第十五章 第2单元 原子结构 氢原子光谱
- 格式:ppt
- 大小:1.51 MB
- 文档页数:43
高考经典课时作业15-2 原子结构、氢原子光谱(含标准答案及解析)时间:45分钟 分值:100分1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( )A .光电效应实验B .伦琴射线的发现C .α粒子散射实验D .氢原子光谱的发现2.关于巴耳末公式1λ=R ⎝⎛⎭⎫122-1n 2的理解,下列说法正确的是( ) A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 3.(2012·高考北京卷)一个氢原子从n =3能级跃迁到n =2能级,该氢原子( )A .放出光子,能量增加B .放出光子,能量减少C .吸收光子,能量增加D .吸收光子,能量减少 4.(2012·高考江苏卷)如图所示是某原子的能级图,a 、b 、c 为原子跃迁所发出的三种波长的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是( )A .氢原子的能量增加B .氢原子的能量减少C .氢原子要吸收一定频率的光子D .氢原子要放出一定频率的光子 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2,其中n =2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )A .-4hc 3E 1B .-2hc E 1C .-4hc E 1D .-9hcE 17.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢原子( )A.从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的波长长B.从n=5能级跃迁到n=1能级比从n=5能级跃迁到n=4能级辐射出电磁波的速度大C.处于不同能级时,核外电子在各处出现的概率是一样的D.从高能级向低能级跃迁时,氢原子核一定向外放出能量8.用频率为ν0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则()A.ν0<ν1B.ν3=ν2+ν1C.ν0=ν1+ν2+ν3 D.1ν1=1ν2+1ν39.如图为氢原子能级的示意图,现有大量的氢原子处于n=4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光,下列说法正确的是()A.最容易表现出衍射现象的光是由n=4能级跃迁到n=1能级产生的B.频率最小的光是由n=2能级跃迁到n=1能级产生的C.这些氢原子总共可辐射出3种不同频率的光D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV的金属铂能发生光电效应10.(2011·高考江苏卷)按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大”或“越小”).已知氢原子的基态能量为E1(E1<0),电子质量为m,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h).11.如图所示,氢原子从n>2的某一能级跃迁到n=2的能级,辐射出能量为2.55 eV的光子.问:(1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射上述能量的光子?(2)请在图中画出获得该能量后的氢原子可能的辐射跃迁图.12.在研究原子物理时,科学家经常借用宏观模型进行模拟.在玻尔原子模型中,完全可用卫星绕行星运动来模拟研究电子绕原子核的运动.当然这时的向心力不是粒子间的万有引力(可忽略不计),而是粒子的静电力.设氢原子中,电子和原子核的带电荷量大小都是e=1.60×10-19 C,电子在第1、2可能轨道运行时,其运动半径分别为r1=0.53×10-10 m,r=4r1,据此求:2(1)电子分别在第一、二可能轨道运行时的动能(以eV为单位).(2)当电子从第一可能轨道跃迁到第二可能轨道时,原子还需吸收10.2 eV的光子,那么电子的电势能增加了多少?(静电力常量k=9.0×109 N·m2/C2)标准答案及解析:1.解析:光电效应实验说明光的粒子性,伦琴射线的发现说明X 射线是一种比光波波长更短的电磁波,氢原子光谱的发现促进了氢原子模型的提出.故C 正确. 答案:C 2.解析:巴耳末公式是经验公式,只适用于氢原子光谱,公式中n 只能取n ≥3的整数,故C 正确. 答案:C 3.解析:根据玻尔原子理论知,氢原子从高能级n =3向低能级n =2跃迁时,将以光子形式放出能量,放出光子后原子能量减少,故B 选项正确. 答案:B 4.解析:由hν=h cλ=E 初-E 末可知该原子跃迁前后的能级差越大,对应光线的能量越大,波长越短.由图知a 对应光子能量最大,波长最短,c 次之,而b 对应光子能量最小,波长最长,故C 正确. 答案:C 5.解析:氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确. 答案:BD 6.解析:依题意可知第一激发态能量为E 2=E 122,要将其电离,需要的能量至少为ΔE =0-E 2=hν,根据波长、频率与波速的关系c =νλ,联立解得最大波长λ=-4hcE 1,C 正确.答案:C 7.解析:光子能量E =hν=hcλ,而E 4-3<E 3-2,故λ4-3>λ3-2,A 项正确.由于光波的波速由介质和频率共同决定,且在真空中传播时与频率无关,故B 错.电子在核外不同能级出现的概率是不同的,故C 错.能级跃迁是核外电子在不同轨道间的跃迁,与原子核无关,故D 错误. 答案:A 8.解析:大量氢原子发生跃迁时只有三个频率的光谱,这说明氢原子受激发跃迁到n =3的激发态,然后从n =3能级向低能级跃迁,产生三个频率的光谱,根据能量守恒规律有:hν0=hν3=hν2+hν1,解得:ν0=ν3=ν2+ν1,故选项B 正确. 答案:B 9.解析:最容易发生衍射的应是波长最长而频率最小、能量最低的光波,hν=h cλ=E n -E m ,对应跃迁中能级差最小的应为n =4能级到n =3能级,故A 、B 错误.由C 2n 可知n =4能级上的氢原子共可辐射出C 24=6种不同频率的光,故C 错误.根据hν=E 2-E 1及发生光电效应的条件hν≥W 0可知D 正确. 答案:D 10.解析:电子离原子核越远电势能越大,原子能量也就越大;根据动能定理有,hν+E 1=12m v 2,所以电离后电子速度为 2(hν+E 1)m. 答案:越大 2(hν+E 1)m11.解析:(1)氢原子从n >2的某一能级跃迁到n =2的能级,辐射光子的频率应满足: hν=E n -E 2=2.55 eV E n =hν+E 2=-0.85 eV 所以,n =4基态氢原子要跃迁到n =4的能级,应提供的能量为 ΔE =E 4-E 1=12.75 eV(2)辐射跃迁图如答案图所示. 答案: (1)12.75 eV (2)12.解析:(1)电子所受静电力提供向心力k e 2r 2=m v2r故E k =12m v 2=ke 22rE k1=9.0×109×(1.60×10-19)22×0.53×10-10J =13.6 eV E k2=14E k1=3.4 eV .(2)根据能量守恒,ΔE p =ΔE +(E k1-E k2) 故ΔE p =20.4 eV .答案:(1)13.6 eV 3.4 eV (2)20.4 eV。
