答】解:(1)连接OC.∵OA=OC.∴∠OAC=∠OCA,∵∠MAC=∠OAC,∴∠MAC=∠OCA,∴OC∥AM,∵CD⊥AM,∴OC⊥CD,∴CD是⊙O的切线.(2)在RT△ACD中,∵∠ACD=30°,AD=4,∠ADC=90°,∴AC=2AD=8,CD=AD=4,∵∠MAC=∠OAC=60°,OA=OC,∴△AOC是等边三角形,∴S阴=S△ACD﹣(S扇形OAC﹣S△AOC)=×4×4﹣(﹣×82)=24﹣π.五、解答题(满分12分)23.小明要测量公园北湖水隔开的两棵大树A和B之间的距离,他在A处测得大树B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C的北偏西60°方向.(1)求∠ABC的度数;(2)求两棵大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)【考点】解直角三角形的应用-方向角问题.【分析】(1)先利用平行线的性质得∠ACM=∠DAC=15°,再利用平角的定义计算出∠ACB=105°,然后根据三角形内角和计算∠ABC的度数;(2)作CH⊥AB于H,如图,易得△ACH为等腰直角三角形,则AH=CH=AC=100,在Rt△BCH中利用含30度的直角三角形三边的关系得到BH=CH=100,AB=AH+BH=100+100,然后进行近似计算即可.【解答】解:(1)∵CM∥AD,∴∠ACM=∠DAC=15°,∴∠AC B=180°﹣∠BCN﹣∠ACM=180°﹣60°﹣15°=105°,而∠BAC=30°+15°=45°,∴∠ABC=180°﹣45°﹣105°=30°;(2)作CH⊥AB于H,如图,∵∠BAC=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=×200=100,在Rt△BCH中,∵∠HBC=30°,∴BH=CH=100,∴AB=AH+BH=100+100≈141.4+244.9≈386.答:两棵大树A和B之间的距离约为386米.六、解答题(满分12分)24.有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?【考点】二次函数的应用;一元一次不等式的应用;一次函数的应用.【分析】(1)利用待定系数法求两个函数的解析式;(2)根据总投资成本为10万元,设种植桃树的投资成本x万元,总利润为W 万元,则种植柏树的投资成本(10﹣x)万元,列函数关系式,发现是二次函数,画出函数图象,找出当2≤x≤8时的最小利润和最大利润.【解答】解:(1)把(4,1)代入y1=ax2中得:16a=1,a=,∴y1=x2,把(2,1)代入y2=kx中得:2k=1,k=,∴y2=x;(2)设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,则W=y1+y2=x2+(10﹣x)=(x﹣4)2+4,由图象得:当2≤x≤8时,当x=4时,W有最小值,W小=4,当x=8时,W有最大值,W大=(8﹣4)2+4=5,答:苗圃至少获得4万元利润,最多能获得8万元利润.七、解答题(满分12分)25.如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【考点】三角形综合题.【分析】(1)①根据ASA证明△AFC≌△EDC,可得结论;②结论是:DE+AD=2CH,根据CH是等腰直角△FCD斜边上的中线得:FD=2CH,再进行等量代换可得结论;(2)如图b,根据(1)作辅助线,构建全等三角形,证明△FAC≌△DEC得AF=DE,FC=CD,得等腰△FDC,由三线合一的性质得CH,是底边中线和顶角平分线,得直角△CHD,利用三角函数得出HD与CH的关系,从而得出结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠FAC=90°+∠B,∠CED=90°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△AFC≌△EDC,∴FA=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠FAC=120°+∠B,∠CED=120°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△FAC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.八、解答题(满分14分)26.如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),作CD∥x 轴交抛物线于点D,作DE⊥x轴,垂足为E,动点M从点E出发在线段EA上以每秒2个单位长度的速度向点A运动,同时动点N从点A出发在线段AC上以每秒1个单位长度的速度向点C运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t秒.(1)求抛物线的解析式;(2)设△DMN的面积为S,求S与t的函数关系式;(3)①当MN∥DE时,直接写出t的值;②在点M和点N运动过程中,是否存在某一时刻,使MN⊥AD?