自蔓延高温合成技术及应用
- 格式:pdf
- 大小:338.16 KB
- 文档页数:6
自蔓延高温合成技术与应用1 SHS原理及特点自蔓延高温合成(Self-propagation High Temperature Synthesis),简称SHS. 它是基于放热化学反应的基本原理,利用外部能量诱发局部化学反应(点燃),形成化学反应前沿(燃烧波),此后, 化学反应在自身放热的支持下继续进行, 表现为燃烧波蔓延至整个体系, 最后合成所需的材料(粉体或固结体)[ 1 ]。
其过程如图1所示。
图1 SHS反应过程示意图SHS 技术同其它常规工艺方法相比, 具有设备、工艺简单; 节省时间, 能源利用充分; 产量高; 产物纯度高, 反应转化率接近100%; 在燃烧过程中, 材料经历了很大的温度变化,非常高的加热和冷却速率, 使生成物中缺陷和非平衡相比较集中, 因此某些产物比传统方法制造的产物更具有活性; 复合相分布均匀、相界面清洁和结合好、可以制备具有超性能的材料[2] , 集材料的合成与烧结于一体等优点。
2 SHS 的发展概况19世纪,人们发现一些气、固相或固、固相材料在发生化学反应时具有强烈的放热现象, 所放出的热量能使反应自我维持并蔓延直至形成最终产物。
l895年,德国冶金学家Goldchmidt通过实验研究了铝热反应还原碱金属和碱土金属氧化物,详细报道了固一固相燃烧反应的自蔓延特性。
1967年,前苏联科学院Merzhanov[3]等人发现了可称之为“固体火焰”的Ti—B混合物自蔓延燃烧现象,并将这种依靠混合体化学反应的自身放热来合成新材料的技术首次命名为自蔓延高温合成,即SHS。
随后,前苏联科学家们经过系统而深入的研究,将SHS技术与冶金、机械等加工技术相结合,开发出了多种SHS工艺来制备和加工新型材料,发展了一系列无机材料粉末合成与成型、致密化工艺相结合的技术。
如1972年,SHS法用于了TiC、Ti(CN)、MoTi2、AlN 、六方BN等粉末的生产。
俄罗斯的科学家用燃烧合成方法制取了500多种材料,常见燃烧合成的材料如表1所示[ 4 ]。
自蔓延高温合成【摘要】:材料已成为当今科学技术和社会发展的重要支柱,材料的合成与制备也愈显重要。
本文概述了材料制备方法之一——自蔓延高温合成,其基本原理、分类、合成工艺及应用等方面,并对其研究现状及发展进行简述。
【关键词】:自蔓延高温合成技术;热爆;合成技术一、概述自蔓延高温合成技术(Self-propagating High-temperature Synthesis,简称SHS),又称燃烧合成,是利用反应物之间高的化学反应热的自加热和自传导作用来合成材料的一种技术。
当反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全,是制备无机化合物高温材料的一种方法。
由于自蔓延高温具备以下特点:(1)工艺、设备简单,需要的能量较少,无需复杂的工艺装置,一经点燃就不需要对其提供任何能力;(2)节省时间,能源利用充分,产量高;(3)产品具有较高纯度,燃烧波通过混合料时,由于燃烧波产生高温,可将易挥发杂质(低熔点物)排除,化学转变完全;(4)反应产物除化合物及固溶体外,还可以形成复杂相和亚稳相,这是由于燃烧过程中材料经历了很大的温度梯度和非常高的冷却速度之故;(5)不仅能生产粉末,如同时施加压力,还可以得到高密度的燃烧产品;(6)如要扩大生产规模,不会引起什么问题,故从实验室走向生产所需时间短而且大规模生产的产品质量优于实验室生产的产品;(7)不仅可以制造某些非化学计量比的产品、中间产物和亚稳相,还能够生产新产品。
下表为SHS与常规方法几个参数的比较:正因为SHS 法具有上述优点,自从自蔓延技术发展以来,得到了迅速的发展。
研究对象也从当初的高反应热的硼化物、碳化物、硅化物发展到弱反应热的氢化物、磷化物、硫化物等。
