2015届上海市黄浦区2015届九年级学业模拟(二模)考试数学试题(含答案)
- 格式:doc
- 大小:800.00 KB
- 文档页数:7
2015年上海市黄浦区中考数学一模试卷一、选择题(共6小题,每小题4分,满分24分)1.(4分)(2015•黄浦区一模)在Rt△ABC中,∠C=90°,如果∠A=α,AB=c,那么BC等于()A.c•sinαB.c•cosαC.c•tanαD.c•cotα【考点】锐角的三角比的概念(正切、余切、正弦、余弦)M361【难易度】容易题【分析】根据题意画出右图,在Rt△ABC中,∠C=90°,∠A=α,AB=c,又因为:sinA=,所以BC=AB•sinA=c•sinα,【解答】答案:A.【点评】此题主要考查了锐角三角函数关系,属于容易题。
结合特殊直角三角,正确记忆锐角三角函数关系是解题关键.2.(4分)(2015•黄浦区一模)如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A.a>0,c>0 B.a<0,c>0 C.a>0,c<0 D.a<0,c<0【考点】二次函数的的图象、性质M442【分析】首先根据开口方向确定a的符号,当图象开口方向向上,那么a>0;当图像开口方向向下,那么a<0,,再依据与y轴的交点的纵坐标即可判断c的正负,当图像与Y轴交点在负半轴上时,c<0.当图像与Y轴交正半轴时,c>0..本题因为图象开口方向向上,所以a>0;因为图象与Y轴交点在y轴的负半轴上,所以c<0;综上所述:a>0,c<0.【解答】答案:C.【点评】本题主要考查二次函数的图象与系数的关系,属于容易题。
能根据图象正确确定各个系数的符号是解决此题的关键,运用了数形结合思想.3.(4分)(2015•黄浦区一模)如果||=3.||=2,且与反向,那么下列关系中成立的是()A.=B.=﹣C.=D.=﹣【考点】实数与向量的乘法M383平面向量的概念M381【难易度】容易题【分析】因为与反向,所以和互为相反向量,又因为||=3.||=2,=﹣【解答】答案:D.【点评】此题考查了平面向量的知识.此题难度不大,属于容易题。
2015 年浦东新区中考二模试题数 学 卷 2015.4(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.化简32(3)x 所得的结果是( ).A .99x B .69x C .66x D .96x 2.若b a <,则下列各式中一定成立的是( ) A .33a b ->- B .33a b< C .33a b -<- D .ac bc < 3.在平面直角坐标系中,下列直线中与直线23y x =-平行的是( )A .3y x =-B .23y x =-+C .23y x =+D .32y x =- 4.在平面直角坐标系中,将二次函数22x y =的图象向左平移3个单位,所得图象的解析式为( )A .22(3)y x =+B .22(3)y x =-C .223y x =+D .223y x =- 5.在正多边形中,外角和等于内角和的是( ) A .正六边形 B .正五边形 C .正四边形 D .正三边形 6.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d 的取值范围是( ) A .8d > B . 2d > C .02d ≤< D . 8d >或02d ≤<二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.因式分解:22x x -= . 8.如果方程()132x a -=的根是3x =,那么a = .9.请你写一个大于2且小于3的无理数 . 10.函数1()1f x x=-的定义域是 . 11. ()322a b a --= .12.在Rt △ABC 中,∠C =90°,13sinA =,BC =6,那么AB = . 13.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =__________. 14.如图1,已知a ∥b ,140∠=,那么2∠的度数等于 .15.两个相似三角形对应边上高的比是1∶4 ,那么它们的面积比是 .16.在Rt △ABC 中,∠C =90°,∠A =30°,BC =6,以点C 为圆心的⊙C 与AB 相切,那么⊙C 的半径等于 .17.在四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 可能是 (只要写一种). 18.如图2,在△ABC 中,AD 是BC 上的中线,BC =4,∠ADC =30°,把△ADC 沿AD 所在直线翻折后 点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的距离是 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解分式方程:212111xx x -=-- 20.(本题满分10分)一块长方形绿地的面积为2400平方米,并且长比宽多20米,那么这块绿地的长和宽分别为多少米?1 2a b图1C / BD CA图221.(本题满分10分,每小题满分各5分) 如图3,在△ABC 中,sin ∠B =45,∠C =30°,AB =10。
2015年上海市浦东新区初三数学⼆模(含答案)浦东新区初三教学质量检测数学试卷(2015.4.21)⼀、选择题:(本⼤题共6题,每题4分,满分24分) 1.下列等式成⽴的是()(A )2222-=-;(B )236222=÷;(C )5232)2(=;(D )120=. 2.下列各整式中,次数为5次的单项式是()(A )xy 4;(B )xy 5;(C )x+y 4;(D )x+y 5.3.如果最简⼆次根式2+x 与x 3是同类⼆次根式,那么x 的值是()(A )-1;(B )0;(C )1;(D )2. 4.如果正多边形的⼀个内⾓等于135度,那么这个正多边形的边数是()(A )5;(B )6;(C )7;(D )8. 5.下列说法中,正确的个数有()①⼀组数据的平均数⼀定是该组数据中的某个数据;②⼀组数据的中位数⼀定是该组数据中的某个数据;③⼀组数据的众数⼀定是该组数据中的某个数据.(A )0个;(B )1个;(C )2个;(D )3个.6.已知四边形ABCD 是平⾏四边形,对⾓线AC 与BD 相交于点O ,那么下列结论中正确的是()(A )当AB =BC 时,四边形ABCD 是矩形;(B )当AC ⊥BD 时,四边形ABCD 是矩形;(C )当OA =OB 时,四边形ABCD 是矩形;(D )当∠ABD =∠CBD 时,四边形ABCD 是矩形.⼆、填空题:(本⼤题共12题,每题4分,满分48分)7.计算:23-= . 8.分解因式:x x 43-= . 9.⽅程43+=x x 的解是.10.已知分式⽅程312122=+++x x x x ,如果设x x y 12+=,那么原⽅程可化为关于y 的整式⽅程是.11.如果反⽐例函数的图像经过点(3,-4),那么这个反⽐例函数的⽐例系数是. 12.如果随意把各⾯分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的骰⼦抛到桌⾯上,那么正⾯朝上的数字是合数的概率是.13.为了解某⼭区⾦丝猴的数量,科研⼈员在该⼭区不同的地⽅捕获了15只⾦丝猴,并在它们的⾝上做上标记后放回该⼭区.过段时间后,在该⼭区不同的地⽅⼜捕获了32只⾦丝猴,其中4只⾝上有上次做的标记,由此可以估计该⼭区⾦丝猴的数量约有只.14.已知点G 是△ABC 的重⼼,m AB =,n BC =,那么向量AG ⽤向量m 、n 表⽰为. 15.如图,已知AD ∥EF ∥BC,AE=3BE ,AD =2,EF =5,那么BC = .16.如图,已知⼩岛B 在基地A 的南偏东30°⽅向上,与基地A 相距10海⾥,货轮C 在基地A 的南偏西60°⽅向、⼩岛B 的北偏西75°⽅向上,那么货轮C 与⼩岛B 的距离是海⾥. A B C DE F (第15题图)CAD B (第18题图)17.对于函数()2b ax y +=,我们称[a ,b ]为这个函数的特征数.如果⼀个函数()2b ax y +=的特征数为[2,-5],那么这个函数图像与x 轴的交点坐标为.18.如图,已知在Rt △ABC 中,D 是斜边AB 的中点,AC =4,BC=2,将△ACD 沿直线CD 折叠,点A 落在点E 处,联结AE ,那么线段AE 的长度等于.三、解答题:(本⼤题共7题,满分78分) 19.(本题满分10分)化简并求值:12)111(22+-÷-+x x x x ,其中12+=x . 20.(本题满分10分)解不等式组:->--≥+,1262,6325x x x x 并写出它的⾮负整数解.21.(本题满分10分,其中每⼩题各5分)已知:如图,在△ABC 中,D 是边BC 上⼀点,以点D 为圆⼼、CD 为半径作半圆,分别与边AC 、BC 相交于点E 和点F .如果AB =AC =5,cos B =54,AE =1.求:(1)线段CD 的长度;(2)点A 和点F 之间的距离.22.(本题满分10分)⼩张利⽤休息⽇进⾏登⼭锻炼,从⼭脚到⼭顶的路程为12千⽶.他上午8时从⼭脚出发,到达⼭顶后停留了半⼩时,再原路返回,下午3时30分回到⼭脚.假设他上⼭与下⼭时都是匀速⾏⾛,且下⼭⽐上⼭时的速度每⼩时快1千⽶,求⼩张上⼭时的速度.C(第21题图)23.(本题满分12分,其中每⼩题各6分)如图,已知在平⾏四边形ABCD 中,AE ⊥BC ,垂⾜为点E ,AF ⊥CD ,垂⾜为点F .(1)如果AB =AD ,求证:EF ∥BD ;(2)如果EF ∥BD ,求证:AB =AD .24.(本题满分12分,其中第(1)⼩题3分,第(2)⼩题4分,第(3)⼩题5分)已知:如图,直线y =kx +2与x 轴的正半轴相交于点A (t ,0)、与y 轴相交于点B ,抛物线c bx x y ++-=2经过点A 和点B ,点C 在第三象限内,且AC ⊥AB ,tan ∠ACB =21.(1)当t =1时,求抛物线的表达式;(2)试⽤含t 的代数式表⽰点C 的坐标;(3)如果点C 在这条抛物线的对称轴上,求t 的值.(第24题图)A B C DE F(第23题图)25.(本题满分14分,其中第(1)⼩题3分,第(2)⼩题6分,第(3)⼩题5分)如图,已知在△ABC 中,射线AM ∥BC ,P 是边BC 上⼀动点,∠APD =∠B ,PD 交射线AM 于点D ,联结CD .AB =4,BC =6,∠B =60°.(1)求证:BP AD AP ?=2;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将△ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时∠BEP 的余切值.A B C P D (第25题图) M AB C (第25题备⽤图)M浦东新区初三教学质量检测数学试卷参考答案及评分说明⼀、选择题1.D ; 2.A ; 3.C ; 4.D ; 5.B ; 6.C .⼆、填空题7.32-; 8.)2)(2(-+x x x ; 9.4=x ; 10.0232=+-y y ; 11.12-;12.31; 13.120; 14.n m ρρ3132+; 15.6; 16.210; 17.)(0,25; 18.558.三、解答题19.解:原式=12122+-÷-x x x x x …………………………………………………………(2分) =22)1(1x x x x -?-………………………………………………………………(2分) =xx 1-.………………………………………………………………………(2分)把12+=x 代⼊,得原式=)12)(12()12(2122-+-=+………………………………………………(2分)=22-.……………………………………………………………………(2分) 20.解:由6325-≥+x x ,得4-≥x .…………………………………………………(3分)由1262->-xx ,得2∴此不等式组的⾮负整数解是0、1.…………………………………………(2分) 21.解:(1)作DH ⊥CE ,垂⾜为点H .∵D 为半圆的圆⼼,AC =5,AE =1,∴221==EC CH .……………………(2分)∵AC AB =,∴C B ∠=∠.……………………………………………………(1分)∴54cos cos ==B C .在Rt △CDH 中,∵54cos ==CD CH C ,CH =2,∴25=CD . …………………(2分)(2)作AM ⊥BC ,垂⾜为点M ,联结AF .∵25=CD ,∴5=CF .…………………………………………………………(1分)在Rt △ACM 中,∵54cos ==AC CM C ,5=AC ,∴4=CM .………………(1分)∴3452222=-=-=CM AC AM .…………………………………………(1分)∵CF =5,CM =4,∴1=FM .……………………………………………………(1分)∴10132222=+=+=FM AM AF .………………………………………(1分)22.解:设⼩张上⼭时的速度为每⼩时x 千⽶.…………………………………………(1分)根据题意,得711212=++x x .…………………………………………………(4分)化简,得 0121772=--x x .…………………………………………………(2分)解得 31=x ,742-=x .…………………………………………………………(1分)经检验:3=x ,742-=x 都是原⽅程的解,但742-=x 不符合题意,舍去.(1分)答:⼩张上⼭时的速度为每⼩时3千⽶.……………………………………………(1分)23.证明:(1)∵四边形ABCD 是平⾏四边形,∴∠ABE=∠ADF .…………………(1分)∵AE ⊥BC ,AF ⊥CD,∴∠AEB=∠AFD=90o. ……………………(1分)∵AB =AD ,∴△ABE ≌△ADF . ………………………………………(1分)∴BE =DF .…………………………………………………………………(1分)∵BC =AD =AB =CD ,∴CDDFBC BE =.……………………………………(1分)∴EF ∥BD .………………………………………………………………(1分)(2)∵∠ABE=∠ADF ,∠AEB=∠AFD ,∴△ABE ∽△ADF .…………(1分)∴ADABDF BE =.……………………………………………………………(1分)∵EF ∥BD ,∴CDDFBC BE =.……………………………………………(1分)∵四边形ABCD 是平⾏四边形,∴AB=CD ,AD=BC .∴AB DFAD BE =.……………………………………………………………(1分)∴AB ADDF BE =.∴ABADAD AB =,即22AD AB =.…………………………………………(1分)∴AB =AD .…………………………………………………………………(1分) 24.解:(1)∵t =1,y =kx +2,∴A (1,0),B (0,2).………………………………………(1分)把点A (1,0)、B (0,2)分别代⼊抛物线的表达式,得=++-=.2,10c c b …………………………………………………………(1分)解得?=-=.2,1c b∴所求抛物线的表达式为y =-x 2-x +2.……………………………………(1分)(2)作CH ⊥x 轴,垂⾜为点H ,得∠AHC =∠AOB =90°.∵AC ⊥AB ,∴∠OAB +∠CAH =90°.⼜∵∠CAH +∠ACH =90°,∴∠OAB =∠ACH .∴△AOB ∽△CHA .…………………………………………(1分)∴ACABAH OB CH OA ==.∵tan ∠ACB =21=AC AB ,∴21==AH OB CH OA .…………………(1分)∵OA =t ,OB =2,∴CH =2t ,AH =4.…………………………(1分)∴点C 的坐标为(t -4,-2t ).…………………………(1分)(3)∵点C (t -4,-2t )在抛物线y =-x 2+bx +c 的对称轴上,∴24bt =-,即82-=t b .………………………………………(1分)把点A (t ,0)、B (0,2)代⼊抛物线的表达式,得-t 2+bt +2=0. …………(1分)∴02)82(2=+-+-t t t ,即0282=+-t t . ………………(1分)解得t =144±.………………………………………………(1分)∵点C (t -4,-2t )在第三象限,∴t =144+不符合题意,舍去.∴t =144-.……………………………………………………(1分)25.解:(1)∵AM ∥BC ,∴∠PAD =∠APB .∵∠APD =∠B ,∴△APD ∽△PBA .…………………………(1分)∴BPAPAP AD =.………………………………………………………(1分)∴BP AD AP ?=2.………………………………………………(1分)(2)过点A 作AH ⊥BC ,垂⾜为点H .∵∠B =60°,AB =4,∴BH =2,32=AH .………………(1分)设BP =x ,那么2-=x PH .∴164)32()2(2222+-=+-=x x x AP .………………………(1分)∴xx x BP AP AD 16422+-==.…………………………(1分)⽽AB =4,BP =x ,因此(i )如果两圆外切,那么41642=++-x xx x .整理,得0842=+-x x .∵08442(ii )如果两圆内切,那么41642=-+-x xx x .解得x =2.…………………………………………………………(1分)或41642=+--xx x x .此⽅程⽆解.………………………………………………(1分)综上所述,如果两圆相切,那么BP =2.(3)过点A 作AH ⊥BC ,垂⾜为点H .由题意,可知AD =AB =4,即41642=+-xx x .…………………(1分)∴x =4.………………………………………………………(1分)⼜∵BC =6,BH =2,∴CH =4.∴AD =CH .∵AD ∥CH ,∴四边形AHCD 是平⾏四边形.∵∠AHC =90°,∴平⾏四边形AHCD 是矩形.∴∠ABE =∠ADC =90°,…………………………………(1分)EB =CD =32.……………………………(1分)过点P 作PK ⊥BE ,垂⾜为点K .∵∠ABC =60°,∴∠PBK =30°.⼜∵BP =4,∴PK =2,BK =32.∴EK =34.∴cot ∠BEP =32.………………………………(1分)。