若存在,直接写出此时t的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),可以求得b、c的值,从而可以求得抛物线的解析式;(2)要求△DMN的面积,根据题目中的信息可以得到梯形AEDC的面积、△ANM 的面积、△MDE的面积、△CND的面积,从而可以解答本题;(3)①根据MN∥DE,可以得到△AMN和△AOC相似,从而可以求得t的值;②根据题目中的条件可以求得点N、点M、点A、点D的坐标,由AD⊥MN可以求得相应的t的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),∴,解得,,即抛物线的解析式为:y═﹣x2+x+4;(2)作NH⊥AM于点H,如由图1所示,∵y═﹣x2+x+4,∴对称轴x=﹣=,∵点A(﹣3,0),点C(0,4),CD∥x轴交抛物线于点D,DE⊥x轴,垂足为E,∴点D(3,4),点E(3,0),OA=3,OC=4,∴AC=5,AE=6,CD=3,∵NH⊥AM,AN=tME=2t,∴△ANH∽△ACO,AM=6﹣2t,∴,即,得NH=0.8t,∴S=S梯形AECD ﹣S△AMN﹣S△DME﹣S△CDN==0.8t2﹣5.2t+12,即S与t的函数关系式是S=0.8t2﹣5.2t+12(0<t≤3);(3)①当MN∥DE时,t的值是,理由:如右图2所示∵MN∥DE,AE=6,AC=5,AO=3,∴AM=6﹣2t,AN=t,△AMN∽△AOC,∴,即,解得,t=;②存在某一时刻,使MN⊥AD,此时t的值是,理由:如右图3所示,设过点A(﹣3,0),C(0,4)的直线的解析式为y=kx+b,则,得,即直线AC的解析式为y=,∵NH=0.8t,∴点N的纵坐标为0.8t,将y=0.8t代入y=得x=0.6t﹣3,∴点N(0.6t﹣3,0.8t)∵点E(3,0),ME=2t,∴点M(3﹣2t,0),∵点A(﹣3,0),点D(3,4),点M(3﹣2t,0),点N(0.6t﹣3,0.8t),AD ⊥MN,∴,解得,t=.中考数学模拟试题(二)一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1..计算:﹣3+4的结果等于()A.7 B.﹣7 C.1D.﹣12..如图,∠1的内错角是()A.∠2 B.∠3 C.∠4 D.∠53..今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B. 4 C. 5 D. 64..如图,一个空心圆柱体,其左视图正确的是()A. B.C.D.5..小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B. 42 C. 32 D.276..如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C. 4:9 D.8:277..王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B. 1600条C. 1700条D.3000条8..如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C. AD∥BC D.D F∥BE9..一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l描述的是无月租费的收费方式;1描述的是有月租费的收费方式;②l2③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0B. 1 C.2 D.310..已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3B.y≤3C. y>3 D.y<3二、填空题(每小题4分,共20分)11..方程组的解为.12..如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O 的面积等于.13.分式化简的结果为.14..“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.15..小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.三、解答题16.(8分)先化简,再求值:(x+1)(x﹣1)+x2(1﹣x)+x3,其中x=2.17..近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表景点频数(人数)频率黔灵山公园116 0.29小车河湿地公园0.25南江大峡谷84 0.21花溪公园64 0.16观山湖公园36 0.09(1)此次共调查人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?。
初三考试数学模拟试题精选含详细答案一、压轴题1.(概念认识)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.(问题解决)(1)如图②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分线BD交AC于点D,则∠BDC= °;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP,求∠A的度数;(延伸推广)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°,∠B=n°,直接写出∠BPC的度数.(用含 m、n的代数式表示)2.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.3.如图,若要判定纸带两条边线a ,b 是否互相平行,我们可以采用将纸条沿AB 折叠的方式来进行探究.(1)如图1,展开后,测得12∠=∠,则可判定a//b ,请写出判定的依据_________; (2)如图2,若要使a//b ,则1∠与2∠应该满足的关系是_________;(3)如图3,纸带两条边线a ,b 互相平行,折叠后的边线b 与a 交于点C ,若将纸带沿11A B (1A ,1B 分别在边线a ,b 上)再次折叠,折叠后的边线b 与a 交于点1C ,AB//11A B ,137BB AC ==,,求出1AC 的长.4.