二、自蔓延高温合成原理根据SHS 燃烧波的传播方式,可将SHS 分为自蔓延和“热爆”两种工艺。
前者是利用高能点火,引燃粉末坯体的一端,使反应自发地向另一端蔓延。
这种工艺适合制备生成焓高的化合物;后者是将粉末坯放在加热炉中加热到一定温度,使燃烧反应在整个坯体中同时发生,称之为"热爆”。
自蔓延高温合成法概述自蔓延高温合成法(Self-Propagating High-Temperature Synthesis,简称SHS)是一种以高温反应为基础的合成方法,具有快速、低能耗和高效的特点。
它在材料科学和化学领域有着广泛的应用,可以用于合成金属陶瓷材料、复合材料和无机化学品等。
原理SHS基于自蔓延原理,即通过局部点燃反应混合物中的可燃物质,使整个反应物质迅速发生反应并扩散,形成产物。
该反应过程通常在高温下进行,使用以金属和非金属化合物为主的反应物,产物常为金属、陶瓷和复合材料。
反应机制SHS反应通常由两个步骤组成:点燃阶段和自蔓延扩散阶段。
在点燃阶段,反应体系中局部加热可燃物质,使其自发点燃。
燃烧反应产生的高温和自由基会引发整个反应物质的快速反应。
在自蔓延扩散阶段,反应前驱体与产物之间的扩散作用会加速反应的进行,并不断释放出热量,维持反应的高温。
应用领域1. 金属陶瓷材料SHS在金属陶瓷领域有广泛的应用。
例如,利用SHS可以制备高硬度、耐磨损的刀具材料。
通过选择不同的金属和陶瓷反应物,可以调控材料的硬度、导热性和耐腐蚀性。
2. 复合材料SHS还可用于制备复合材料,在提供机械强度的同时具有轻质和高温性能。
通过选择不同的反应物,可以调控材料的化学成分和微结构,使其具有特定的性能和应用领域。
3. 无机化学品SHS在无机化学品合成中也有重要的应用。
例如,在高温下可以通过SHS方法合成多晶硅粉末,用于制备太阳能电池。
此外,SHS还可用于制备氧化物陶瓷材料、金属硬质合金和火焰喷涂材料等。
实验操作SHS方法的实验操作相对简单,但仍需注意安全事项。
以下是一般的实验操作步骤:1.准备反应物:按照所需的配比准备反应物。
2.混合反应物:将反应物充分混合均匀,以确保反应的全面性。
3.预热反应器:将反应器预热至适当的温度,以提供起始点燃的热源。
4.加入混合物:将混合物加入预热的反应器中,快速封闭反应器。
5.点燃反应物:利用点燃源引发混合物中可燃物质的燃烧。
自蔓延高温合成技术的原理及应用摘要:自蔓延高温合成技术在材料的合成与制备中应用非常广范,本文主要介绍自蔓延高温合成技术的发展背景和原理,并概述该技术在材料合成与制备中的应用和发展前景。
关键词:自蔓延高温合成;原理;应用、发展前景The principle and application of self-propagatinghigh-temperature synthesis technologyAbstract:It is widely used of self-propagating high-temperature synthesis technology in the synthesis and perparation of materials, this article mainly introduces the background of development and principle of self-propagating high-temperature synthesis technology, and then summarize the application and the prospect in developing in materials synthesis which is used this technology.Key words: self-propagating high-temperature synthesis; principle; application; prospect in developing1.前言自蔓延高温合成技术[1](Self-propagating High-temperature Synthesis ,简称SHS )是前苏联科学家A. G . Merzhanov 于1967年道次提出的一种材料合成新工艺,又称为燃烧合成。
