第八章 自蔓延高温合成技术
- 格式:ppt
- 大小:1.38 MB
- 文档页数:22
自蔓延高温合成法概述自蔓延高温合成法(Self-Propagating High-Temperature Synthesis,简称SHS)是一种以高温反应为基础的合成方法,具有快速、低能耗和高效的特点。
它在材料科学和化学领域有着广泛的应用,可以用于合成金属陶瓷材料、复合材料和无机化学品等。
原理SHS基于自蔓延原理,即通过局部点燃反应混合物中的可燃物质,使整个反应物质迅速发生反应并扩散,形成产物。
该反应过程通常在高温下进行,使用以金属和非金属化合物为主的反应物,产物常为金属、陶瓷和复合材料。
反应机制SHS反应通常由两个步骤组成:点燃阶段和自蔓延扩散阶段。
在点燃阶段,反应体系中局部加热可燃物质,使其自发点燃。
燃烧反应产生的高温和自由基会引发整个反应物质的快速反应。
在自蔓延扩散阶段,反应前驱体与产物之间的扩散作用会加速反应的进行,并不断释放出热量,维持反应的高温。
应用领域1. 金属陶瓷材料SHS在金属陶瓷领域有广泛的应用。
例如,利用SHS可以制备高硬度、耐磨损的刀具材料。
通过选择不同的金属和陶瓷反应物,可以调控材料的硬度、导热性和耐腐蚀性。
2. 复合材料SHS还可用于制备复合材料,在提供机械强度的同时具有轻质和高温性能。
通过选择不同的反应物,可以调控材料的化学成分和微结构,使其具有特定的性能和应用领域。
3. 无机化学品SHS在无机化学品合成中也有重要的应用。
例如,在高温下可以通过SHS方法合成多晶硅粉末,用于制备太阳能电池。
此外,SHS还可用于制备氧化物陶瓷材料、金属硬质合金和火焰喷涂材料等。
实验操作SHS方法的实验操作相对简单,但仍需注意安全事项。
以下是一般的实验操作步骤:1.准备反应物:按照所需的配比准备反应物。
2.混合反应物:将反应物充分混合均匀,以确保反应的全面性。
3.预热反应器:将反应器预热至适当的温度,以提供起始点燃的热源。
4.加入混合物:将混合物加入预热的反应器中,快速封闭反应器。
5.点燃反应物:利用点燃源引发混合物中可燃物质的燃烧。
自蔓延高温合成法自蔓延高温合成法(Self-Propagating High-Temperature Synthesis,简称SHS)是一种在高温下自发进行的化学合成方法。
SHS技术已被广泛应用于材料科学、能源存储、催化剂制备等领域,其独特的特点使其成为一种高效、环保且经济的合成方法。
SHS技术的原理是在适当的反应条件下,通过引入足够的活化能使化学反应自发发生和持续传播。
这种自蔓延的反应过程是基于氧化还原反应、放热反应和传热传质等多种复杂的物理和化学过程相互耦合而成的。
由于SHS反应在高温下进行,因此可以获得高纯度、致密度高、晶粒细小的产物。
SHS技术的优点主要有以下几个方面:1. 高效性:SHS反应通常在数秒至数分钟内完成,反应速度快,能耗低。
与传统的合成方法相比,SHS技术可以显著缩短合成时间。
2. 环保性:SHS技术不需要使用外部能源,反应过程中产生的高温和自身放热能够驱动反应的进行,使其成为一种绿色合成方法。
此外,由于反应过程中不需要溶剂,减少了有机溶剂的使用和废弃物的产生。
3. 可控性:通过控制反应条件、配比和反应时间等参数,可以实现对产物形态、尺寸和组成的精确控制。
这使得SHS技术在材料制备中具有很大的灵活性。
4. 应用广泛:由于SHS技术能够合成各种复杂的无机、有机和金属材料,因此在材料科学和工程领域有着广泛的应用。
例如,SHS技术可以用于制备金属陶瓷复合材料、纳米材料、催化剂和能源存储材料等。
SHS技术也存在一些挑战和限制。
首先,SHS反应的过程比较复杂,需要对反应机理和热力学行为进行深入研究。
其次,由于反应过程中产生的高温和强热释放,需要对反应系统进行良好的隔热和安全措施。
此外,SHS技术在合成大尺寸和复杂形状的材料时也面临一定的困难。
为了克服这些限制,研究者们正在不断改进和优化SHS技术。
例如,引入外部能量源、微波辐射和压力等调控因素,可以进一步提高反应速率和产物质量。
此外,结合计算模拟和实验研究,可以深入理解SHS反应的机理和动力学行为。
自蔓延高温合成(self–propagation high–temperature synthesis,简称SHS),又称为燃烧合成(combustion synthesis)技术,是利用反应物之间高的化学反应热的自加热和自传导作用来合成材料的一种技术,当反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全,是制备无机化合物高温材料的一种新方法。