探究:如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若∠B =30°,则∠ACD 的度数是 度;拓展:如图②,∠MCN =90°,射线CP 在∠MCN 的内部,点A 、B 分别在CM 、CN 上,分别过点A 、B 作AD ⊥CP 、BE ⊥CP ,垂足分别为D 、E ,若∠CBE =70°,求∠CAD 的度数;应用:如图③,点A 、B 分别在∠MCN 的边CM 、CN 上,射线CP 在∠MCN 的内部,点D 、E 在射线CP 上,连接AD 、BE ,若∠ADP =∠BEP =60°,则∠CAD +∠CBE +∠ACB = 度.5.在△ABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .①当α=70°时,∠BDC 度数= 度(直接写出结果);②∠BDC 的度数为 (用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 角平分线交于点F ,求∠BFC 的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的角平分线与∠GCB 的角平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).6.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =7.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.8.请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D .(简单应用)(2)如图2,AP 、CP 分别平分∠BAD 、∠BCD ,若∠ABC=20°,∠ADC=26°,求∠P 的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE , 若∠ABC=36°,∠ADC=16°,猜想∠P 的度数为 ;(拓展延伸)(4)在图4中,若设∠C=x ,∠B=y ,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 (用x 、y 表示∠P ) ;(5)在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、D 的关系,直接写出结论 .9.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.10.如图1,在平面直角坐标系中,点A 的坐为()2,0,点D 的坐标为()0,2-,在ABC ∆中45ABC ACB ∠=∠=,//BC x 轴交y 轴于点M .(1)求OAD ∠和ODA ∠的度数;(2)如图2,在图1的基础上,以点B 为一锐角顶点作Rt BOE ∆,90BOE =∠,OE 交AC 于点P ,求证:OB OP =;(3)在第(2)问的条件下,若点B 的标为()2,4--,求四边形BOPC 的面积.11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加. 12.Rt △ABC 中,∠C =90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=60°,则∠1+∠2= ; (2)若点P 在线段AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为 ; (3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.13.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .14.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)15.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).17.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:21 14 xx=+,求代数式x2+21x的值.解:∵21 14 xx=+,∴21xx+=4即21xx x+=4∴x+1x=4∴x2+21x=(x+1x)2﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求xy z+的值.解:令2x=3y=4z=k(k≠0)则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.18.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。