2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。
黄浦区2015年九年级学业考试模拟考数学试卷(时间100分钟,满分150分) 2015.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列分数中,可以化为有限小数的是 (A )115; (B )118; (C )315; (D )318. 2. 下列二次根式中最简根式是(A ; (B )8; (C (D 3.这七天最低气温的众数和中位数分别是(A )4,4; (B )4,5; (C )6,5; (D )6,6.4. 将抛物线2y x =向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是 (A )2(1)2y x =-+; (B )2(2)1y x =-+; (C )2(1)2y x =+-; (D )2(2)1y x =+-.5. 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是 (A )内含; (B )内切; (C )外切; (D )相交.6. 下列命题中真命题是(A )对角线互相垂直的四边形是矩形; (B )对角线相等的四边形是矩形; (C )四条边都相等的四边形是矩形; (D )四个内角都相等的四边形是矩形.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7. 计算:22()a = ▲ .8. 因式分解:2288x x -+= ▲ . 9. 计算:111x x x +=+- ▲ . 10.1x =-的根是 ▲ .11. 如果抛物线2(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ▲ .12. 某校八年级共四个班,各班寒假外出旅游的学生人数如图1所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为 ▲ . 13. 将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是 ▲ . 14. 如果梯形的下底长为7,中位线长为5,那么其上底长为 ▲ .15. 已知AB 是⊙O 的弦,如果⊙O 的半径长为5,AB 长为4,那么圆心O 到弦AB 的距离是 ▲ .16. 如图2,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,且12CN BN =,设AB a =,BC b =,那么MN 可用a 、b 表示为 ▲ .AB图2 图3 图4-1 图4-217. 如图3,△ABC 是等边三角形,若点A 绕点C 顺时针旋转30︒至点'A ,联结'A B ,则'ABA ∠度数是 ▲ .18. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是 ▲ .图1一班 二班 三班 四班三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 计算:)1134811-+-+.20. (本题满分10分)解方程组:2222, 1. x y x y ⎧-=-⎨-=⎩①②21. (本题满分10分,第(1)满分7分,(2)小题满分3分)温度通常有两种表示方法:华氏度(单位:F )与摄氏度(单位:C ).已知华氏度数y .(F )(1)选用表格中给出的数据,求y 关于x 的函数解析式(不需要写出该函数的定义域); (2)已知某天的最低气温是5-C ,求与之对应的华氏度数.22. (本题满分10分,第(1)、(2)小题满分各5分)如图5,在梯形ABCD 中,AD //BC ,AB ⊥BC ,已知AD =2, 4cot 3ACB ∠=,梯形ABCD 的面积是9.(1)求AB 的长;(2)求tan ACD ∠的值.23. (本题满分12分,第(1),(2)小题满分各6分)如图6,在正方形ABCD 中,点E 在对角线AC 上,点F 在边B C 上,联结BE 、DF ,DF 交对角线AC 于点G ,且DE =DG . (1)求证:AE =CG ;(2)求证:BE //DF . 图5图6F24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图7,在平面直角坐标系xOy 中,已知点A 的坐标为(a ,3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且AB //x 轴,AC //y 轴.25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.(备用图)图8黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2. C ; 3.B ; 4. D ; 5. B ; 6. D . 二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <;12. 40%; 13.14 ; 14. 3; 15.16. 1123a b -; 17. 15︒;18. .三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 原式=))1211+-+………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分) 将③代入①得22(1)22y y +-=-.………………………………………………………(1分) 整理,得 2230y y --=.……………………………………………………………(2分) 解得 11y =-,23y =. …………………………………………………………(2分) 代入③得 10x =,24x =.………………………………………………………………(2分) 所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分) 21. (本题满分10分,第(1)满分7分,(2)小题满分3分) 解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分) 由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分) 解得 32b = . ………………………………………………(1分) 由100x =时,212y =,得 21210032k =+. ……………………………………(1分) 解得 95k =. ……………………………………………………(1分)∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分) (2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分) 22. (本题满分10分,第(1)、(2)小题满分各5分) 解:(1)设AB x =. ∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分) 由题意得431(2)92x x +⋅=. …………………………………………………………(2分) 解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分) (2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分) 在Rt △ABC 中,AB =3,BC =4,∴5AC ==. ……………………………………………………………(1分)∴ 3sin 5ABACB AC ∠==,4cos 5BC ACB AC∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠. 在Rt △AED 中,AD =2,sin 56DE AD DAC =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1分)在Rt △CED 中,665tan 81755DE ACD CE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分) 证明:(1)∵四边形ABCD 是正方形,∴AD =CD . ……………………………………………………………………………(1分) ∴DAE DCG ∠=∠.……………………………………………………………………(1分) ∵DE =DG ,∴DEG DGE ∠=∠.………………………………………………………(1分) ∴AED CGD ∠=∠.……………………………………………………………………(1分) 在△AED 与△CGD 中,DAE DCG ∠=∠,AED CGD ∠=∠,AD =CD , ∴△AED ≌△CGD .……………………………………………………………………(1分) ∴AE =CG . ……………………………………………………………………………(1分) (2) ∵四边形ABCD 是正方形,∴AD //BC . ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分) ∵AE =CG . ∴AC AE AC CG -=-,即CE =AG . ……………………………………………………………………………(1分) ∵四边形ABCD 是正方形,∴AD =BC . ……………………………………………………………………………(1分) ∴CG CFCE BC=. …………………………………………………………………………(1分) ∴BE //DF . ……………………………………………………………………………(1分) 24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 解:(1)∵反比例函数12y x=的图像经过横坐标为6的点P , ∴点P 的坐标为(6,2). ………………………………………………………(1分) 设直线AO 的表达式为y kx =(0k ≠). …………………………………………(1分) 将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………………………(2分) ∴点A 坐标为(9,3).…………………………………………………………………(1分) (3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E ,∴32ADO AEO S S a ∆∆==.……………………………………………………………………(1分)∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.……………………………………(1分) ∵△ABP 与△ABO 同高,∴ABP ABO S APS AO∆∆=.……………………………………………(1分) 同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPSS ∆∆=.即当a 变化时,ABPACPS S ∆∆的值不变,且恒为1.……………………………………………(1分) 25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠. ∴30BCD A ∠=∠=.…………………………………………………………………………(1分) 在Rt △BDC 中,cos 2cos303CD BC BCD =⋅∠=⋅=…………………………………(1分) 在Rt △ADC 中,cot 3AD CD A =⋅∠=. ………………………………………………(1分) (2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………………………(1分) 同理 ACD B ∠=∠.△CDE ∽△BFC .……………………………………………………………………………(1分) ∴CE CDBC BF =,即CE CD BC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=,∴2x =1分) ∴yx ≤<.……………………………………………………………(2分) (3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD .∴FD AD CE AC =,即x x=1分)解得3x =(负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠=,CF ⊥DE ,∴DCG EDF ∠=∠. 又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠. ∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD 1分)综上所述CE.……………………………………………………(1分)。
2015届九年级(下)阶段测试(三)数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回。
参考公式:()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴公式为2bx a =-。
一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。
1.实数4的倒数是( )A .4B .14C .4-D .14-2.计算32(2)x 的结果是( )A .64xB .62xC .54xD .52x3.下列商标是轴对称图形的是( )A .B .C .D .4.在代数式21x +中,x 的取值范围是( ) A .0x > B .0x ≤ C .1x ≠- D .0x ≠5.下列调查中,适合采用普查方式的是( )A .调查市场上粽子的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了违禁物品D .调查我市市民收看重庆新闻的情况 6.△ABC 与△DEF 的相似比为3:4,则△ABC 与△DEF 的周长比为( )A 2B .3:4C .4:5D .9:167.如图,//a b ,将一块三角板的直角顶点放在直线a 上,若∠1=42°,则∠2的度数为( )A .46°B .48°C .56°D .72°8.如图,A 、B 、C 是O 上的三点,∠ACB=40°,则∠AOB 的度数为( )A .20°B .40°C .60°D .80°9.不等式组2201213x x x -≤⎧⎪+⎨>-⎪⎩的解集是( )A .1x ≥B .41x -<≤C .4x <D .1x ≤10.五一假期,刘老师开车自驾前往荣昌,他开车离开家时,由于车流量大,行进非常缓慢,十几分钟后,终于形势在畅通无阻的告诉公路上,大约五十分钟后,汽车顺利到达荣昌收费站,经停车缴费后,进入车流量较小的道路,很快就到达了荣昌县城。