Merzhanov 发现化学反应:mol kJ TiB B Ti /28022+→+具有点火后不需要外界能量就可持续燃烧并从一端向另一端传播,使Ti 与B 的混合物反应生成TiB 2化合物, 从而合成硬质陶瓷TiB 2粉末这种新材料。
自蔓延高温合成法自蔓延高温合成法(Self-Propagating High-Temperature Synthesis,简称SHS)是一种在高温下自发进行的化学合成方法。
SHS技术已被广泛应用于材料科学、能源存储、催化剂制备等领域,其独特的特点使其成为一种高效、环保且经济的合成方法。
SHS技术的原理是在适当的反应条件下,通过引入足够的活化能使化学反应自发发生和持续传播。
这种自蔓延的反应过程是基于氧化还原反应、放热反应和传热传质等多种复杂的物理和化学过程相互耦合而成的。
由于SHS反应在高温下进行,因此可以获得高纯度、致密度高、晶粒细小的产物。
SHS技术的优点主要有以下几个方面:1. 高效性:SHS反应通常在数秒至数分钟内完成,反应速度快,能耗低。
与传统的合成方法相比,SHS技术可以显著缩短合成时间。
2. 环保性:SHS技术不需要使用外部能源,反应过程中产生的高温和自身放热能够驱动反应的进行,使其成为一种绿色合成方法。
此外,由于反应过程中不需要溶剂,减少了有机溶剂的使用和废弃物的产生。
3. 可控性:通过控制反应条件、配比和反应时间等参数,可以实现对产物形态、尺寸和组成的精确控制。
这使得SHS技术在材料制备中具有很大的灵活性。
4. 应用广泛:由于SHS技术能够合成各种复杂的无机、有机和金属材料,因此在材料科学和工程领域有着广泛的应用。
例如,SHS技术可以用于制备金属陶瓷复合材料、纳米材料、催化剂和能源存储材料等。
SHS技术也存在一些挑战和限制。
首先,SHS反应的过程比较复杂,需要对反应机理和热力学行为进行深入研究。
其次,由于反应过程中产生的高温和强热释放,需要对反应系统进行良好的隔热和安全措施。
此外,SHS技术在合成大尺寸和复杂形状的材料时也面临一定的困难。
为了克服这些限制,研究者们正在不断改进和优化SHS技术。
例如,引入外部能量源、微波辐射和压力等调控因素,可以进一步提高反应速率和产物质量。
此外,结合计算模拟和实验研究,可以深入理解SHS反应的机理和动力学行为。
自蔓延高温燃烧合成法
自蔓延高温燃烧合成法是指利用物质反应热的自传导作用,使不同的物质之间发生化学反应,在极短的瞬间形成化合物的一种高温合成方法。
利用某些合成反应的强放热作用,反应一旦开始即能自我维持,并迅速扩展、蔓延至整个试样区,完成合成反应的方法。
原理
一旦引燃反应物,反应则以燃烧波的方式向尚未反应的区域迅速推进,放出大量热,可达到1500~4000℃的高温,直至反应物耗尽.根据燃烧波蔓延方式,可分为稳态和不稳态燃烧。
一般认为反应绝热温度低于1527℃的反应不能自行维持。
对于不稳态燃烧应采取化学炉或预热等方法,防止反应中途熄灭。
特点
该工艺具有节能、成品纯度高、活性大、操作方便等一系列优点。
利用SHS法的固态-气态,固态-固态,金属间化合物和复合物四种主要反应类型,已合成了几百种化合物。
类型
其中包括各种氮化物、碳化物、硼化物、硅化物、不定比化合物和金属间化合物
等。
适用范围
某些领域已进入了应用阶段,如制备陶瓷基复合材料,硬质合金,形状记忆合金和高温构件用的金属间化合物等。