2021年九年级中考模拟考试数学试题一.选择题(共10小题,满分30分)1.(3分)下列各组数,互为相反数的是()A.﹣2与B.|﹣|与C.﹣2与(﹣)2D.2与2.(3分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.下列等式错误的是()A.(2mn)2=4m2n2 B.(﹣2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(﹣2m2n2)3=8m6n6 4.(3分)甲乙两名同学本学期参加了相同的5次数学考试,老师想判断这两位同学的数学成绩谁更稳定,老师需比较这两人5次数学成绩的()A.平均数B.中位数C.众数D.方差5.(3分)如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()A.25°B.50°C.65°D.70°6.(3分)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.77.如图,火车匀速通过隧道(隧道长大于火车长)时,火车在隧道内的长度y随着火车进入隧道的时间x的变化而变化的大致图象是()A.B.C.D.8.小李去买套装6色水笔和笔记本(单价均为整数),若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种物品(两种都买)的方案有()A.3种B.4种C.5种D.6种9.(3分)在一只不透明的口袋中放入只有颜色不同的白球6个,黑球8个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球个数n=()A.4B.5C.6D.710.(3分)已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点B的坐标为(1,0)其图象如图所示,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c =0的两个根是﹣3和1;④当y>0时,﹣3<x<1;⑤当x>0时,y随x的增大而增大:⑥若点E(﹣4,y1),F(﹣2,y2),M(3,y3)是函数图象上的三点,则y1>y2>y3,其中正确的有()个A.5B.4C.3D.2二.填空题(共7小题,满分12分)11.在全国上下众志成城抗疫情、保生产、促发展的时刻,三峡集团2月24日宣布:在广东、江苏等地投资580亿元,开工建设25个新能源项目,预计提供17万个就业岗位将“580亿元”用科学记数法表示为元.12.如图,∠BCA=∠DAC,请你添加一个条件:,可得△ACB≌△CAD.13.(3分)已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.(3分)若关于x的方程+=2的解为正数,则m的取值范围是.15.(3分)如图,矩形ABCD的顶点A,B,D分别落在双曲线y═(k>0)的两个分支上,AB 边经过原点O,CB边与x轴交于点E.且EC=EB.若点A的横坐标为1,则k=.16.在等腰三角形ABC中,BC边上的高恰好等于BC边长的一半,则∠BAC等于.17.(3分)如图,直线y=x+4与y轴交于A1,按如图方式作正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,点A1,A2,A3…在直线y=x+4上,点C1,C2,C3,…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1,S2,S3…,S n,则S n的值为(用含n的代数式表示,n为正整数).18.如图,在ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知120BAC∠=︒,16AB AC+=,MN的长为π,则图中阴影部分的面积为__________.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.(7分)解不等式组131722324334x xx x x⎧+<-⎪⎪⎨--⎪≥+⎪⎩,并写出它的所有整数解.20.(7分)为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________;统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.21.(10分)如图,已知反比例函数kyx=的图象与直线y ax b=+相交于点(2,3)A-,(1,)B m.(1)求出直线y ax b=+的表达式;(2)在x轴上有一点P使得PAB△的面积为18,求出点P的坐标.22.(10分)如图,在ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=10,求此时DE的长.23.(10分)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元;(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.24.(10分)如图,菱形ABCD 的边长为1,=60ABC ∠︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .(1)求证:AF EF =;(2)求MN NG +的最小值;(3)当点E 在AB 上运动时,CEF ∠的大小是否变化?为什么?25.(12分)已知抛物线22232(0)y ax ax a a =--+≠. (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式; (3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围.。