已知B :在平面直角坐标系中,抛物线 y = ax 2 + x 的对称轴为直线 x =2,顶点为 A .(1)求抛物线的表达式及顶点 A 的坐标; A点 P 24 题 y = ( x - m )2 + n 的顶点 D 在直线 AB 上,与 y 轴的交点为 C 。
动点之角度(2015 二模 崇明)24.(本题满分 12 分,每小题各 6 分)如图,已知抛物线 y = ax 2 + bx + c 经过点 A (0, - 4) ,点 B (-2, 0) ,点 C (4, 0) .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点 M 在 y 轴上, ∠OMB + ∠OAB = ∠ACB ,求点 M 的坐标.yy(2015 二模 奉贤)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 8 分)B OC x O C xA(备用图)(2)(第为抛物线对称轴上一点,联结 OA 、OP .x图)①当 OA ⊥OP 时,求 OP 的长;②过点 P 作 OP 的垂线交对称轴右侧的抛物线于点 B ,联结 OB ,当∠OAP =∠OBP 时,求点 B 的坐标.(2015 二模 杨浦)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 4 分,第 (3)小题 4 分,)已知:在直角坐标系中,直线 y =x +1 与 x 轴交与点 A ,与 y 轴交与点 B ,抛物线12(1)若点 C (非顶点)与点 B 重合,求抛物线的表达式;y(2)若抛物线的对称轴在y轴的右侧,且CD⊥AB,求∠CAD的正切值;(3)在第(2)的条件下,在∠ACD的内部作射线CP交抛物线的对称轴于点P,使得∠DCP=∠CAD,求点P的坐标。
动点之相似(2015二模宝山嘉定)24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(图9),双曲线y=k(k≠0)与直线y=x+2都经过点xA(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.y(2015二模金山)24.(本题满分12分)已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;B A 如图,在直角坐标系 xOy 中,抛x 物线 y = ax O 2 - 2ax + c 与 x 轴的正半轴相x 交于点 A 、与 y 轴 (3)直线 y = kx + 2 与 y 轴交于点 N ,与直线 AC 的交点为 M ,当 ∆MNC 与 ∆AOC 相似时,求点 M 的坐标.动点之面积(2015 二模 黄浦)24. (本题满第(1)小题满分 3 分,第(2) 分 12 分,小题满分 4分,第(3)小题满分 5 分)如图 7,在平面直角坐标系xOy 中,已知点 A 的坐标为(a ,3)(其中a >4),射线 OA与反比例函数y = 12 的图像交于点 P ,点 B 、C 分别在函数y = 12 的图像上,且 AB //x 轴,xxAC //y 轴.(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联结 BO ,当 AB = BO 时,求点 A 坐标;(3)联结 BP 、CP ,试猜想:S ∆ABP 的值是否随 a 的变化而变化?如果不变,求出 S ∆ABP 的SS∆ACP∆ACP值;如果变化,请说明理由.(2015 二模 静安青浦)24.(本题满分 12 分,第(1)小题满分 8 分,第(2)小题满分 4 分)PCO 图7的正半轴相交于点 B ,它的对称轴与 x 轴相交于点 C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;如图,已知抛物线 y = x 2 - 2tx + t 2 - 2 的顶点 A 在第四象限,过点 A 作 AB ⊥y 轴于点 B ,A (-1,0),B (4,0 ),C (0,2 ).点D 是点 C 关于原点的对称C 点A ,联结 B D ,点E 是 x 轴上的E (2)如果点 D 在此抛物线上,DF ⊥OA ,垂足为 F ,DF 与线段 AB 相交于点G ,且 S∆ADG : S∆AFG= 3 : 2 ,求点 D 的坐标.y(2015 二模 长宁)24.(本题满分 12 分)BCC 是线段 AB 上一点(不与 A 、B 重合),过点 C 作 CD ⊥x 轴于点 D ,并交抛物线于点 P .(1)若点 C 的横坐标为 1,且是线段 AB 的中点,求点 P 的坐标;(2)若直线 AP 交 y 轴负半轴于点 E ,且 AC =CP ,求四边形 OEPD 的面积 S 关于 t 的函数解析式,并写出定义域;(3)在(2)的条件下,当△ADE 的面积等于 2S 时 ,求 t 的值.y动点之直角、等腰三角形存在性DO x(2015 二模 普陀 ) 如图10,在平面直角坐标系xOy 中,二次函数的图像经过点 PB一个动点,设点 E 的坐标为(m , 0),过点 E 作 x 轴的垂线 l 交抛物线于点 P .第 24 题(1)求这个二次函数的解析式;图(2)当点E 在线段 OB 上运动时,直线 l 交 BD 于点 Q .当四边形CDQP 是平行四边形时,求 m 的值;(3)是否存在点 P ,使△ B DP 是不以 BD 为斜边的直角三角形,如果存在,请直接写出点 P 的坐标;如果不存在,请说明理由.y y(2015二模松江)24.(本题满分12分,每小题各4分)C C如图,二次函数y=-x2+bx的图像与x轴的正半轴交于点A(4,0),过A点的直线与A OB x A O B xy轴的正半轴交于点B,与二次函数的图像交于另一点C,过点C作CH⊥x轴,垂足为H.设二次函数图像的顶点为D,其对称轴与直线AB及x轴分别交于点E和点F.(1)求这个二次函数的解析式;(2)如果CE=3BC,求点B的坐标;(3)如果△DHE是以DH为底边的等腰三角形,求点E的坐标.动点之梯形(2015二模徐汇)24.如图,在平面直角坐中,O为坐标原点,开口向上的抛物线与x点A(-1,0)和点B(3,0),D为抛物线的直线AC与抛物线交于点C(5,6).(1)求抛物线的解析式;(2)点E在x轴上,且∆AEC和∆AED相似,求点E的坐标;标系轴交于顶点,(3)若直角坐标平面中的点F和点A、C、D构成求点F的坐标.其他直角梯形,且面积为16,试((2015 二模 闵行)24.(本题满分 12 分,其中每小题各 4 分)如图,已知在平面直角坐标系 xOy 中,抛物线 y = ax 2 - 2ax - 4 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,其中点 A 的坐标为(-3,0).点 D 在线段 AB 上,AD = AC .(1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以 DB 为半径的圆 D 与圆 C 外切,求圆 C 的半径;(3)设点 M 在线段 AB 上,点 N 在线段 BC 上.如果线段 MN 被直线 CD 垂直平分,求BN 的值. CN(2015 二模 浦东)24. 本题满分 12 分,其中第(1)小题 3 分,第(2)小题 4 分,第(3)小题 5 分) 已知:如图,直线 y =kx +2 与 x 轴的正半轴相交于点 A(t ,0)、与 y 轴相交于点 B ,抛物线 y = - x 2 + bx + c 经过点 A 和点 B ,点 C 在第三象限内,且 AC ⊥AB ,tan∠ACB = 1 .2(1)当 t =1 时,求抛物线的表达式;(2)试用含 t 的代数式表示点 C 的坐标;(3)如果点 C 在这条抛物线的对称轴上,求 t2020-2-8的值.。
2015年上海市黄浦区中考数学二模试卷、选择题(每题4分,共24 分)1. (4分)(2015?黄浦区二模)下列分数中,可以化为有限小数的是()A. —B. —C. 一D.—15 18 15 182. (4分)(2015?黄浦区二模)下列二次根式中最简根式是(3这七天最低气温的众数和中位数分别是()A . 4, 4B . 4, 5 C. 6, 5 D . 6, 624. (4分)(2015?黄浦区二模)将抛物线y=x2向下平移1个单位,再向左平移2个单位后, 所得新抛物线的表达式是()2 2 2 2A . y= (x- 1)+2B . y= (x - 2)+1 C. y= (x+1 )- 2 D . y= (x+2 )- 15. (4分)(2015?黄浦区二模)如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是()A .内含B.内切C.外切D.相交6. (4分)(2015?黄浦区二模)下列命题中真命题是()A •对角线互相垂直的四边形是矩形B. 对角线相等的四边形是矩形C. 四条边都相等的四边形是矩形D .四个内角都相等的四边形是矩形二、填空题(每题4分,共48分)2 27. (4分)(2015?黄浦区二模)计算:(a )= ____2& (4分)(2015?房山区二模)分解因式:2x - 8x+8=9. (4分)(2015?黄浦区二模)计算::,+ =—x+l X - 110. (4分)(2004?上海)方程寸—,=x - 1的根是 __________________ .211 . (4分)(2015?黄浦区二模)如果抛物线y= (2- a)x +3x - a的开口向上,那么a的取值范围是_______________ .12 . (4分)(2015?黄浦区二模)某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为______________ .20. (6分)(2015?黄浦区二模)解方程组:x 2-Sy^-2® K -y=l@人数(人)2012S10E -0 E 三四班’班级13.(4分)(2015?黄浦区二模)将一枚质地均匀的硬币抛掷 2次,硬币正面均朝上的概率是 ______________ .14.(4分)(2015?黄浦区二模)如果梯形的下底长为7,中位线长为5,那么其上底长为 ______________ .15. (4分)(2015?黄浦区二模)已知 AB 是O O 的弦,如果O O 的半径长为5, AB 长为4,那么圆心O 到弦AB 的距离是 ___________________ .16. (4分)(2015?黄浦区二模)如图,在平行四边形 ABCD 中,点M 是边CD 中点,点N是边BC 上的点,且 ='•设小=于=】,那么川可用I 、【表示为.BN 2D________ C17. (4分)(2015?黄浦区二模)如图, △ ABC 是等边三角形,若点 A 绕点C 顺时针旋转 30°至点A ;联结 A B ,则/ ABA 度数是 ___________________ .18. (4分)(2015?黄浦区二模)如图1,点P 是以r 为半径的圆O 外一点,点P 在线段OP 上,若满足OP?OP=r 2,则称点P 是点P 关于圆O 的反演点.如图2,在Rt △ ABO 中,/ B=90 °,AB=2 , BO=4 ,圆O 的半径为2,如果点A '、B 分别是点A 、B 关于圆O 的反演点,那么A B ' 的长是 .三、解答题(48分)119. (6分)(2015?黄浦区二模)计算:4°+ -( ■- 1) -1 +|1 - _:|.21. (6分)(2015?盘锦二模)温度通常有两种表示方法:华氏度(单位:T)与摄氏度(单位:C),已知华氏度数y与摄氏度数x之间是一次函数关系,如表列出了部分华氏度与摄氏度之间的对应关系:华氏度数x (C)035100摄氏度数y (T)3295212(1 )选用表格中给出的数据,求y关于x的函数解析式(不需要写出该函数的定义域) (2)已知某天的最低气温是- 5 C,求与之对应的华氏度数.22. (6分)(2015?黄浦区二模)如图,在梯形ABCD中,AD // BC, AB丄BC ,已知AD=2 , cot/ ACB= •,梯形ABCD的面积是9;3(1 )求AB的长;(2)求tan/ ACD 的值.23. (6分)(2015?黄浦区二模)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,联结BE、DF, DF交对角线AC于点G,且DE=DG ;(1)求证:AE=CG ;(2)求证:BE // DF .xOy中,已知点A的坐标为(a,12 123)(其中a> 4),射线OA与反比例函数y=——的图象交于点P,点B、C分别在函数y=——的图象上,且AB // x轴,AC // y轴;(1)当点P横坐标为6,求直线AO的表达式;(2)联结BO,当AB=BO时,求点A坐标;(3)联结BP、CP,试猜想:"「的值是否随a的变化而变化?如果不变,S AACP求出■ 的S AACP 值;如果变化,请说明理由.25. (9 分)(2015?黄浦区二模)如图,Rt△ ABC 中,/ C=90 ° / A=30 ° BC=2 , CD 是斜边AB 上的高,点E为边AC上一点(点E不与点A、C重合),联结DE,作CF丄DE, CF 与边AB、线段DE分别交于点F、G ;(1)求线段CD、AD的长;(2 )设CE=x, DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△ EFG与厶CDG相似时,求线段CE的长.B2015年上海市黄浦区中考数学二模试卷参考答案与试题解析一、选择题(每题4分,共24分)1. (4分)(2015?黄浦区二模)下列分数中,可以化为有限小数的是()A . B. C.三D .上15 1S 15 13【分析】根据分数与小数间的转化,可得答案.【解答】解:A、亠是无限循环小数,故A错误;15B、.是无限循环小数,故B错误;1SC、亠是有限小数,故C正确;15D、士是无限循环小数,故D错误;故选:C.2. (4分)(2015?黄浦区二模)下列二次根式中最简根式是B . ■: C. S D .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含开的尽的因数,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.3日期除夕初一初二初三初四初五初六最低气温(C)44561064这七天最低气温的众数和中位数分别是()A . 4, 4B . 4, 5 C. 6, 5 D . 6, 6【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:将一周气温按从小到大的顺序排列为4, 4, 4, 5, 6, 6, 10,中位数为第四个数5;4出现了3次,故众数为4.故选B .24. (4分)(2015?黄浦区二模)将抛物线y=x向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是()2 2 2 2A . y= (x- 1)+2B . y= (x - 2)+1 C. y= (x+1 ) - 2 D . y= (x+2 ) - 1【分析】把抛物线的平移问题转化为点平移的问题:先确定抛物线y=x2 3的顶点坐标为(0, 0),再根据点平移的规律得到把向下平移1个单位,再向左平移2个单位后得到对应点的坐标为(-2,- 1),然后根据顶点式写出平移后的抛物线解析式.2【解答】解:抛物线y=x的顶点坐标为(0, 0),把点(0, 0)向下平移1个单位,再向左平移2个单位后得到对应点的坐标为(- 2, - 1),所以所得抛物线的表达式是y= (x+2)2- 1.故选:D.5. (4分)(2015?黄浦区二模)如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是()A .内含B.内切C.外切D.相交【分析】根据数量关系来判断两圆的位置关系•设两圆的半径分别为R和r,且R才,圆心距为d:外离,贝U d> R+r;外切,则d=R+r;相交,则R- r v d v R+r;内切,贝U d=R - r; 内含,贝U d v R - r.【解答】解:•••两圆半径之差=6 - 2=4=圆心距,•••两个圆的位置关系是内切.