基本信息•中文名称:自蔓延高温合成•外文名称:self–propagation high–temperature synthesis•特点:反应温度通常都在2100~3500K•简史:黑色炸药是最早应用特点燃烧引发的反应或燃烧波的蔓延相当快,一般为0.1~20.0cm/s,最高可达25.0cm/s,燃烧波的温度或反应温度通常都在2100~3500K以上,最高可达5000K。
SHS以自蔓延方式实现粉末间的反应,与制备材料的传统工艺比较,工序减少,流程缩短,工艺简单,一经引燃启动过程后就不需要对其进一步提供任何能量。
由于燃烧波通过试样时产生的高温,可将易挥发杂质排除,使产品纯度高。
同时燃烧过程中有较大的热梯度和较快的冷凝速度,有可能形成复杂相,易于从一些原料直接转变为另一种产品。
并且可能实现过程的机械化和自动化。
另外还可能用一种较便宜的原料生产另一种高附加值的产品,成本低,经济效益好。
自蔓延高温合成法发展简史早在2000多年前,中国人就发明了黑色炸药(KNO3+S+C),这是自蔓延高温合成(SHS)方法的最早应用,但不是材料制备。
所谓自蔓延高温合成材料制备是指利用原料本身的热能来制备材料。
1900年法国化学家Fonzes–Diacon发现金属与硫、磷等元素之间的自蔓延反应,从而制备了磷化物等各种化合物。
在1908年Goldschmidt首次提出"铝热法"来描述金属氧化物与铝反应生产氧化铝和金属或合金的放热反应。
1953年,一个英国人写了一篇论文《强放热化学反应自蔓延的过程》,首次提出了自蔓延的概念。
采用自蔓延高温合成法进行陶瓷内衬复合管制备1.自蔓延高温合成技术自蔓延高温合成技术(Self-propagating high-temperature synthesis technology,简称SHS) [1]又称燃烧合成技术。
是一种依靠化学反应过自身放热来制备材料的新技术,即外加能源(电热或激光等)触发点火剂燃烧,进而引发反应物料(气相-固相,固相-固相,液相-固相等)自发高速反应、放出热量,反应由局部以燃烧波的形式自动蔓延至整个体系,最后获得新的合成材料。
反应物可以是元素粉末相互直接混合或元素粉末与气体,也可用金属氧化物和还原剂及非金属粉末的混合物反应生成热能维持反应持续进行。
反应产物必须是稳定的化合物。
现在人们已经使用该法制备处数百种化合物,像各种金属的氮化物、碳化物、硼化物、硅化物、氧化物、氢化物等。
SHS技术也已经发展成了SHS制粉技术、SHS致密化技术、SHS熔铸技术、SHS焊接技术、SHS涂层技术等。
图1-1 自蔓延高温合成过程示意图1.1自蔓延高温合成技术的基本原理氧化物Fe2O3和铝粉发生如下化学反应:Fe2O3 + 2Al = 2Fe + Al2O3 + 828.42 KJ这是一个最简单、最典型的铝热反应,并且是一个强放热反应,其反应的绝对温度为3735K.其方法是首先将原料混合,然后利用外热源在原料粉体局部点火,燃烧反应从点火处自发蔓延开。
在反应开始部分的背后存在着高温合成区(1500℃—4000℃),由高温合成区不断提供热量来诱发下一步反应,直至原料粉体合成反应完为止,这就是SHS技术的基本原理。
SHS是一高放热的化学体系经外部能量诱发的局部化学反应(点燃),形成其前沿(燃烧波) 使化学反应持续蔓延直至整个反应体系,最后达到所需材料合成目的的技术。
SHS本质上是一个剧烈的物理化学反应过程,SHS燃烧反应绝热温度(T ad)是在假设体系没有质量和能量损失条件下(绝热反应),化学反应放出的热量使体系能达到的最高温度。
自蔓延高温燃烧合成法
自蔓延高温燃烧合成法是指利用物质反应热的自传导作用,使不同的物质之间发生化学反应,在极短的瞬间形成化合物的一种高温合成方法。
利用某些合成反应的强放热作用,反应一旦开始即能自我维持,并迅速扩展、蔓延至整个试样区,完成合成反应的方法。
原理
一旦引燃反应物,反应则以燃烧波的方式向尚未反应的区域迅速推进,放出大量热,可达到1500~4000℃的高温,直至反应物耗尽.根据燃烧波蔓延方式,可分为稳态和不稳态燃烧。
一般认为反应绝热温度低于1527℃的反应不能自行维持。