九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A .AD >1B .AD <5C .1<AD <5D .2<AD <102.如图,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是( ) A .43B .33C .23D .33.从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价的种数为( ) A .4 种B . 6 种C . 10 种D . 12 种4.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件,不能说明ΔABD ≌ΔACE 的是( ) A .∠B=∠CB .AD=AEC .∠BDC=∠CEBD .BD=CE5.数学老师抽一名同学回答问题,抽到女同学是( ) A .必然事件B .不确定事件C .不可能事件D .无法判断6.如图,小贩设计了一个转盘游戏,2元钱玩一次,学生自由转动转盘,待停后指针指向的物品即为学生所获物品,那么学生转到什么物品的可能性最大( ) A .铅笔盒B .橡皮C .圆珠笔D .胶带纸 7.设A b a b a +-=+22)35()35( ,则=A ( ) A .ab 30B .ab 60C .ab 15D .ab 128.化简 2a 3 + a 2·a 的结果等于( ) A . 3a 3B .2a 3C .3a 6D .2a 69.已知a <0,若-3a n ·a 3的值大于零,则n 的值只能是( ) A .n 为奇数B .n 为偶数C .n 为正整数D .n 为整数10.小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图, ,那么哥哥球衣上的实际号码是( )A .25号B .52号C .55号D .22号 11.下列计算中,正确的是( ) A .1025m m m =⋅ B .(a 2)3=a 5 C .(2ab 2)3=6ab 6 D .(-m 2)3= -m 612.与分式x yx y-+--的值相等的分式是( ) A .x yx y+- B .x yx y-+ C .x yx y+-- D .x yx y--+ 13.如图,直线123,,l l l 表示三条相互交叉的公路,现要建造一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A .一处B .两处C .三处D .四处14.如图,已知 6.75R =, 3.25r =,则图中阴影部分的面积为(结果保留π)( ) A .35π⋅B .12.25πC .27πD .35π15.如图,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工件,则A ′B ′的长等于内槽宽AB ,那么判定△OAB ≌△OA ′B ′的理由是( ) A .边角边B .角边角C .边边边D .角角边16.如图,点E 在BC 上,ED 丄AC 于F ,交BA 的延长线于D ,已知∠D =30°,∠C =20°,则∠B 的度数是( ) A .20° B .30°C .40°D .50°17.如果分式-23x -的值为负,则x 的取值范围是( ) A .x>2 B .x>3C .x<3D .x<218.已知方程3233x x x=---有增根,则这个增根一定是( ) A .2x =B .3x =C .4x =D .5x =19.如图,△ABC 三个内角的平分线AD 、BF 、CE 交于点O ,则∠1+∠2等于( ) A .100°B .90°C . 95°D . 不能确定20.方程27x y +=在自然数范围内的解有( ) A .1个B . 2个C .3个D .4个21.如果整式22x x m-+恰好是一个完全平方式,那么常数m的值是()6A. 3 B.-3 C.3±D.922.某居民楼的一个单元一共有l0户人家,每两个月对住户的用水进行统计,8月底时,轮到小明统计,小明对每户人家的水表进行了“抄表”,从而得到每个住户的用水量,结果有3户家庭用水39吨,4户家庭用水42吨,3户家庭用水45吨,则此单位住户的月平均用水量是()A.21吨B.39吨C.42吨D.45吨23.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带()A.①B.②C.③D.①和②24.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个25.如图,为了测出湖两岸A、B间的距离.一个观测者在在C处设桩,使三角形ABC恰为直角三角形,通过测量得到AC的长为160 m,BC长为l28 m,那么从点A穿过湖到点B的距离为()A.86 m B.90 m C.96 m D.l00 m26.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等27.关于单项式322-的系数、次数,下列说法中,正确的是()2x y zA.系数为-2,次数为 8B.系数为-8,次数为 5C.系数为-23,次数为 4D.系数为-2,次数为 728.一个数的绝对值等于这个数本身,这个数是()A.1 B.+1,-1,0 C.1 或-1 D.非负数29.绝对值等于本身的数是()A.正数B.0 C.负数或0 D.正数或 030.算式(-3. 14)×47+ (-3. 14)×53 是由下列哪一个算式用分配律变形得到的?( ) A .(-3.14)×(47+53) B .( -3.14)×( -47-53) C .(-3.1)×( (47-53) D .3.14×(-47+53)31.在式子(-5)2 中-5 称为( ) A . 指数 B . 底数C . 乘数D . 幂32.54表示( ) A .4个5 相乘B . 5个4相乘C .5与4的积D . 5个4相加的和33.下列各式中,计算正确的是( )A =B =C .(a b -3=- 34.下面说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .任何实数都有立方根C .任何一个实数必有立方根和平方根D .负数没有立方根35.下列说法中,错误的是( )A .