第1讲 原子结构 氢原子光谱【知识点1】 氢原子光谱 Ⅰ1.原子的核式结构(1)电子的发现:英国物理学家J.J.汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱(1)光谱 用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类 有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。
【知识点2】 氢原子的能级结构、能级公式 Ⅰ1.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。
(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
2.基态和激发态原子能量最低的状态叫基态,其他能量较高的状态叫激发态。
3.氢原子的能级图板块二考点细研·悟法培优考点1 氢原子能级图及原子跃迁 [深化理解]1.能级图中相关量意义的说明氢原子的能级图如图所示。
近代物理实验——氢原子光谱一、 实验简介光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法.1885年巴尔末总结了人们对氢光谱的测量结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础.1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素——氘的存在.通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原理论可靠性的标准和测量其它基本物理常数的依据.原子光谱的观测,为量子理论的建立提供了坚实的实验基础。
Johannes Rober Rydberg Johann Jakob Balmer 1825 ~1898 1854~1919瑞士数学兼物理学家 瑞典物理学家、数学家,光谱学的奠基人之一二、 实验目的1.测量氢原子光谱中巴尔末线系的几条谱线的波长,并将在空气中的波长修正为真空中的波长。
2.测量计算各谱线的里德伯常数RH ,并求其平均值或用线性拟和的方法求出RH 。
3.学习多功能组合光谱仪的使用。
三、实验原理在量子化的原子体系中,原子能量状态1E ,2E …为一系列分立的值,原子的每一个能量状态称为原子的一个能级。
原子的最低能级称为原子的基态,高于基态的其余各能级称为原子的激发态。
处于高能级的原子,总是会自发跃迁到低能级,并发射出光子。
设光子能量为ε ,频率为ν,高能级为2E ,低能极为1E ,则2121,.E E h E E hενν-==-=由于原子能级是分立的,所以原子由高能级向低能级跃迁时,会发射一些特定频率的光子,在分光仪上表现为一条条分立的光谱线,称为“线状光谱”或“原子光谱”。
波长λ的倒数是波数,它的值由巴耳末公式决定。
对于H 原子有2212111,H HR n n λ⎛⎫=- ⎪ ⎪⎝⎭(2-1-1)式中H R 为H 原子的里德伯常量,H R =1.096776⨯107m-1。
氢原子光谱的精细结构
氢原子光谱的精细结构是由兰姆发现的。
原子光谱的每一条谱线,实际上是由两条或多条靠得很近的谱线组成的。
这种细微的结构称为光谱线的精细结构。
在氢原子的发射光谱中,有一个系列的发射谱线处在可见光波段,称为巴尔末系,分别位于红光、绿光、蓝光、紫光区域,这四条线的产生是电子分别从第三、第四、第五、第六激发态跃迁到第二激发态时释放出来的。
人们后来发现,氢原子光谱的巴尔末系,并不是简单的四条线,如果用更为精确的光谱仪对氢原子的光谱进行分光,就会出现每条光谱线其实并不是一条,而是两条,中间有细小的裂痕的情况。
这个发现就被称为氢原子光谱的精细结构。
《志鸿优化设计》2022年高考物理(江苏专用)第一轮复习教学案:第十五章近代物理初步第二节原子结构核能一、原子结构1.电子的发觉汤姆生在研究阴极射线时发觉了______,提出了原子的枣糕模型。
2.α粒子散射实验α粒子散射实验是用α粒子轰击金箔,结果是________穿过金箔后仍沿原先方向前进,______发生了较大的偏转,极个别α粒子甚至______。
3.核式结构在原子的中心有一个专门小的______,叫原子核,原子的___________ _______________都集中在原子核里,带____________在核外空间运动。
二、氢原子光谱1.光谱分析利用元素的特点谱线(线状谱)分析和确定物质的组成成分即光谱分析。
2.氢原子光谱的实验规律巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ=R(122-1n2)(n=3,4,5…,R是里德伯常量,R=1.10×107 m-1)。
[来源:Zxxk ]三、玻尔模型1.玻尔的三条假设(1)能量量子化:原子只能处于一系列______状态中,在这些状态中原子是稳固的,电子尽管绕核运动,但并不向外辐射能量,这些状态叫做______。
对氢原子满足:En=1n2E1,其中E1=-13.6 eV(2)轨道量子化:原子的______跟电子沿不同的圆形轨道绕核运动__ ____相对应。
原子的定态是不连续的,因此电子运动的可能轨道的分布也是不连续的。
对氢原子满足:rn=n2r1,其中r1=0.53×10-10 m。
(3)能级跃迁:原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它____________一定频率的光子,光子的能量由这两种定态的能量差决定,即h ν=E2-E1。
[来源:1]2.氢原子能级图:如图所示四、天然放射现象及三种放射线的比较1.天然放射现象的发觉1896年,__________在铀矿石中发觉未知的射线,把这些射线称为α射线、β射线、γ射线,这确实是天然放射现象的发觉。