故选B .6. (4分)(2015?黄浦区二模)下列命题中真命题是()A •对角线互相垂直的四边形是矩形B. 对角线相等的四边形是矩形C. 四条边都相等的四边形是矩形D .四个内角都相等的四边形是矩形【分析】根据矩形的判定方法对四个命题进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、四个角都相等的四边形是矩形,所以C选项错误;D、四个角都相等的四边形是矩形,所以D选项正确.故选D .二、填空题(每题4分,共48分)2 2 47. (4分)(2015?黄浦区二模)计算:(a )= a .【分析】根据幕的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.2 2& ( 4分)(2015?房山区二模)分解因式:2x - 8x+8= 2 (x - 2)【分析】先提公因式2,再用完全平方公式进行因式分解即可.【解答】解:原式=2 (x2- 4x+4)=2 ( x- 2)故答案为2 (x - 2)故答案为:a4.9. (4分)(2015?黄浦区二模)计算:”+—•_,—x+1 X - 1 —- 1 —【分析】原式通分并利用同分母分式的加法法则计算,即可得到结果.【解答】解:原式故答案为:10. (4分)(2004?上海)方程寸■—・:=x - 1的根是x=3 .【分析】把方程两边平方去根号后求解,注意检验.【解答】解:两边平方得7 - x= (x - 1)2,即(x+2)(x - 3)=0,解得:x= - 2或x=3 ,代入原方程,当x= - 2时,左边=.「二=3,右边=-3,原方成不成立. 当x=3时,左边=:,右边=2,原方程成立.故方程亍_、.=x - 1的根是x=3 ,故本题答案为:x=3 .211. (4分)(2015?黄浦区二模)如果抛物线y= (2- a)x +3x - a的开口向上,那么a的取值范围是a v 2 .【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数 2 - a>0,解不等式即可求得a的取值.【解答】解:因为抛物线y= (2 - a)x2+3x - a的开口向上,所以2- a>0,即a v 2.故答案为:a v 2.12. (4分)(2015?黄浦区二模)某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为40%4</鐵(人)【分析】根据条形统计图给出的数据求出外出旅游学生的总人数,再用三班外出旅游学生人数除以总人数即可得出答案.【解答】解:三班外出旅游学生人数占全年级外出旅游学生人数的百分比为20------ ----------- X100%=40% ;12+8+20+10故答案为:40%.13. (4分)(2015?黄浦区二模)将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是:.一4—【分析】列举出所有情况,看正面都朝上的情况数占总情况数的多少即可.【解答】解:如图所示:正反A A正反正反共4种情况,正面都朝上的情况数有1种,所以概率是 .4故答案是■.414. (4分)(2015?黄浦区二模)如果梯形的下底长为7中位线长为5,那么其上底长为3 . 【分析】设出梯形的上底长,直接运用梯形的中位线定理列出关于上底入的方程,求出入即可解决问题.【解答】解:设梯形的上底长为入由题意得:-,,2解得:*3,故答案为3.15. (4分)(2015?黄浦区二模)已匸AB是O O的弦,如果O O的半径长为5, AB长为4, 那么圆心O到弦AB的距离是_ f二1【分析】根据题意画出图形,过点O作OD丄AB于点D,由垂径定理可得出AD的长,在Rt A OAD中,利用勾股定理及可求出OD的长.【解答】解:如图所示:过点O作OD丄AB于点D,•/ AB=4 ,••• AD= AB= >4=2,2 2在Rt△ OBD 中,•/ OA=5 , AD=2 ,•OD=二-,匸.=•「:::'=:-.故答案为:二7.16. (4分)(2015?黄浦区二模)如图,在平行四边形ABCD中,点M是边CD中点,点N 是边BC上的点,且卜.设小―,那么讪用表示为—匚―【分析】首先由四边形ABCD是平行四边形,求得「'=.•「=;,又由点M是边CD中点,点N是边BC上的点,且侯1,求得宀J再利用三角形法则求解即可求得答案.【解答】解::•四边形ABCD是平行四边形,•••点M是边CD中点,点N是边BC上的点,且■;;=':,17. (4分)(2015?黄浦区二模)如图,△ ABC是等边三角形,若点A绕点C顺时针旋转30°至点A 联结A B,则/ ABA度数是15°.【分析】如图,首先运用旋转变换的性质得到AC=A C, / ACA =30 °运用等腰三角形的性质得到,/ A BC=45。
九年级数学 共5页 第1页2014学年奉贤区调研测试九年级数学 2015.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列计算中正确的是(▲)A .633a a a =+; B .633a a a =⋅ ; C .033=÷a a ; D .633)(a a =. 2.二元一次方程32=+y x 的解的个数是(▲)A . 1个;B .2个;C .3个;D .无数个. 3.关于反比例函数xy 2=的图像,下列叙述错误的是(▲) A .y 随x 的增大而减小; B .图像位于一、三象限;C .图像是轴对称图形;D .点(-1,-2)在这个图像上.4.一名射击运动员连续打靶8次,命中环数如图所示,这组数据的众数与中位数分别为(▲)A .9与8;B .8与9;C .8与8.5;D .8.5与9.5.相交两圆的圆心距是5,如果其中一个圆的半径是3,那么另外一个圆的半径可以是(▲)A .2;B .5;C .8;D .10. 6.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(▲)A .∠B =45°;B .∠BAC =90°;C .BD =AC ;D .AB =AC .(第4题图)DCB A(第6题图)九年级数学 共5页 第2页二、填空题:(本大题共12题,每题4分,满分48分) 7.用代数式表示:a 的5倍与b 的27的差: ▲ ; 8.分解因式:1522--x x = ▲ ; 9.已知函数3+=x x f )(,那么=-)(2f ▲ ;10.某红外线遥控器发出的红外线波长为0.000 000 94m ,这个数用科学记数法表示为 ▲ ; 11.若关于x 的方程022=--k x x 有两个不相等的实数根,则k 的取值范围为 ▲ ; 12.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ▲ ;13.已知函数b x y +-=2,函数值y 随x 的增大而▲ (填“增大”或“减小”); 14.如果正n 边形的中心角是40°,那么n = ▲ ;15.已知△ABC 中,点D 在边BC 上,且BD =2DC .设AB a = ,=,那么AD →等于▲ (结果用、表示);16.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为▲米;17.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于 ▲ ;18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ▲ ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:1o )12(45cos 22218-++--+.CBOA (第18题图)九年级数学 共5页 第3页20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧-≤-+<-x x x x 2371211513)(,将其解集在数轴上表示出来,并写出这个不等式组的最.小整数解.....21.(本题满分10分,每小题满分各5分)已知:如图,在△ABC 中,AB=AC =6,BC =4,AB 的垂直 平分线交AB 于点E ,交BC 的延长线于点D . (1)求∠D 的正弦值; (2)求点C 到直线DE 的距离.CB A(第21题图)EDS22.(本题满分10分)某学校组织为贫困地区儿童捐资助学的活动,其中七年级捐款总数为1000元,八年级捐款总数比七年级多了20%.已知八年级学生人数比七年级学生人数少25名,而八年级的人均捐款数比七年级的人均捐款数多4元.求七年级学生人均捐款数.23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD中,AB//CD,点E是对角线AC上一点,∠DEC=∠ABC,且CACECD⋅=2.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.D BA九年级数学共5页第4页九年级数学 共5页 第5页24.(本题满分12分,第(1)小题4分,第(2)小题8分)已知:在平面直角坐标系中,抛物线x ax y +=2的对称轴为直线x =2,顶点为A . (1)求抛物线的表达式及顶点A 的坐标; (2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物 线于点B ,联结OB ,当∠OAP =∠OBP 时, 求点B 的坐标.九年级数学 共5页 第6页25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB (第25题图)AB(备用图)A九年级数学 共5页 第7页奉贤区初三调研考数学卷参考答案 201504一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分) 7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9; 15.32+; 16.50; 17.2或1; 18.20°. 三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分20.(本题满分10分)解:由①得:2x >- .………………………………………………………………………2分 由②得:4x ≤.………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集.………………………………………………………………2分 所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分九年级数学 共5页 第8页∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°,sin ∠D =13,BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°,sin ∠D =31=CD CM ∴CM=35.…………………2分 即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分根据题意,得4%)201(1000251000++=-x x .……………………………………4分 整理,得 0160122=-+x x .……………………………………………1分解得 20,821-==x x .……………………………………………………2分 经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.…………1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形………………………………………………………1分(2)∵EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形∴AB ∥CD AB=CD九年级数学 共5页 第9页∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分 ∴顶点A 的坐标为(2,1). ……………………………………………………………2分(2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中,AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4…………………………………………………………1分 ∴OP=524222=+……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠∴△BPF ∽△POE ,∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a九年级数学 共5页 第10页解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6∴321===CD DH CH …………………………………………………1分 ∵AD=5∴AH=4………………………………………………………………1分∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分 (2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD=x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-=……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -==…………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -=222NF AN AF -= ∴2222)43(5)4()25(x x -=-∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD .九年级数学 共5页 第11页崇明县2014学年第二学期教学质量调研测试卷九年级数学(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3 (C)030-=() (D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是……………………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A)(B) (C) (D)6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 ………………………………………………………………………………………( )九年级数学 共5页 第12页(A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =九年级数学 共5页 第13页二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ .8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为 ▲ .11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ . 12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a = ,AD b = ,如果用向量,a b表示向量BC ,那么BC =▲ .15.如图,已知ABC ∆和ADE ∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .(第14题图)AB C D (第15题图)AC EF D (第16题图)B九年级数学 共5页 第14页18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-. 20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点,AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =.(1)求线段AE 的长; (2)求sin DAE ∠的值.BACFD(第18题图)(第21题图)CABE D九年级数学 共5页 第15页22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H .(1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.(第22题图))A BDHG FEC(第23题图)九年级数学 共5页 第16页24.(本题满分12分,每小题各6分)如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C . (1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)(备用图)九年级数学 共5页 第17页25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E , 点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域; (2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)B AC (备用图2)BAC。