任何一个数都有一个立方根,且是唯一的B .负数的算术平方根不存在,正数的算术平方根一定是正数C .0没有算术平方根D .正数的四次方根一定有两个,且互为相反数 36.如果237m n -=,那么823m n -+等于( ) A .15B .1C .7D .837.已知3x =,2y =,0x y ⋅<,则x y +的值为( ) A .5或-5B .1或-1C .5或1D .-5或-138.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( ) A .△OCDB .△OABC .△OAFD .△OEF39.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .2(3)a b -B .23()a b -C .23a b -D .2(3)a b -40.如图,EA ⊥AB ,BC ⊥AB ,AB=AE=2BC ,D 为AB 的中点,有以下判断:(1)DE=AC ;(2)DE ⊥AC ;(3)∠CAB=30°;(4)∠EAF=∠ADE ,其中不正确结论的个数有( ) A .0个B .l 个C .2个D .以上选项均错误41.下列各个变形正确的是( ) A .由 7x=4x-3,移项,得 7x-4x=3B .由 3(2x-1)=1+ 2(x-3),去括号,得6x-1 =1+2x-3C .由 2(2x-1)-3(x-3)= 1,去括号,得4x-2-3x-9= 1D .由 2(x+1)=x+8,去括号,移项,合并,得x=642.在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?若设支援拔草的有x 人,则下列方程中正确的是 ( ) A .32+x=2×18 B .32+x=2(38-x ) C .52-x =2(18+x ) D .52-x=2×18 43.观察下图,下列选项正确的为 ( )①面积最大的是亚洲;②南美洲、北美洲、非洲约占总面积的50%;③非洲约占全球面积的15;④南美洲的面积是大洋洲面积的2倍A .①②B .①②③④C .①④D .①②④44.要反映宁波市一周内每天的最高气温的变化情况,宜采用( ) A .条形统计图B .扇形统计图C .折线统计图D .以上都可以45.如图,已知AD=BD ,C 为AD 中点,以下等式不正确的是( )A .DC=13CBB .CB=34ABC .AD=23BCD .CB=13(AB+AC )46.把图中的角表示成下列形式:①∠AP0;②∠P ;③∠0PC ;④∠0;⑤∠CP0;⑥∠AOP . 其中正确的有 ( )A .6个B .5个C .4个D .3个47.如图,在斜板上放一个长方体木块,那么这个木块的棱CD ( ) A .与地面水平线OB 平行 B .与地面水平线OB 垂直 C .与斜板的一边OA 平行 D .与斜板的一边OA 垂直48.有理数a 、b 在数轴上的位置如图所示,则下列结论中,不正确的是( )A .a+bOB .a-b>OC .0ab< D .a b >49.如图,在长方体中,与AB 平行的棱有( ) A . 1条B .2条C .3条D .4条50.将方程12x 3123x -+-=去分母,正确的结果是( ) A .3(1)2(23)1x x --+= B .3(1)2(23)6x x --+= C .31431x x --+=D .31436x x --+=51.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是( ) A .1号袋B .2号袋C .3号袋D .4号袋52.如图,已知BC=BD ,∠ABE=∠CBD ,∠ADB=∠BCE .要说明BA=BE ,则只要先说明 ( ) A .△ABE ≌△DBCB .△ABD ≌△EBC C .△BDG ≌△BEHD .△ABG ≌△BCH53.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm 时, 滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)( ) A .115°B .60°C .57°D .29°54.如图,A 、C 是函数2y x=的图象上任意两点,过A 作x 轴的垂线,垂足为 B ,过C 作x 轴的垂线,垂足为 D ,如果设Rt △AOB 的面积为 S 1,Rt △COD 的面积为S 2,那么( ) A .S 1>S 2B .S 1<S 2C . S 1 =S 2D .大小无法确定55.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图),设他们生产零件的平均数为a ,中位数为b ,众数为c ,则有( ) A .b>a>cB .c>a>bC .a>b>cD .b>c>a56.在下图中,反比例函数xk y 12+=的图象大致是( )57.若两个数的和为 3,积为-1,则这两个数的平方和为( ) A .7B .8C .9D . - 1158.抛物线221y x x =--+的顶点在( )A . 第一象限B .第二象限C .第三象限D .第四象限59.用长度一定的绳子围成一个矩形,如果矩形的一边长 x (m )与面积 y (m 2)满足函数2(12)144y x =--+,当边长 x 1,、x 2、x 3满足123<12x x x <<时,其对应的面积yl 、y2、y 3 的大小关系是( ) A .123y y y <<B .123y y y >>C .213y y y >>D .132y y y <<60.在同一坐标系中,函数2y ax bx =+的图象与by x=的图象大致为( )A .B .C .D .61. 