对于不稳态燃烧应采取化学炉或预热等方法,防止反应中途熄灭。
特点
该工艺具有节能、成品纯度高、活性大、操作方便等一系列优点。
利用SHS法的固态-气态,固态-固态,金属间化合物和复合物四种主要反应类型,已合成了几百种化合物。
类型
其中包括各种氮化物、碳化物、硼化物、硅化物、不定比化合物和金属间化合物
等。
适用范围
某些领域已进入了应用阶段,如制备陶瓷基复合材料,硬质合金,形状记忆合金和高温构件用的金属间化合物等。
自蔓延高温合成法自蔓延高温合成法(Self-propagating High-temperature Synthesis,SHS)是一种新型的材料制备技术,它利用化学反应自身释放的热量来实现材料的快速合成。
这种方法具有反应速度快、能耗低、产物纯度高等优点,在材料制备领域得到了广泛的应用。
一、原理SHS法的基本原理是利用化学反应自身释放的热量,使反应体系达到高温条件,从而实现材料的快速合成。
在SHS反应中,通常需要加入一个起始剂(initiator),以引发化学反应。
当起始剂受到外界刺激(如火焰、电火花等)时,它会迅速分解并释放出大量热量,使反应体系升温并引发化学反应。
同时,在反应过程中还会产生大量气体和固体产物,这些产物会促进反应继续进行,并形成一个自我维持的循环系统。
最终,在高温和高压条件下,原料将被转化为所需产品。
二、工艺流程SHS法通常分为两个步骤:起始剂激发和自蔓延反应。
具体工艺流程如下:(1)起始剂激发:将起始剂与反应物混合均匀,并置于反应器中。
然后,通过火焰、电火花等方式对起始剂进行激发,引发化学反应。
(2)自蔓延反应:一旦化学反应开始,它就会在整个反应体系中迅速传播,并释放出大量热量。
这些热量将维持反应的高温和高压状态,使得原料能够快速转化为所需产物。
在自蔓延过程中,产生的气体和固体产物会促进反应的继续进行,并形成一个自我维持的循环系统。
三、优点与缺点SHS法具有以下优点:(1)快速:SHS法具有非常快的反应速度,通常只需要几秒钟或几分钟就可以完成材料的合成。
(2)能耗低:SHS法不需要外部加热设备,只需要一个起始剂就可以实现材料的快速合成,因此能耗非常低。
(3)产物纯度高:由于SHS法是在高温和高压条件下进行的,因此产物通常具有非常高的纯度。
(4)适用范围广:SHS法可以用于制备各种材料,包括金属、陶瓷、复合材料等。
SHS法的缺点主要有以下几点:(1)难以控制:由于SHS法是一种自我维持的反应过程,因此很难对反应过程进行精确的控制。
实验八自曼延咼温合成一实验目的熟悉自蔓延高温合成过程,了解其合成原理。
二实验原理自蔓延高温合成技术(Self-propagating High-temperature Synthesis 简称SHS是由俄罗斯科学家Merzhanov教授在60年代后期提出的一种材料合成新工艺。
其基本原理是利用化学反应放出的热量使燃烧反应自发的进行下去,以获得具有指定成分和结构的燃烧产物。
以简单的二元反应体系为例,其原理为:xA + yB ------- AxBy + Q其中A为金属单质,B为非金属单质,AxBy为合成反应的产物,Q为合成反应放出的热量。
IanitOL上图描述了燃烧过程中样品内部燃烧波的结构及产物相组成的变化规律。
首先在样品的一端给一个激发热源将此处的样品加热到上面的反应式可应进行时,断开激发源。
此时端面处由于化学反应生成了反应产物C或A/B,主要由反应机理而定;反应放出的热量和反应过程中的物质消耗导致样品中形成温度、组分元素浓度的梯度,有时还伴随着物质流动现象。
这种梯度的存在,会使热量向周围区域传递。
热量的传递使周围区域得到预热,得到初始的激发热量,引发上述燃烧反应的进行,这种周期性的过程使反应能自发地进行下去。
通常为了了便于讨论,将上述过程简化为一个一维的燃烧问题。
由傅立叶第一定理和能量守恒法则,可得到如下方程组:r 61 匕 E C T tC 4 4C P(K ) q K r(T -T0 )- . H i C ic t & & c t卫二Aexp(-亘)f(G).:t RT为了得到指定结构的化学组成和产物相分布等,通常需要对反应过程进行控制。
对体系的控制主要是通过改变上述方程中的体系初始物性常数,如比热C,热传导系数K等。
读者有举兴趣,通过上述议程的数学分析,可以对燃烧过程中的动力学形为进行研究,将上述动力学行为与产物结构结合在一起,就形成了自蔓延过程常用的研究方法——结构宏观动力学。