20XX 年上海市黄浦区中考数学二模试卷一、选择题(每题 4 分,共 24 分)1.( 4 分)( 2015?黄浦区二模)以下分数中,能够化为有限小数的是()A .B.C.D.2.( 4 分)( 2015?黄浦区二模)以下二次根式中最简根式是()A .B.C. D .3.( 4 分)( 2015?黄浦区二模)如表是某地今年春节放假七天最低气温(℃)的统计结果日期大年夜初一初二初三初四初五初六最低气温(℃)44561064这七天最低气温的众数和中位数分别是()A.4,4 B.4, 5 C.6,5 D.6,62向下平移4.( 4 分)( 2015?黄浦区二模)将抛物线y=x 1 个单位,再向左平移 2 个单位后,所得新抛物线的表达式是()A . y=( x﹣ 1)2+2B . y=( x﹣ 2)2+1C. y= (x+1 )2﹣ 2 D .y= ( x+2 )2﹣ 15.( 4 分)( 2015?黄浦区二模)假如两圆的半径长分别为 6 与 2,圆心距为4,那么这两个圆的地点关系是()A .内含B .内切C .外切D .订交6.( 4 分)( 2015?黄浦区二模)以下命题中真命题是()A.对角线相互垂直的四边形是矩形B.对角线相等的四边形是矩形C.四条边都相等的四边形是矩形D.四个内角都相等的四边形是矩形二、填空题(每题 4 分,共 48 分)7.( 422分)( 2015?黄浦区二模)计算:( a ) =.8.( 4分)( 2015?房山区二模)分解因式:2x 2﹣ 8x+8= .9.( 4分)( 2015?黄浦区二模)计算:+=.10.( 4 分)( 2004?上海)方程=x ﹣1 的根是.11.(4 分)( 2015?黄浦区二模)假如抛物线2﹣a 的张口向上,那么 a 的取y= ( 2﹣ a) x +3x值范围是.12.( 4 分)( 2015?黄浦区二模)某校八年级共四个班,各班寒假出门旅行的学生人数如下图,那么三班出门旅行学生人数占整年级出门旅行学生人数的百分比为.13.( 4 分)( 2015?黄浦区二模)将一枚质地平均的硬币投掷 2 次,硬币正面均向上的概率是.14.( 4 分)( 2015?黄浦区二模)假如梯形的下底长为 7,中位线长为 5,那么其上底长为.15.(4 分)( 2015?黄浦区二模)已知 AB 是⊙ O 的弦,假如⊙ O 的半径长为 5, AB 长为 4,那么圆心 O 到弦 AB 的距离是.16.(4 分)( 2015?黄浦区二模)如图,在平行四边形ABCD 中,点 M 是边 CD 中点,点 N是边 BC 上的点,且= .设 = , = ,那么可用 、 表示为.17.( 4 分)( 2015?黄浦区二模)如图, △ ABC 是等边三角形,若点 A 绕点 C 顺时针旋转 30°至点 A ′,联络 A ′B ,则∠ ABA ′度数是.18.( 4 分)( 2015?黄浦区二模)如图 1,点 P 是以 r 为半径的圆 O 外一点,点 P ′在线段 OP 上,若知足 OP?OP ′=r 2,则称点 P ′是点 P 对于圆 O 的反演点.如图 2,在 Rt △ ABO 中,∠B=90 °, AB=2 ,BO=4 ,圆 O 的半径为 2,假如点 A ′、B ′分别是点 A 、B 对于圆 O 的反演点, 那么 A ′B ′ 的长是.三、解答题( 48 分)19.( 6 分)( 2015?黄浦区二模)计算: 0﹣( ﹣ 1﹣ |.4 + ﹣ 1) +|120.( 6 分)( 2015?黄浦区二模)解方程组:.21.( 6 分)( 2015?盘锦二模)温度往常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数 x 之间是一次函数关系,如表列出了部分华氏度与摄氏度之间的对应关系:华氏度数 x(℃)035100摄氏度数 y(℉)3295212(1)采用表格中给出的数据,求y 对于 x 的函数分析式(不需要写出该函数的定义域);(2)已知某天的最低气温是﹣ 5℃,求与之对应的华氏度数.22.(6 分)( 2015?黄浦区二模)如图,在梯形ABCD 中,AD ∥ BC,AB ⊥ BC ,已知 AD=2 ,cot∠ ACB= ,梯形 ABCD 的面积是 9;(1)求 AB 的长;(2)求 tan∠ ACD 的值.23.( 6 分)( 2015?黄浦区二模)如图,在正方形ABCD 中,点 E 在对角线AC 上,点 F 在边 BC 上,联络 BE 、 DF, DF 交对角线 AC 于点 G,且 DE=DG ;(1)求证: AE=CG ;(2)求证: BE∥ DF .24.( 9 分)( 2015?黄浦区二模)如图,在平面直角坐标系xOy 中,已知点 A 的坐标为( a,3)(此中 a> 4),射线 OA 与反比率函数y=的图象交于点P,点 B 、C 分别在函数y=的图象上,且AB ∥ x 轴, AC ∥ y 轴;(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联络 BO,当 AB=BO 时,求点 A 坐标;(3)联络 BP、CP,试猜想:的值能否随 a 的变化而变化?假如不变,求出的值;假如变化,请说明原因.25.( 9 分)( 2015?黄浦区二模)如图, Rt△ ABC 中,∠ C=90 °,∠ A=30 °,BC=2 ,CD 是斜边 AB 上的高,点 E 为边 AC 上一点(点 E 不与点 A、 C 重合),联络 DE ,作 CF⊥ DE,CF 与边 AB 、线段 DE 分别交于点 F、 G;(1)求线段 CD、 AD 的长;(2)设 CE=x ,DF=y ,求 y 对于 x 的函数分析式,并写出它的定义域;(3)联络 EF,当△ EFG 与△ CDG 相像时,求线段 CE 的长.20XX 年上海市黄浦区中考数学二模试卷参照答案与试题分析一、选择题(每题 4 分,共24 分)1.( 4 分)( 2015?黄浦区二模)以下分数中,能够化为有限小数的是()A .B.C.D.【剖析】依据分数与小数间的转变,可得答案.【解答】解: A 、是无穷循环小数,故 A 错误;B、是无穷循环小数,故 B 错误;C、是有限小数,故 C 正确;D、是无穷循环小数,故 D 错误;应选: C.2.( 4 分)( 2015?黄浦区二模)以下二次根式中最简根式是()A.B.C.D.【剖析】 判断一个二次根式能否是最简二次根式的方法, 就是逐一检查最简二次根式的两个条件能否同时知足,同时知足的就是最简二次根式,不然就不是.【解答】 解: A 、被开方数含开的尽的因数,故 A 错误;B 、被开方数含开的尽的因数,故 B 错误;C 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C 正确;D 、被开方数含分母,故 D 错误;应选: C .3.( 4 分)( 2015?黄浦区二模)如表是某地今年春节放假七天最低气温(℃)的统计结果 日期 大年夜 初一 初二 初三 初四 初五 初六 最低气温(℃)4456 106 4这七天最低气温的众数和中位数分别是()A .4,4B .4, 5C .6,5D .6,6【剖析】 众数就是出现次数最多的数, 而中位数就是大小处于中间地点的数,依据定义即可求解.【解答】 解:将一周气温按从小到大的次序摆列为4, 4,4, 5, 6, 6, 10,中位数为第四个数5;4 出现了 3 次,故众数为 4. 应选 B .4.( 4 分)( 2015?黄浦区二模)将抛物线 y=x 2向下平移 1 个单位,再向左平移 2 个单位后, 所得新抛物线的表达式是( )A . y=( x ﹣ 1)2 +2B . y=( x ﹣ 2) 2 +1C . y= (x+1 ) 2﹣ 2D .y= ( x+2 )2﹣ 1【剖析】 把抛物线的平移问题转变为点平移的问题:先确立抛物线 y=x 2 的极点坐标为( 0, 0),再依据点平移的规律获得把向下平移1 个单位, 再向左平移2 个单位后获得对应点的坐标为(﹣ 2,﹣ 1),而后依据极点式写出平移后的抛物线分析式.【解答】 解:抛物线 y=x 2的极点坐标为( 0, 0),把点( 0,0)向下平移 1 个单位,再向左 平移 2 个单位后获得对应点的坐标为(﹣ 2,﹣ 1),因此所得抛物线的表达式是 y= ( x+2 ) 2﹣1. 应选: D .5.( 4 分)( 2015?黄浦区二模)假如两圆的半径长分别为圆的地点关系是()6 与2,圆心距为4,那么这两个A .内含B .内切C .外切D .订交【剖析】 依据数目关系来判断两圆的地点关系.设两圆的半径分别为 R 和 r ,且距为 d :外离,则 d > R+r ;外切,则 d=R+r ;订交,则 R ﹣ r < d < R+r ;内切,则R ≥r ,圆心d=R ﹣ r ;内含,则 d < R ﹣ r .【解答】 解:∵两圆半径之差 =6﹣ 2=4=圆心距, ∴两个圆的地点关系是内切. 应选 B .6.( 4 分)( 2015?黄浦区二模)以下命题中真命题是( )A .对角线相互垂直的四边形是矩形B .对角线相等的四边形是矩形C.四条边都相等的四边形是矩形D.四个内角都相等的四边形是矩形【剖析】依据矩形的判断方法对四个命题进行判断.【解答】解: A 、对角线相等的平行四边形是矩形,因此 A 选项错误;B、对角线相等的平行四边形是矩形,因此 B 选项错误;C、四个角都相等的四边形是矩形,因此 C 选项错误;D、四个角都相等的四边形是矩形,因此 D 选项正确.应选 D.二、填空题(每题 4 分,共 48 分)2 2 7.( 4 分)( 2015?黄浦区二模)计算:( a ) = 【剖析】依据幂的乘方和积的乘方的运算法例求解.2 2 4【解答】解:( a ) =a .4a .故答案为: a 4.8.( 4 分)( 2015?房山区二模)分解因式:2x 2﹣ 8x+8= 2(x﹣ 2)2.【剖析】先提公因式2,再用完整平方公式进行因式分解即可.2【解答】解:原式 =2( x ﹣ 4x+4)故答案为2( x﹣ 2)2.9.( 4 分)( 2015?黄浦区二模)计算:+=.【剖析】原式通分并利用同分母分式的加法法例计算,即可获得结果.【解答】解:原式 ==,故答案为:10.( 4 分)( 2004?上海)方程=x ﹣1 的根是x=3.【剖析】把方程两边平方去根号后求解,注意查验.2即( x+2)(x﹣ 3) =0,解得: x= ﹣2 或 x=3 ,代入原方程,当x= ﹣2 时,左侧 ==3,右侧 =﹣ 3,原方成不建立.当 x=3 时,左侧 = ,右侧 =2,原方程建立.故方程=x ﹣ 1 的根是 x=3 ,故此题答案为:x=3 .11.(4 分)( 2015?黄浦区二模)假如抛物线2y= ( 2﹣ a) x +3x ﹣a 的张口向上,那么 a 的取值范围是a< 2 .【剖析】依据二次函数的性质可知,当抛物线张口向上时,二次项系数2﹣ a>0,解不等式即可求得 a 的取值.【解答】解:由于抛物线 y=( 2﹣ a) x 2+3x﹣ a 的张口向上,因此 2﹣ a>0,即 a<2.故答案为: a< 2.12.( 4 分)( 2015?黄浦区二模)某校八年级共四个班,各班寒假出门旅行的学生人数如图所示,那么三班出门旅行学生人数占整年级出门旅行学生人数的百分比为40% .【剖析】依据条形统计图给出的数据求出出门旅行学生的总人数,再用三班出门旅行学生人数除以总人数即可得出答案.【解答】解:三班出门旅行学生人数占整年级出门旅行学生人数的百分比为×100%=40% ;故答案为: 40%.13.( 4 分)( 2015?黄浦区二模)将一枚质地平均的硬币投掷 2 次,硬币正面均向上的概率是.【剖析】列举出全部状况,看正面都向上的状况数占总状况数的多少即可.【解答】解:如下图:共 4 种状况,正面都向上的状况数有 1 种,因此概率是.故答案是.14.( 4 分)(2015?黄浦区二模)假如梯形的下底长为7,中位线长为5,那么其上底长为3.【剖析】设出梯形的上底长,直接运用梯形的中位线定理列出对于上底λ的方程,求出λ即可解决问题.【解答】解:设梯形的上底长为λ;由题意得:,解得:λ=3,故答案为 3.15.(4 分)( 2015?黄浦区二模)已知AB 是⊙ O 的弦,假如⊙ O 的半径长为5, AB 长为 4,那么圆心 O 到弦 AB 的距离是.【剖析】依据题意画出图形,过点O 作 OD ⊥AB 于点 D,由垂径定理可得出AD 的长,在Rt△ OAD 中,利用勾股定理及可求出OD 的长.【解答】解:如下图:过点 O 作 OD⊥AB 于点 D,∵AB=4 ,∴AD= AB= ×4=2 ,在 Rt△ OBD 中,∵OA=5 , AD=2 ,∴OD===.故答案为:.16.(4 分)( 2015?黄浦区二模)如图,在平行四边形ABCD 中,点 M 是边 CD 中点,点 N是边BC上的点,且=.设=,=,那么可用、表示为﹣.【剖析】第一由四边形ABCD 是平行四边形,求得= =,又由点M是边CD中点,点N 是边 BC 上的点,且=,求得与,再利用三角形法例求解即可求得答案.【解答】解:∵四边形ABCD 是平行四边形,∴= =,∵点 M 是边 CD 中点,点N 是边 BC 上的点,且=,∴==,==,∴=﹣=﹣.故答案为:﹣.17.( 4 分)( 2015?黄浦区二模)如图,△ABC是等边三角形,若点 A 绕点 C 顺时针旋转30°至点 A ′,联络 A ′B,则∠ ABA ′度数是15° .【剖析】如图,第一运用旋转变换的性质获得AC=A ′C,∠ACA ′=30 °;运用等腰三角形的性质获得,∠ A ′BC=45 °,借助∠ ABC=60 °,即可解决问题.【解答】解:如图,由题意得:AC=A ′C,∠ ACA ′=30 °;∵△ ABC 为等边三角形,∴∠ ACB= ∠ ABC=60 °,AC=BC ,∴BC=A ′C,∠ A ′BC= ∠ BA ′C==45°,∴∠ ABA ′=60 °﹣ 45°=15°.18.( 4 分)( 2015?黄浦区二模)如图 1,点 P 是以 r 为半径的圆 O 外一点,点 P′在线段 OP 上,若知足 OP?OP′=r 2,则称点 P′是点 P 对于圆 O 的反演点.如图 2,在 Rt△ ABO 中,∠B=90 °, AB=2 ,BO=4 ,圆 O 的半径为 2,假如点 A ′、B ′分别是点 A 、B 对于圆 O 的反演点,那么 A ′B′的长是.【剖析】先证明△ AOB ∽△ B ′OA ′,而后依据相像三角形的对应角相等能够推知∠OA ′B′=∠OBA=90 °,依据勾股定理即可求得.【解答】解:∵ A ′、 B′分别是点 A 、 B 对于圆 O 的反演点,∴=,又∵∠ O=∠ O,∴△ AOB ∽△ B′OA ′,∴∠ OA ′B′=∠ OBA=90 °,∵ A B=2 , BO=4 ,圆 O 的半径为 2, ∴OA=2 ,∴OA ′==,OB ′==1,∴A ′B ′==.故答案为:.三、解答题( 48 分)19.( 6 分)( 2015?黄浦区二模)计算: 0﹣(﹣ 1﹣ |.4 + ﹣ 1) +|1 【剖析】 先依据 0 指数幂及负整数指数幂的计算法例、 绝对值的性质及数的开方法例分别计算出各数,再依据实数混淆运算的法例进行计算即可.【解答】 解:原式 =1+2﹣ + ﹣ 1=3﹣( +1 )+ ﹣1 =3﹣﹣1+﹣1=1.20.( 6 分)( 2015?黄浦区二模)解方程组: .【剖析】 把 x ﹣ y=1 化为 x=y+1 ,代入方程 ① ,求出 y ,再把 y 值代入 x=y+1 ,求出 x 即可.【解答】 解:由 ② 得: x=y+1 ③ ,把③ 代入 ① 得:( y+1) 2﹣ 2y 2=﹣ 2,即 y 2﹣ 2y ﹣ 3=0 , 解得: y 1=﹣ 1, y 2=3 ,把 y 1=﹣ 1, y 2=3 代入 ③ 得 x 1=0, x 2=4.故方程组的解为, .21.( 6 分)( 2015?