二次函数y =―3x 2―7x ―12的二次项系数、一次项系数及常数项分别是( ) A .―3,―7,―12B .-3,7,12C .3,7,12D .3,7,-1262.抛物线y=x 2+x+7与坐标轴的交点个数为( ) A .3个B .2个C .1个D .0个63.关于二次函数247y x x =+-的最值,叙述正确的是( ) A .当x=2 时,函数有最大值 B .当 x=2时,函数有最小值 C .当 x=-2 时,函数有最大值D .当 x= 一2 时,函数有最小值64.用反证法证明“a b >”时应假设( ) A .a b >B .a b <C .a b =D .a b ≤65.小明要制作一个圆锥模型,其侧面是由一个半径为 9 cm ,圆心角为 240°的扇形纸板 制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的直径为 ( ) A .15 cmB .l2cmC .10 cmD .9 cm66.反比例函数y =kx中,k 与x 的取值情况是( ) A .k ≠0,x 取全体实数 B .x ≠0, k 取全体实数 C .k ≠0,x ≠0D .k 、x 都可取全体实数67.如图,Rt △OAC 中,∠OAC=90°,OA=6,AC=4,扇形OAB 的半径为OA ,交OC 于点B ,如果⌒AB 的长等于3,则图中阴影部分的面积为( ) A .15 B .6 C .4 D .3 68.下列命题不正确的是( ) A . 所有等边三角形都相似B .所有等腰直角三角形都相似C . 有一个角等于 40°的二个等腰三角形相似D . 有一个锐角对应相等的二个直角三角形相似69.如图,D 为 AC 中点,AF ∥DE ,:S 13ABF AFED S ∆=梯形:,则:ABF CDE S S ∆∆等于( ) A .1 : 2B .2 : 3C .3 : 4D .1:170.下列说法正确的有( )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE 与五边形 A ′B ′C ′D ′E ′位似,则其中△ABC 与△A ′B ′C ′也是位似的,且位似比相等. A .1 个B .2 个C .3 个D .4 个71.某市民政部门:“五一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这此彩票中,设置如下奖项: 如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是( C )A .1200050050020072.如图所示,在四边形ABCD 中,∠B=∠D=90°,:C :CD B CA =,则∠DAB 等于( )A .60°B .75°C .90°D .105°73.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是( ) A .0.75B . 0.5C . 0.25D . 0.12574.如图,点A 在⊙O 上,下列条件不能说明 PA 是⊙O 的切线的是( )A .222OA PA OP +=B . PA ⊥OAC .∠P= 30°,∠0= 60°D .OP=2QA75.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,若∠ABC=45°,则下列结论正确的是( ) A .AC >ABB .AC=ABC .AC <ABD .AC=12BC76.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为( )A .33分米2B .24分米2C .21分米2D .42分米277.如图所示是一个物体的三视图,则该物体的形状是( )A .圆锥B .圆柱C .三棱锥D .三棱柱78.二次函数342++=x x y 的图象可以由二次函数2x y =的图象平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,再向上平移1个单位长度 B .先向左平移2个单位长度,再向下平移1个单位长度 C .先向右平移2个单位长度,再向上平移1个单位长度 D .先向右平移2个单位长度,再向下平移1个单位长度 79.下列函数中是一次函数的是( ) A .y=kx+bB .2y x-=C .2331y x x =-++D .112y x =-+80.已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,则( ) A .甲组数据比乙组数据的波动大 B .乙组数据比甲组数据的波动大 C .甲组数据与乙组数据的波动一样大 D .甲、乙两组数据的波动性大小不能比较81.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.A BOC 45°甲、乙、丙三人的成绩如上表(单位:分),学期总评成绩优秀的是( ) A .甲B .乙和丙C .甲和乙D .甲和丙82.某校要了解八年级女生的体重以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测.就这个问题,下面说法中.正确的是( ). A .500名女生是总体 B .500名女生是个体C .500名女生是总体的一个样本D .50是样本容量83.||3x ≤的整数解是( ) A .0,1,2,3B .0,1,2,3±±±C .1,2,3±+±D .-1,-2 ,-3,084.不等式组31413(3)024x x +<⎧⎪⎨+-<⎪⎩的最大整数解是( ) A .0 B .-1C .-2D .185.二次函数242y x =-的顶点坐标为( ) A .(4,一2)B .(4,2)C . (4,0)D . (0,4)86.