自蔓延高温合成法自蔓延高温合成法(Self-propagating High-temperature Synthesis,SHS)是一种新型的材料制备技术,它利用化学反应自身释放的热量来实现材料的快速合成。
这种方法具有反应速度快、能耗低、产物纯度高等优点,在材料制备领域得到了广泛的应用。
一、原理SHS法的基本原理是利用化学反应自身释放的热量,使反应体系达到高温条件,从而实现材料的快速合成。
在SHS反应中,通常需要加入一个起始剂(initiator),以引发化学反应。
当起始剂受到外界刺激(如火焰、电火花等)时,它会迅速分解并释放出大量热量,使反应体系升温并引发化学反应。
同时,在反应过程中还会产生大量气体和固体产物,这些产物会促进反应继续进行,并形成一个自我维持的循环系统。
最终,在高温和高压条件下,原料将被转化为所需产品。
二、工艺流程SHS法通常分为两个步骤:起始剂激发和自蔓延反应。
具体工艺流程如下:(1)起始剂激发:将起始剂与反应物混合均匀,并置于反应器中。
然后,通过火焰、电火花等方式对起始剂进行激发,引发化学反应。
(2)自蔓延反应:一旦化学反应开始,它就会在整个反应体系中迅速传播,并释放出大量热量。
这些热量将维持反应的高温和高压状态,使得原料能够快速转化为所需产物。
在自蔓延过程中,产生的气体和固体产物会促进反应的继续进行,并形成一个自我维持的循环系统。
三、优点与缺点SHS法具有以下优点:(1)快速:SHS法具有非常快的反应速度,通常只需要几秒钟或几分钟就可以完成材料的合成。
(2)能耗低:SHS法不需要外部加热设备,只需要一个起始剂就可以实现材料的快速合成,因此能耗非常低。
(3)产物纯度高:由于SHS法是在高温和高压条件下进行的,因此产物通常具有非常高的纯度。
(4)适用范围广:SHS法可以用于制备各种材料,包括金属、陶瓷、复合材料等。
SHS法的缺点主要有以下几点:(1)难以控制:由于SHS法是一种自我维持的反应过程,因此很难对反应过程进行精确的控制。
关于自蔓延高温合成的一些了解应用化学102 罗琳杰23210218自蔓延高温合成技术在现今是一种很有吸引力的材料制备技术,它在陶瓷材料、复合材料、梯度功能材料及材料表面改性等领域有十分广泛的应用。
它的应用主要包括有:1、在离心力的作用下合成陶瓷内衬复合金属管;2、制备泡沫陶瓷材料的方法,制备出导电的(A12O。
+TIBZ)和(A1203+2Cr)体系泡沫陶瓷材料。
3、利用激光辅助自蔓延高温合成技术在金属表面形成纯陶瓷涂层等;一言概之,自蔓延高温合成对制备新型陶瓷材料有极大的帮助。
自蔓延高温合成(Self-propating High一teeratureSynthesis,sHs)方法的概念是由前苏联科学家A.G.Mazhanov在1967年首先提出来的【11,SHS的本质是一种高放热无机化学反应,其基本反应过程是:向体系提供必要能量(点火),诱发体系局部产生化学反应,此后,这一化学反应过程在自身放出的高热量的支持下继续进行,最后将燃烧(反应)波蔓延到整个体系,从而制备出所需的陶瓷材料。
一般将反应的原料混合物压成块状,在块体的一端点火引燃反应,结果形成一个以一定速度(Vp)蔓延的燃烧波,随着燃烧波的推进,原料混合物转化为产物。
与传统工艺方法相比较,它的优点主要特点是:(l)生产工艺简单,过程时间短,反应迅速,不同体系燃烧波扩展速度不同,大致范围在0.1~15cm/sec,一般在几秒至几十秒的时间内即可完成,生产效率高:(2)合成过程在自身反应放出热量的支持下进行,反应后合成过程在自身反应放出热量的支持下进行,无需再补充能量,节约能源;(3)燃烧合成过程的高温(有的应温度高达5000K)使杂质得以挥发,纯化产品,合成物污染少,纯度高;(4)由于反应迅速,合成过程中温度梯度大,产品中极可能出现缺陷集中和非平衡相,使得产物活性增高。