盘锦二模)温度往常有两种表示方法:华氏度(单位:℉)与摄氏度(单 位:℃),已知华氏度数 y 与摄氏度数 x 之间是一次函数关系,如表列出了部分华氏度与摄氏度之间的对应关系:华氏度数 x (℃) 0 35 100 摄氏度数 y (℉)3295212(1)采用表格中给出的数据,求 y 对于 x 的函数分析式(不需要写出该函数的定义域);(2)已知某天的最低气温是﹣ 5℃,求与之对应的华氏度数.【剖析】( 1)设一次函数的分析式为 y=kx+b ,由待定系数法求出其解即可;( 2)当 x=﹣ 5 时代入( 1)的分析式求出其解即可.【解答】 解:( 1)设 y=kx+b ,把( 0, 32)和( 35, 95)代入得:,解得:,∴y=.(2)当 x=﹣ 5 时, y=﹣ 9+32=23 .∴某天的最低气温是﹣5℃,与之对应的华氏度数为23℉.22.(6 分)( 2015?黄浦区二模)如图,在梯形ABCD 中,AD ∥ BC,AB ⊥ BC ,已知 AD=2 ,cot∠ ACB=,梯形ABCD的面积是9;(1)求 AB 的长;(2)求 tan∠ ACD 的值.【剖析】( 1)依据锐角三角函数设出边长,利用梯形的面积公式列方程即可;(2)作 DH ⊥ AC 于 H ,利用三角形相像,列比率式求出DH=,AH=,CH=AC﹣AH=,即可求出tan∠ ACD==.【解答】解:( 1)在 R t ABC 中, cot∠ ACB==,设 BC=4k , AB=3k ,∴S 梯形ABCD =(AD+BC)?AB=(2+4k)?3k=9,∴k=1 或 k=﹣(舍),∴A B=3 ;(2)作 DH⊥ AC 于 H,∵AD ∥BC,∴∠ DAH= ∠ ACB ,∴△ ADH ∽△ CAB ,∴= = =,∴DH=,AH=,∴CH=AC ﹣ AH=,∴t an∠ACD== .23.( 6 分)( 2015?黄浦区二模)如图,在正方形ABCD 中,点 E 在对角线AC 上,点 F 在边 BC 上,联络 BE 、 DF, DF 交对角线 AC 于点 G,且 DE=DG ;(1)求证: AE=CG ;(2)求证: BE∥ DF .【剖析】( 1)先证∠ AED= ∠ CGD ,再证明△ADE ≌△ CDG ,依据全等三角形的对应边相等即可得出结论;(2)先证明△ BCE ≌△ DCE ,得出对应角相等∠ BEC= ∠ DEG,得出∠ BEC= ∠ DGE,即可证出平行线.【解答】证明:( 1)∵ DE=DG ,∴∠ DEG= ∠ DGE,∴∠ AED= ∠ CGD ,∵四边形 ABCD 是正方形,∴AD=CD=BC ,∠ DAC= ∠ BCE= ∠DCA=45 °,在△ ADE 和△ CDG 中,,∴△ ADE ≌△ CDG ( AAS ),∴AE=CG ;(2)在△BCE 和△ DCE 中,,∴△ BCE ≌△ DCE (SAS),∴∠ BEC= ∠ DEG ,∴∠ BEC= ∠ DGE ,∴BE ∥DF.24.( 9 分)( 2015?黄浦区二模)如图,在平面直角坐标系xOy 中,已知点 A 的坐标为( a,3)(此中 a> 4),射线 OA 与反比率函数y=的图象交于点P,点 B 、C 分别在函数y=的图象上,且AB ∥ x 轴, AC ∥ y 轴;(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联络 BO,当 AB=BO 时,求点 A 坐标;(3)联络 BP、CP,试猜想:的值能否随 a 的变化而变化?假如不变,求出的值;假如变化,请说明原因.【剖析】( 1)依据自变量的值,可得函数值,依据待定系数法,可得函数分析式;(2)依据函数值,可得自变量的值,依据勾股定理,可得OB 长,依据AB=OB ,可得 A 点坐标;(3)联立函数分析式,可得方程组,依据解方程组,可得P 点坐标,依据自变量与函数值的对应关系,可得 B 、 C 点坐标,依据三角形面积公式,可得答案.【解答】解:( 1)当 x=6 时, y=2 ,∴ P( 6, 2),设直线AO 的分析式为 y=kx ,代入 P( 6, 2)得 k=,∴直线 AO 的分析式为y= x;(2)由 AB ∥x 轴,得 B 点横坐标为 4.当 y=3 时, x=4 ,∴B ( 4,3).OB==5,∵AB=OB ,∴5=a﹣ 4,即 a=9,∴A(9,3);(3)直线 AO 的分析式为y= x,联立 y=,得,解得.∴P(2,),作 PM⊥ AB ,PN ⊥AC .当 x=a 时, y=,即C(a,),当y=3时,x=4,即B(4,3).AC=3 ﹣, PN=a﹣ 2, AB=a ﹣4, PM=3 ﹣,∴S△ABP=(a﹣ 4)( 3﹣), S△ACP=( a﹣ 2)( 3﹣),∴==1.25.( 9 分)( 2015?黄浦区二模)如图, Rt△ ABC 中,∠ C=90 °,∠ A=30 °,BC=2 ,CD 是斜边 AB 上的高,点 E 为边 AC 上一点(点 E 不与点 A、 C 重合),联络 DE ,作 CF⊥ DE,CF 与边 AB 、线段 DE 分别交于点 F、 G;(1)求线段 CD、 AD 的长;(2)设 CE=x ,DF=y ,求 y 对于 x 的函数分析式,并写出它的定义域;(3)联络 EF,当△ EFG 与△ CDG 相像时,求线段 CE 的长.【剖析】( 1)利用特别角的三角函数可知sin∠ B=,tan∠A=,由此求得线段CD 、AD的长;(2)证得△ CDE ∽△ BFC ,得出=,整理得出答案即可;(3)分两种状况考虑:①当△ EGF∽△ DGC 时;②当△ FEG∽△ CGD 时;利用相像的性质商讨得出答案即可.【解答】解:( 1)在 Rt△ BCD 中,BC=2 ,∠ B=90 °﹣∠ A=60 °,sin∠ B=,即 CD=×2=,同理 tan∠ A=,AD==3;(2)∵∠ CDE= ∠ BFC=90 °﹣∠ DCF,∠ ECD= ∠B=60 °,∴△ CDE ∽△ BFC ,∴= ,即=,∴y=﹣1,(≤x<2);(3)∠ EGF=∠ CGD=90 °①当△ EGF∽△ DGC 时,∠ GEF=∠ GDC ,∴E F∥DC,∴= ,即= =,解得 x=;②当△ EG∽△ CGD 时,∴∠ GEF=∠ GCD= ∠GDF ,∴E F=DF ,又∵ CF⊥ DE ,∴E G=DG ,∴C D=CE=;综上, CE=或;。
2015年上海市黄浦区中考数学二模试卷参考答案与试题解析一、选择题(每题4分,共24分)1.(4分)(2015•黄浦区二模)下列分数中,可以化为有限小数的是()A.B.C.D.【考点】:实数的概念M121【难易度】:容易题【分析】:根据分数与小数间的转化,可得.A、是无限循环小数,故A错误;B、是无限循环小数,故B错误;C、=0.2是有限小数,故C正确;D、是无限循环小数,故D错误;【解答】:答案C.【点评】:本题考查了有限小数与无限小数的定义,难度不大,解题时,只要将分数化为小数可直接得出答案。
2.(4分)(2015•黄浦区二模)下列二次根式中最简根式是()A.B.C.D.【考点】:最简二次根式M223【难易度】:容易题【分析】:判定一个二次根式是否为最简二次根式,就是逐个检查最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.则:A、被开方数含开的尽的因数,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;【解答】:答案C.【点评】:本题考查了最简二次根式的判断,难度不大,需要熟记最简二次根式必须满足的两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.(4分)(2015•黄浦区二模)如表是某地今年春节放假七天最低气温(℃)的统计结果日期除夕初一初二初三初四初五初六最低气温(℃) 4 4 5 6 10 6 4这七天最低气温的众数和中位数分别是()A.4,4 B.4,5 C.6,5 D.6,6【考点】:中位数、众数M524【难易度】:容易题【分析】:由众数就是出现次数最多的数,而中位数就是大小处于中间位置的数或中间两数的平均数。
将一周气温按从小到大的顺序排列为4,4,4,5,6,6,10,则4出现次数的最多,故众数为4;中位数为第四个数5.【解答】:答案B.【点评】:本题考查了众数和中位数的计算方式,属于基础题,需要熟记:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做这组数据的众数,注意一组数据的众数可以不唯一。
黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. C ;2. C ;3.B ;4. D ;5. B ;6. D .二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <; 12. 40%; 13.14 ; 14. 3; 15.16. 1123a b -; 17. 15︒;18. . 三、解答题:(本大题共7题,满分78分)19. (本题满分10分)原式=))1211+-+ ………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分)将③代入①得22(1)22y y +-=-.………………………………………………………(1分)整理,得 2230y y --=.……………………………………………………………(2分)解得 11y =-,23y =. …………………………………………………………(2分)代入③得 10x =,24x =.………………………………………………………………(2分)所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分)21. (本题满分10分,第(1)满分7分,(2)小题满分3分)解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分)由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分)解得 32b = . ………………………………………………(1分)由100x =时,212y =,得 2121003k =+. ……………………………………(1分)解得 95k =. ……………………………………………………(1分) ∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分)22. (本题满分10分,第(1)、(2)小题满分各5分)解:(1)设AB x =.∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分)由题意得431(2)92x x +⋅=. …………………………………………………………(2分) 解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分)(2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分)在Rt △ABC 中,AB =3,BC =4,∴5AC =. ……………………………………………………………(1分) ∴ 3sin 5ABACB AC ∠==,4cos 5BCACB AC ∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠.在Rt △AED 中,AD =2,s i n 56D E A D D A C =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1分)在Rt△CED中,665tan81755DEACDCE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分)证明:(1)∵四边形ABCD是正方形,∴AD=CD. ……………………………………………………………………………(1分)∴DAE DCG∠=∠.……………………………………………………………………(1分)∵DE=DG,∴DEG DGE∠=∠.………………………………………………………(1分)∴AED CGD∠=∠.……………………………………………………………………(1分)在△AED与△CGD中,DAE DCG∠=∠,AED CGD∠=∠,AD=CD,∴△AED≌△CGD.……………………………………………………………………(1分)∴AE=CG. ……………………………………………………………………………(1分)(2) ∵四边形ABCD是正方形,∴AD//BC. ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分)∵AE=CG.∴AC AE AC CG-=-,即CE=AG. ……………………………………………………………………………(1分)∵四边形ABCD是正方形,∴AD=BC. ……………………………………………………………………………(1分)∴CG CFCE BC=. …………………………………………………………………………(1分)∴BE//DF. ……………………………………………………………………………(1分)24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)解:(1)∵反比例函数12yx=的图像经过横坐标为6的点P,∴点P的坐标为(6,2).………………………………………………………(1分)设直线AO的表达式为y kx=(0k≠).…………………………………………(1分)将点P(6,2)代入y kx=,解得13k=.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………(2分) ∴点A 坐标为(9,3).………………………………………………(1分)(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E , ∴32ADO AEO S S a ∆∆==.………………………………………………(1分) ∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.………………………(1分) ∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.……………………………(1分) 同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPS S ∆∆=. 即当a 变化时,ABP ACP S S ∆∆的值不变,且恒为1.………………………(1分) 25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠.∴30BCD A ∠=∠=.………………………………………………(1分)在Rt △BDC 中,cos 2cos303CD BC BCD =⋅∠=⋅=1分) 在Rt △ADC 中,cot 3AD CD A =⋅∠=. …………………………(1分)(2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………(1分) 同理 ACD B ∠=∠. △CDE ∽△BFC .…………………………………………………(1分) ∴CE CD BC BF =,即CE CD BC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=, ∴2x =.………………………………………………………(1分)∴y =x ≤<.……………………………………(2分) (3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD . ∴FD AD CE AC =,即x x .……………………………(1分)解得x =负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠=,CF ⊥DE ,∴DCG EDF ∠=∠.又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠.∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD.………………………………………………………………………………(1分)综上所述CE1分)。