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( ) A .0B .1C .2D .387.下列计算中正确的是( )A .2 3 +3 2 =5 5B . (-4)×(-4) =-9 ×-4 =(-3)×(-2)=6C . 6 ÷( 3 -1)= 6 ÷ 3 - 6 ÷1= 2 - 6D .(10 +3)2(10 -3)=10 +3 88.不等式2x -7<5-2x 的正整数解有( ) A .1个B .2个C .3个D .4个89.计算 ) A.B .CD .90.下列说法正确的是( ) A .有两个角为直角的四边形是矩形 B .矩形的对角线互相垂直 C .等腰梯形的对角线相等D .对角线互相垂直的四边形是菱形91.有下列方程:①24810x -=;②230m m +=;③2(23)4y -=;④21(3)273x -=.A .①②③B .①③C .①③④D .①③③④92.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A .k >14-B .k >14-且0k ≠ C .k <14- D .14k ≥-且0k ≠ 93.样本频数分布反映了( )A .样本数据的多少B .样本数据的平均水平C .样本数据的离散程度D .样本数据在各个小范围内数量的多少94.如图,DE 是△ABC 的中位线,F 是DE 的中点,BF 的延长线交AC 于点H ,则AH :HE 等于( ) A .1:1B .1:2C .2:1D .3:295.已知矩形的周长是24 cm ,相邻两边之比是1:2,那么这个矩形的面积是( ) A .24 cm 2B .32 cm 2C .48 cm 2D .128 cm 296.38.33°可化为 ( ) A .38°30′3″B .38°33′C .38°30′30″D .38°19′48″ 97.要使))(2(2q x px x -++的乘积中不含2x 项,则p 与q 的关系是( ) A .互为倒数B .互为相反数C .相等D .关系不能确定98.关于x 、y 的方程组244x y ax y a+=⎧⎨-=⎩解是方程3210x y +=的解,那么a 的值为( )A . -2B . 2C .-1D . 199.把图形(1)进行平移,能得到的图形是( )100.若|4|4a a -=-,则a 的取值范围为( ) A .4a >B .4a ≥C .4a <D .4a ≤101.在5×5的方格纸中,将图(1)中的图形 N 平移后的位置如图(2)所示,那么正确的平移方法是( ) A .先向下移动1 格,再向左移动1格 B .先向下移动1 格,再向左移动2格 C .先向下移动2格,再向左移动 1格 D .先向下移动2格,再向左移动 2格102.如图,在四边形ABCD 中,AD ∥/BC ,AB ∥DC ,BD=CD ,∠BCE=15°,CE ⊥BD 于E ,则∠A 的度教为( ) A . 75°B . 70°C . 65°D . 60°103.在x ,1,22x -,2r π,12S ab =,nm,2V r h π=中,代数式的个数为( ) A .5 个B .4 个C .3 个D .2 个104.下列图形中的直线 1与⊙0的位且关系是相离的是( )A .B .C .D .105.设⊙O 的半径为 r ,直线 1l 、2l 、3l 分别与⊙O 相切、相交、相离,它们到圆心 0的距离分别为l d 、2,l d 、3,d ,则有( )A .123d r d d >=>B .123d r d d =<<C .213d d r d <=<D .123d r d d =>>106. 某人沿着倾斜角为α的斜坡前进了c 米,则他上升的高度为( ) A . csin αB .ctan αC . ccos αD .tan cα107.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有 ( ) A .5桶 B .6桶 C .9桶D .12桶108.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是( ) A .0.1B .0.2C .0.3D .0.7109.在频率分布直方图中,下列结论成立的是( ) A .各小组频率之和等于n B .各小组频数之和等于1 C .各小组频数之和等于n110.函数24=-的图象与x轴、y轴的交点分别为点A、B,则线段AB的长为()y xA.B C. 2 D. 5【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.C3.B4.D5.B6.D7.B8.A9.B10.A11.D12.B13.D14.D15.A16.C17.B18.B19.B20.D21.C22.A23.C24.B25.C29.D 30.A 31.B 32.B 33.C 34.B 35.C 36.B 37.B 38.C 39.A 40.B 41.D 42.B 43.D 44.C 45.D 46.C 47.D 48.B 49.C 50.B 51.B 52.B 53.C 54.C 55.A 56.D 57.D 58.B 59.A63.D 64.D 65.B 66.C 67.D 68.C 69.D 70.C 71.C 72.B 73.D 74.D 75.B 76.A 77.A 78.B 79.D 80.B 81.C 82.D 83.B 84.C 85.D 86.D 87.D 88.B 89.B 90.C 91.C 92.B 93.D97.C 98.B 99.C 100.D 101.C 102.A 103.A 104.C 105.C 106.A 107.B 108.B 109.D 110.B。