因此,它在无机合成中得到了广泛的应用,主要有如下几个方面:1、在以往,制备复合陶瓷金属管主要是等离子喷涂法、金属管内壁镶装陶瓷管、内表面复合技术及高分子聚合物内衬法等方法。
自蔓延燃烧合成法自蔓延燃烧合成法是一种制备材料的高效方法,具有反应快速、节能等优点。
本文将介绍自蔓延燃烧合成法的反应原理、燃烧模型、材料设计、工艺控制及应用研究等方面。
1.反应原理自蔓延燃烧合成法是一种利用化学反应放热,在极短时间内将原料加热至高温,实现材料制备的方法。
其基本原理是利用反应物的相互反应,产生大量的热量和化学能,从而在极短时间内将反应物加热至高温,实现材料的合成。
2.燃烧模型自蔓延燃烧合成法的燃烧过程可以分为三个阶段:诱导期、传播期和衰减期。
在诱导期,反应物吸收热量,开始分解;在传播期,反应物剧烈反应,放出大量热量,实现材料的合成;在衰减期,热量释放逐渐减少,反应逐渐停止。
3.材料设计自蔓延燃烧合成法可以用于制备各种材料,如金属、非金属、陶瓷等。
在材料设计方面,需要根据所需的材料性能和用途,选择合适的原料和配方。
同时,还需要考虑反应过程中的热量和化学能对材料性能的影响。
4.工艺控制自蔓延燃烧合成法的工艺控制是保证材料质量和性能的关键。
需要控制的因素包括反应温度、反应时间、压力、气氛等。
通过对这些因素进行精确控制,可以实现对材料结构和性能的精确调控。
5.应用研究自蔓延燃烧合成法在材料制备领域具有广泛的应用前景。
例如,可以利用该方法制备各种高性能陶瓷材料、金属基复合材料、梯度功能材料等。
此外,还可以利用该方法进行材料的改性和优化研究,为新材料的开发提供新的途径。
总之,自蔓延燃烧合成法是一种具有很大潜力的材料制备方法,可以实现对材料结构和性能的精确调控。
随着对该方法研究的深入,相信其在未来会有更广泛的应用前景。
自蔓延高温合成法原理自蔓延高温合成法是一种高效的合成新材料的方法,它可以通过一系列的化学反应,在高温条件下将粉末状材料转变为块状或薄膜状材料。
本文将介绍自蔓延高温合成法的原理、优点和适用范围。
自蔓延高温合成法是一种通过化学反应自我传播的方法。
传统的化学合成法中,需要在反应器中加入化学物质,通过加热或其他手段促进反应的进行。
而自蔓延高温合成法则是将化学物质混合后,使其在高温条件下自我传播,从而实现材料的合成。
在自蔓延高温合成法中,通常需要将粉末状的化学物质混合并压制成块状或薄膜状。
然后,在高温条件下进行反应,反应过程中产生的高温和化学反应会使材料自我传播,从而实现整个样品的均匀合成。
这种自我传播的过程,类似于火焰传播,因此也被称为“自燃合成法”。
自蔓延高温合成法的优点在于其高效性和节约成本。
相比于传统的化学合成法,自蔓延高温合成法不需要反应器等大型设备,只需要将化学物质混合压制后加热即可。
此外,自蔓延高温合成法还可以通过控制反应条件,实现材料的微观结构调控和表面形貌控制。
自蔓延高温合成法适用于各种材料的合成,如金属、陶瓷、复合材料等。
其中,金属材料的自蔓延高温合成法被广泛应用于制备新型高强度、高韧性的金属材料。
陶瓷材料的自蔓延高温合成法则可以实现高纯度、均匀结构的陶瓷材料合成。
复合材料的自蔓延高温合成法可以实现不同材料间的均匀混合,从而得到具有优异性能的复合材料。
虽然自蔓延高温合成法具有许多优点,但它也存在一些缺点。
例如,反应中需要高温,因此需要对反应器进行高温加热,这可能会导致反应器的烧毁或其他安全问题。
此外,自蔓延高温合成法的反应速度较快,如果反应条件控制不当,可能会导致材料合成不完全或出现其他问题。
自蔓延高温合成法是一种高效、节约成本、适用范围广的新型合成材料方法。
在未来的材料合成领域,自蔓延高温合成法将会得到更广泛的应用,并为人类社会的发展做出更大的贡献。