2015年上海市黄浦区中考数学一模试卷一、选择题(共6小题,每小题4分,满分24分)1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=c,那么BC等于()A. c•sinα B. c•cosα C. c•tanα D. c•cotα2.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A. a>0,c>0 B. a<0,c>0 C. a>0,c<0 D. a<0,c<03.如果||=3.||=2,且与反向,那么下列关系中成立的是()A.= B.=﹣ C.= D.=﹣4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE ∥BC的是()A.= B.= C.= D.=5.抛物线y=﹣x2+x﹣1与坐标轴(含x轴、y轴)的公共点的个数是()A. 0 B. 1 C. 2 D. 36.如图,在△ABC中,点D、E分别在边AB、AC上,且DE∥BC,若S△ADE:S△BDE=1:2,则S :S△BEC=()△ADEA. 1:4 B. 1:6 C. 1:8 D. 1:9二、填空题(共12小题,每小题4分,满分48分)7.如果=,那么的值是.8.计算:tan60°﹣cos30°= .9.如果某个二次函数的图象经过平移后能与y=3x2的图象重合,那么这个二次函数的解析式可以是.(只要写出一个).10.如果抛物线y=x2+(m﹣1)x﹣m+2的对称轴是y轴,那么m的值是.11.如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=2,BC=3,那么的值是.12.如图,在梯形ABCD中,AD∥BC,AB⊥AD,BD⊥CD,如果AD=1,BC=3,那么BD长是.13.如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,那么该斜坡的坡比是.14.在Rt△ABC中,∠C=90°,CD是斜边AB上的高,如果CD=3,BD=2.那么cos∠A的值是.15.正六边形的中心角等于度.16.在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O 与x轴的位置关系是.17.在Rt△ABC中,∠C=90°,∠A=30°,BC=1,分别以A、B为圆心的两圆外切,如果点C在圆A内,那么圆B的半径长r的取值范围是.18.如图,在梯形ABCD中,AD∥BC,BE⊥CD,垂足为点E,连结AE,∠AEB=∠C,且cos∠C=,若AD=1,则AE的长是.三、解答题(共7小题,满分78分)19.如图,已知两个不平行的向量、.(1)化简:2(3﹣)﹣(+);(2)求作,使得=﹣.(不要求写作法,但要指出所作图中表示结论的向量).20.在直角坐标平面内,抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点.(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.21.已知:如图,⊙O的半径为5,P为⊙O外一点,PB、PD与⊙O分别交于点A、B和点C、D,且PO平分∠BPD.(1)求证:=;(2)当PA=1,∠BPO=45°时,求弦AB的长.22.如图,小明想测量河对岸的一幢高楼AB蛾高度,小明在河边C处测得楼顶A的仰角是60°距C处60米的E处有幢楼房,小明从该楼房中距地面20米的D处测得楼顶A的仰角是30°(点B、C、E在同一直线上,且AB、DE均与地面BE处置),求楼AB的高度.23.已知:如图,在△ABC中,点D、E分别在边AB、AC上,且∠ABE=∠ACD,BE、CD交于点G.(1)求证:△AED∽△ABC;(2)如果BE平分∠ABC,求证:DE=CE.24.在平面直角坐标系xOy中,将抛物线y=(x﹣3)2向下平移使之经过点A(8,0),平移后的抛物线交y轴于点B.(1)求∠OBA的正切值;(2)点C在平移后的抛物线上且位于第二象限,其纵坐标为6,连接CA、CB.求△ABC的面积;(3)点D的平移后抛物线的对称轴上且位于第一象限,连接DA、DB,当∠BDA=∠OBA时,求点D坐标.25.如图,在矩形ABCD中,AB=8,BC=6,对角线AC、BD交于点O,点E在AB延长线上,联结CE,AF⊥CE,AF分别交线段CE、边BC、对角线BD于点F、G、H(点F不与点C、E重合).(1)当点F是线段CE的中点,求GF的长;(2)设BE=x,OH=y,求y关于x的函数解析式,并写出它的定义域;(3)当△BHG是等腰三角形时,求BE的长.2015年上海市黄浦区中考数学一模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=c,那么BC等于()A. c•sinα B. c•cosα C. c•tanα D. c•cotα考点:锐角三角函数的定义.分析:根据题意画出图形,进而利用sinA=,求出即可.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,∠A=α,AB=c,∴sinA=,∴BC=AB•sinA=c•sinα,故选:A.点评:此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.2.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A. a>0,c>0 B. a<0,c>0 C. a>0,c<0 D. a<0,c<0考点:二次函数图象与系数的关系.分析:首先根据开口方向确定a的符号,再依据与y轴的交点的纵坐标即可判断c的正负,由此解决问题.解答:解:∵图象开口方向向上,∴a>0;∵图象与Y轴交点在y轴的负半轴上,∴c<0;∴a>0,c<0.故选:C.点评:本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,运用了数形结合思想.3.如果||=3.||=2,且与反向,那么下列关系中成立的是()A.= B.=﹣ C.= D.=﹣考点: *平面向量.分析:由||=3.||=2,且与反向,根据平面向量的定义,即可求得答案.解答:解:∵||=3,||=2,∴||=||,∵与反向,∴=﹣.故选D.点评:此题考查了平面向量的知识.此题难度不大,注意理解平面向量的定义是解此题的关键.4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE ∥BC的是()A.= B.= C.= D.=考点:平行线分线段成比例.分析:根据平行线分线段成比例定理的逆定理,当=或=时,DE∥BD,然后可对各选项进行判断.解答:解:当=或=时,DE∥BD,即=或=.故选D.点评:本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.5.抛物线y=﹣x2+x﹣1与坐标轴(含x轴、y轴)的公共点的个数是()A. 0 B. 1 C. 2 D. 3考点:二次函数图象上点的坐标特征.分析:先根据判别式的值得到△=﹣3<0,根据△=b2﹣4ac决定抛物线与x轴的交点个数得到抛物线与x轴没有交点,由于抛物线与y轴总有一个交点,所以抛物线y=﹣x2+x﹣1与坐标轴的交点个数为1.解答:解:∵△=12﹣4×(﹣1)×(﹣1)=﹣3<0,∴抛物线与x轴没有交点,而抛物线y=﹣x2+x﹣1与y轴的交点为(0,﹣1),∴抛物线y=﹣x2+x﹣1与坐标轴的交点个数为1.故选B.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系,△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.如图,在△ABC中,点D、E分别在边AB、AC上,且DE∥BC,若S△ADE:S△BDE=1:2,则S :S△BEC=()△ADEA. 1:4 B. 1:6 C. 1:8 D. 1:9考点:相似三角形的判定与性质.分析:首先证明△ADE∽△ABC,进而证明S△ABC=9S△ADE;运用S△BDE=2S△ADE,得到S△BEC=6S△ADE,即可解决问题.解答:解:∵,且S△ADE:S△BDE=1:2,∴,;∵DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=9S△ADE,而S△BDE=2S△ADE,∴S△BEC=6S△ADE,∴S△ADE:S△BEC=1:6.故选B.点评:该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是牢固掌握相似三角形的判定及其性质,这是灵活运用、解题的基础和关键.二、填空题(共12小题,每小题4分,满分48分)7.如果=,那么的值是.考点:比例的性质.分析:根据合比性质,可得答案.解答:解:由=,那么==,故答案为:.点评:本题考查了比例的性质,利用合比性质:=⇒=.8.计算:tan60°﹣cos30°= .考点:特殊角的三角函数值.分析:直接利用特殊角的三角函数值代入求出即可.解答:解:原式=﹣=.故答案为:.点评:此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.9.如果某个二次函数的图象经过平移后能与y=3x2的图象重合,那么这个二次函数的解析式可以是y=3(x+2)2+3 .(只要写出一个).考点:二次函数图象与几何变换.专题:开放型.分析:先设原抛物线的解析式为y=a(x﹣h)2+k,再根据经过平移后能与抛物线y=3x2重合可知a=3,然后根据平移的性质写出解析式,答案不唯一.解答:解:先设原抛物线的解析式为y=a(x+h)2+k,∵经过平移后能与抛物线y=3x2重合,∴a=3,∴这个二次函数的解析式可以是y=3(x+2)2+3.故答案为:y=3(x+2)2+3.点评:本题考查的是二次函数的图象与几何变换,熟知图形平移不变性的性质是解答此题的关键.10.如果抛物线y=x2+(m﹣1)x﹣m+2的对称轴是y轴,那么m的值是 1 .考点:二次函数的性质.分析:由对称轴是y轴可知一次项系数为0,可求得m的值.解答:解:∵y=x2+(m﹣1)x﹣m+2的对称轴是y轴,∴m﹣1=0,解得m=1,故答案为:1.点评:本题主要考查抛物线的对称轴,掌握抛物线的对称轴为y轴其一次项系数为0是解题的关键.11.如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=2,BC=3,那么的值是.考点:平行线分线段成比例.分析:根据平行线分线段成比例可得=,代入可求得答案.解答:解:∵AD∥BE∥FC,∴==,故答案为:.点评:本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.12.如图,在梯形ABCD中,AD∥BC,AB⊥AD,BD⊥CD,如果AD=1,BC=3,那么BD长是.考点:相似三角形的判定与性质.分析:如图,证明∠A=∠BDC,∠ADB=∠DBC,得到△ABD∽△DCB,列出比例式即可解决问题.解答:解:如图,∵AD∥BC,AB⊥AD,BD⊥CD,∴∠A=∠BDC,∠ADB=∠DBC,∴△ABD∽△DCB,∴AD:BD=BD:BC,而AD=1,BC=3,∴BD=.故答案为.点评:该题主要考查了相似三角形的判定及其性质的应用问题;牢固掌握相似三角形的判定及其性质是解题的基础和关键.13.如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,那么该斜坡的坡比是.考点:解直角三角形的应用-坡度坡角问题.分析:直接利用坡度的定义,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,进而得出答案.解答:解:∵某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,∴水平距离BC==6(m),则该斜坡的坡比是:=.故答案为:.点评:此题主要考查了坡度的定义,正确把握定义是解题关键.14.在Rt△ABC中,∠C=90°,CD是斜边AB上的高,如果CD=3,BD=2.那么cos∠A的值是.考点:锐角三角函数的定义.分析:根据题意画出图形,进而利用锐角三角函数关系得出cosA=cos∠BCD进而求出即可.解答:解:如图所示:∵∠ACB=90°,∴∠B+∠A=90°,∵CD⊥AB,∴∠CDA=90°,∴∠B+∠BCD=90°,∴∠BCD=∠A,∵CD=3,BD=2,∴BC=,∴cosA=cos∠BCD===.故答案为:.点评:此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.15.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.16.在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O 与x轴的位置关系是相切.考点:直线与圆的位置关系;坐标与图形性质.分析:确定圆O的半径,然后根据点O到x轴的距离与圆的半径的大小进行判断即可.解答:解:∵圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),∴圆的半径为=5,∵O到x轴的距离为5,∴圆O与x轴的位置关系是相切,故答案为:相切.点评:本题考查了直线与圆的位置关系、坐标与图形的性质的知识,解题的关键是求得圆的半径,难度不大.17.在Rt△ABC中,∠C=90°,∠A=30°,BC=1,分别以A、B为圆心的两圆外切,如果点C在圆A内,那么圆B的半径长r的取值范围是0<r<2﹣.考点:点与圆的位置关系.分析:首先根据题意求得斜边AB和直角边AC的长,要使得点C在圆A内圆A的半径就满足比AC长、比AB短,从而得解.解答:解:∵Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,AC==,∵以A、B为圆心的两圆外切,∴两圆的半径的和为2,∵点C在圆A内,∴圆A的半径长r的取值范围是0<r<2﹣,故答案为:0<r<2﹣.点评:考查了点与圆的位置关系,判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.18.如图,在梯形ABCD中,AD∥BC,BE⊥CD,垂足为点E,连结AE,∠AEB=∠C,且cos∠C=,若AD=1,则AE的长是.考点:梯形;相似三角形的判定与性质;解直角三角形.分析:作AF∥DC,交BE于G,BC于F,作FH∥BE,交DC于H,先求得四边形ABCD是平行四边形,四边形EGFH是矩形,从而求得FC=AD=1,GE=FH,由cos∠C=求得CH,然后根据勾股定理求得FH,最后根据cos∠AEB=即可求得AE的长.解答:解:作AF∥DC,交BE于G,BC于F,作FH∥BE,交DC于H,∵AD∥BC,BE⊥CD,∴四边形ABCD是平行四边形,FH⊥DC,AF⊥BE,∴FC=AD=1,∠FHC=90°,∠AG,E=90°,∵cos∠C==,∴HC=,∴FH==,∵FH⊥DC,AF⊥BE,BE⊥CD,∴四边形EGFH是矩形,∴GE=FH=,∴cos∠AEB=,∵∠AEB=∠C,且cos∠C=,∴cos∠AEB==,∴AE===.故答案为.点评:本题考查了梯形的性质,平行四边形的判定和性质,矩形的判定和性质,勾股定理的应用,解直角三角形等,作出辅助线关键直角三角形、平行四边形、矩形是本题的关键.三、解答题(共7小题,满分78分)19.如图,已知两个不平行的向量、.(1)化简:2(3﹣)﹣(+);(2)求作,使得=﹣.(不要求写作法,但要指出所作图中表示结论的向量).考点: *平面向量.分析:(1)直接利用平面向量的加减运算法则求解即可求得,注意去括号时的符号变化;(2)利用三角形法则求解即可求得答案.解答:解:(1)2(3﹣)﹣(+)=6﹣2﹣﹣=5﹣3;(2)如图,=,=,则==﹣.∴即为所求.点评:此题考查了平面向量的运算与作法.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.20.在直角坐标平面内,抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点.(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)把原点O、A(﹣2,﹣2)与B(1,﹣5)三点分别代入函数解析式,求得a、b、c的数值得出函数解析式即可;(2)把函数解析式化为顶点式,得出顶点坐标即可.解答:解:(1)∵抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点,∴,解得:,∴抛物线的表达式为y=﹣2x2﹣3x.(2)y=﹣2x2﹣3x=y=﹣2(x+)2+,抛物线的顶点坐标为(﹣,).点评:此题考查待定系数法求函数解析式,以及利用配方法求得顶点坐标.21.已知:如图,⊙O的半径为5,P为⊙O外一点,PB、PD与⊙O分别交于点A、B和点C、D,且PO平分∠BPD.(1)求证:=;(2)当PA=1,∠BPO=45°时,求弦AB的长.考点:垂径定理;角平分线的性质;勾股定理.专题:计算题.分析:(1)作OE⊥AB于E,OF⊥CD于F,连结OB、OD,如图,根据角平分线的性质得OE=OF,根据垂径定理得AE=BE,CF=DF,则可利用“HL”证明Rt△OBE≌Rt△ODF,得到BE=DF,则AB=CD,根据圆心角、弧、弦的关系得到=,所以=;(2)在Rt△POE中,由于∠BPO=45°,则可判断△POE为等腰直角三角形,所以OE=PE=1+AE,则OE=1+BE,然后在Rt△BOE中根据勾股定理得(1+BE)2+BE2=52,解方程求出BE即可得到AB.解答:(1)证明:作OE⊥AB于E,OF⊥CD于F,连结OB、OD,如图,∵PO平分∠BPD,OE⊥AB,OF⊥CD,∴OE=OF,AE=BE,CF=DF,在Rt△OBE和Rt△ODF中,,∴Rt△OBE≌Rt△ODF,∴BE=DF,∴AB=CD,∴=,∴+=+,即=;(2)解:在Rt△POE中,∵∠BPO=45°,∴△POE为等腰直角三角形,∴OE=PE=PA+AE=1+AE,而AE=BE,∴OE=1+BE,在Rt△BOE中,∵OE2+BE2=OB2,∴(1+BE)2+BE2=52,解得BE=﹣4(舍去)或BE=3,∴AB=2BE=6.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了角平分线的性质和勾股定理.22.如图,小明想测量河对岸的一幢高楼AB蛾高度,小明在河边C处测得楼顶A的仰角是60°距C处60米的E处有幢楼房,小明从该楼房中距地面20米的D处测得楼顶A的仰角是30°(点B、C、E在同一直线上,且AB、DE均与地面BE处置),求楼AB的高度.考点:解直角三角形的应用-仰角俯角问题.分析:过点D作DF⊥AB于点F,设AB的长度为x米,则AF=x﹣20米,在Rt△ABC和Rt △ADF中分别求出BC和DF的长度,然后根据CE=BE﹣CB,代入数值求出x的值.解答:解:过点D作DF⊥AB于点F,则四边形BFDE为矩形,设AB的长度为x米,则AF=x﹣20米,在Rt△ABC中,∵∠ACB=60°,∴BC=,在Rt△ADF中,∵∠ADF=30°,∴DF=(x﹣20),∵AB=DF,CE=60米,∴(x﹣20)﹣=60,解得:x=30+30.即楼AB的高度为(30+30)米.点评:本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解,难度一般.23.已知:如图,在△ABC中,点D、E分别在边AB、AC上,且∠ABE=∠ACD,BE、CD交于点G.(1)求证:△AED∽△ABC;(2)如果BE平分∠ABC,求证:DE=CE.考点:相似三角形的判定与性质.专题:证明题.分析:(1)证明B、C、E、D四点共圆,得到∠ADE=∠ACB,即可解决问题.(2)如图,作辅助线,证明EM=EF;由sinα=,sinα=,得到,根据ME=EF,即可解决问题.解答:(1)证明:∵∠ABE=∠ACD,∴B、C、E、D四点共圆,∴∠ADE=∠ACB,而∠A=∠A,∴△AED∽△ABC.(2)解:过点E作EM⊥AB,EF⊥BC;∵BE平分∠ABC,∴EM=EF;设∠ADE=∠ACB=α,则sinα=,sinα=,∴,而ME=EF,∴DE=CE.点评:该题主要考查了相似三角形的判定及其性质的应用问题;应牢固掌握相似三角形的判定及其性质、四点共圆的判定等几何知识点.24.在平面直角坐标系xOy中,将抛物线y=(x﹣3)2向下平移使之经过点A(8,0),平移后的抛物线交y轴于点B.(1)求∠OBA的正切值;(2)点C在平移后的抛物线上且位于第二象限,其纵坐标为6,连接CA、CB.求△ABC的面积;(3)点D的平移后抛物线的对称轴上且位于第一象限,连接DA、DB,当∠BDA=∠OBA时,求点D坐标.考点:二次函数综合题.分析:(1)设平移后的抛物线表达式为y=(x﹣3)2+k,把A(8,0)代入表达式可得k的值,可得出平移后的抛物线表达式,把把x=0代入得y的值,可得出B坐标,即可得出tan∠OBA的值.(2)利用平移后的抛物线可得出点C的坐标,从而得出直线AC的解析式,由AC与y轴交于点E,可得出点E的坐标,利用S△ABC=S△BCE+S△ABE求解即可,(3)设对称轴交线段与AB与N,交x轴于点F,利用角的关系可得△NAD∽△DAB,由相似比可得AD2=AN•AB,由FN∥BO,可得AN=AB,再结合AF2+m2=AD2,即可求出点D的坐标.解答:解:(1)设平移后的抛物线表达式为y=(x﹣3)2+k,把A(8,0)代入表达式解得k=﹣,∴平移后的抛物线表达式为y=(x﹣3)2﹣,如图,把x=0代入得y=(x﹣3)2﹣,得y=﹣4,∴B(0,﹣4),在RT△AOB中,tan∠OBA==2,(2)把y=6代入y=(x﹣3)2﹣,解得x1=﹣4或x2=10(舍去),∴C(﹣4,6),如图,∴直线AC解析式为y=﹣x+4,设AC与y轴交于点E,则点E的坐标为(0,4),∴S△ABC=S△BCE+S△ABE=BE•|C横坐标|+BE•OA=16+32=48,(3)如图,设对称轴交线段与AB与N,交x轴于点F,∵FN∥BO,∴∠OBA=∠DNA,∵∠BDA=∠OBA∴∠BDA=∠DNA,∴△NAD∽△DAB,∴=,即AD2=AN•AB,∵FN∥BO,∴==,∴AN=AB,设点D的坐标为(3,m),由题意得AF2+m2=AD2,即52+m2=(4)2,解得m=5(负值舍去),∴点D(3,5).点评:本题主要考查了二次函数综合题涉及勾股定理,相似三角形,三角形面积等知识,解题的关键是确定平移后的抛物线表达式.25.如图,在矩形ABCD中,AB=8,BC=6,对角线AC、BD交于点O,点E在AB延长线上,联结CE,AF⊥CE,AF分别交线段CE、边BC、对角线BD于点F、G、H(点F不与点C、E重合).(1)当点F是线段CE的中点,求GF的长;(2)设BE=x,OH=y,求y关于x的函数解析式,并写出它的定义域;(3)当△BHG是等腰三角形时,求BE的长.考点:四边形综合题.分析:(1)首先利用勾股定理得出AC的长,证得△ACF≌△AEF,得出BE=2,进一步得出△CBE∽△ABG,△CGF∽△CBE,利用三角形相似的性质得出CF、CG的长,利用勾股定理求得而答案即可;(2)作BM⊥AF,ON⊥AF,垂足分别为M、N,利用△ONH∽△BMH,△ANO∽△AFC,△BMG∽△CFG,建立BE、OH之间的联系,进一步整理得出y关于x的函数解析式,根据y=0,得出x的定义域即可;(3)分三种情况探讨:①当BH=BG时,②当GH=GB,③当HG=HB,分别探讨得出答案即可.解答:解:(1)∵AB=8,BC=6,∴AC=10,∵AF⊥CE,∴∠AFC=∠AFE=90°,∵点F是线段CE的中点,∴CF=EF,在△ACF和△AEF中,∴△ACF≌△AEF,∴AE=AC=10,∴BE=2,∵∠CGF=∠AGB,∠GFC=∠ABG,∴∠FCG=∠GAB,∠CBE=∠ABG,∴△CBE∽△ABG,∴=,即=,BG=,∴CG=,∵∠GCF=∠BCE,∠CFG=∠CBE,∴△CGF∽△CBE,∴=,又CE=2CF,∴2CF2=BC•CG,∴CF=,∴GF==;(2)如图,作BM⊥AF,ON⊥AF,垂足分别为M、N,∵AF⊥CE,∴ON∥BM∥CE,∴△ONH∽△BMH,△ANO∽△AFC,△BMG∽△CFG,∴==,=,==,∴=,又∵△CBE∽△ABG,∴=,BE=x,∴BG=x,∴=,则y=(0<x<).(3)当△BHG是等腰三角形,①当BH=BG时,△AHD∽△BHG,=,则5+y=6,y=1,由y=,解得x=3;②当GH=GB,得出∠AHD=ABH,不存在;③当HG=HB,得出∠HGB=∠HBG=∠OCB不存在.所以BE=3.点评:此题综合考查了矩形的性质,勾股定理,相似三角形的判定与性质,等腰三角形的性质,以及全等三角形的判定与性质,知识设计的面广,需要多方位思考解决问题,渗透分类讨论的思想.。
黄浦区2015年九年级学业考试模拟卷
数学试卷
一. 选择题
1. 下列分数中,可以化为有限小数的是( ) A.
115; B. 118; C. 315; D. 318
; 2. 下列二次根式中最简根式是( )
A.
B. C. D.
3. 下表是某地今年春节放假七天最低气温(C ︒)的统计结果
A. 4,4;
B. 4,5;
C. 6,5;
D. 6,6;
4. 将抛物线2y x =向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是( )
A. 2(1)2y x =-+;
B. 2(2)1y x =-+;
C. 2(1)2y x =+-;
D. 2(2)1y x =+-;
5. 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是( ) A. 内含; B. 内切; C. 外切; D. 相交;
6. 下列命题中真命题是( )
A. 对角线互相垂直的四边形是矩形;
B. 对角线相等的四边形是矩形;
C. 四条边都相等的四边形是矩形;
D. 四个内角都相等的四边形是矩形;
二. 填空题
7. 计算:22
()a = ;
8. 因式分解:2
288x x -+= ; 9. 计算:
1
11
x x x +=+- ;
10. 1x =-的根是 ;
11. 如果抛物线2
(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ;
12. 某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生
人数占全年级外出旅游学生人数的百分比为 ;
13. 将一枚质地均匀的硬币抛掷2次,硬币证明均朝上的概率是 ; 14. 如果梯形的下底长为7,中位线长为5,那么其上底长为 ;
15. 已知AB 是O e 的弦,如果O e 的半径长为5,AB 长为4,那么圆心O 到弦AB 的距
离是 ;
16. 如图,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,且
1
2
CN BN =,设AB a =uu u r r ,BC b =uu u r r ,那么MN uuu r 可用a r 、b r
表示为 ;
17. 如图,△ABC 是等边三角形,若点A 绕点C 顺时针旋转30°至点A ',联结A B ',则
ABA '∠度数是 ;
18. 如图,点P 是以r 为半径的圆O 外一点,点P '在线段OP 上,若满足2
OP OP r '⋅=,
则称点P '是点P 关于圆O 的反演点,如图,在Rt △ABO 中,90B ∠=︒,2AB =,
4BO =,圆O 的半径为2,如果点A '、B '分别是点A 、B 关于圆O 的反演点,那么A B ''的长是 ;
三. 解答题
19. 计算:10
1
2
481)|1-+-+;
20. 解方程组:22221
x y x y ⎧-=-⎨-=⎩①
②;
21. 温度通常有两种表示方法:华氏度(单位:F ︒)与摄氏度(单位:C ︒),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:
(2)已知某天的最低气温是-5C ︒,求与之对应的华氏度数;
22. 如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,已知2AD =,4
cot 3
ACB ∠=,梯形ABCD 的面积是9; (1)求AB 的长; (2)求tan ACD ∠的值;
23. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,联结BE 、DF ,
DF 交对角线AC 于点G ,且DE DG =;
(1)求证:AE CG =; (2)求证:BE ∥DF ;
24. 如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线OA 与反比例函数12y x =
的图像交于点P ,点B 、C 分别在函数12y x
=的图像上,且AB ∥x 轴,AC ∥y 轴;
(1)当点P 横坐标为6,求直线AO 的表达式; (2)联结BO ,当AB BO =时,求点A 坐标; (3)联结BP 、CP ,试猜想:
ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP
ACP
S
S ∆∆的值;如果变化,请说明理由;
25. 如图,Rt △ABC 中,90C ∠=︒,30A ∠=︒,2BC =,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G ; (1)求线段CD 、AD 的长;
(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长;
2015年黄浦区初三二模数学参考答案
一. 选择题
1. C ;
2. C ;
3. B ;
4. D ;
5. B ;
6. D ; 二. 填空题
7. 4
a ; 8. 2
2(2)x -; 9. 221
1
x x +-; 10. 3x =; 11. 2a <; 12. 40%;
13.
1
4
; 14. 3; 15. ; 16.
1123a b -; 17. 15︒; 18. 三. 解答题
19. 解:原式12131)11
=+-
=-+=; 20. 解:由②得:1x y =+,代入①得:22(1)22y y +-=-,即2230y y --=, ∴(1)(3)0y y +-=,∴11y =-,23y =,∴10x =,24x =, ∴方程组的解为01x y =⎧⎨
=-⎩或4
3
x y =⎧⎨=⎩;
21. 解:设y kx b =+,代入(0,32)和(35,95),即032
3595
b k b +=⎧⎨
+=⎩,
∴32b =,95k =
,∴9
325
y x =+, 当5x =-时,93223y =-+=;
22. 解:(1)Rt ABC 中,4
cot 3
BC ACB AB ∠==,设4BC k =,3AB k =, ∴11
()(24)3922
ABCD S AD BC AB k k =
⋅+⋅=+⋅=,∴1k =或32k =-(舍),
∴3AB =,4BC =,5AC =;
(2)作DH AC ⊥,∵AD ∥BC ,∴DAH ACB ∠=∠,
∴Rt ADH ∽Rt CAB ,∴
2
5
DH AD AH AB AC BC ===, ∴65DH =,85AH =,∴17
5
CH AC AH =-=,
∴6
tan 17
DH ACD CH ∠=
=; 23. 解:(1)∵DE DG =,∴DEG DGE ∠=∠,∴AED CGD ∠=∠, 又∵AD CD =,45DAC DCA ∠=∠=︒,∴△A D E ≌△C D G , ∴AE CG =
(2)∵BC CD =,CE CE =,45BCE DCE ∠=∠=︒, ∴△B C E ≌△D C E ,∴BEC DEC DGE ∠=∠=∠, ∴BE ∥DF ;
24. 解:(1)当6x =时,2y =,∴(6,2)P ,设:OA l y kx =,
代入(6,2)P 得13k =
,∴1
:3
OA l y x =; (2)当3y =时,4x =,∴(4,3)B ,∵AB BO =, ∴54a =-,即9a =,∴(9,3)A (3)3:OA l y x a =
,联立12y x =
,得P ,
作PM AB ⊥,PN AC ⊥, 当x a =时,12y a =,即12
(,)C a a
,当3y =时,4x =,即(4,3)B ,
∴1(4)(32ABP
S
a =--
,112()2ACP S a a =--,
∴
3121ABP
ACP
a S
S
-
-=
=; 25. 解:(1)CD =,3AD =;
(2)∵90CDE BFC DCF ∠=∠=︒-∠,60ECD B ∠=∠=︒, ∴
△C D E ∽△BFC ,∴CE CD BC BF =,即
21
x y =+,
∴1y x =
-,(2
x ≤<
(3)90EGF CGD ∠=∠=︒
① △EGF ∽△DGC 时,GEF GDC ∠=∠,∴EF ∥DC ,
∴CE DF AC AD =1
3
3y x ==,解得x = ② △EGF ∽△C G D 时,∴GEF GCD GDF ∠=∠
=∠,
∴EF DF =,又∵CF DE ⊥,∴EG
DG =,∴
CD CE =
综上,CE =3
;。