力学典型例题23
- 格式:doc
- 大小:111.00 KB
- 文档页数:1
初中力学经典例题
例题:一个质量为5kg的物体放在水平桌面上,受到一个水平向右、大小为20N 的拉力作用,物体在水平面上做匀速直线运动。
求:(1)物体受到的摩擦力大小;(2)物体对桌面的压力大小;(3)物体与桌面之间的摩擦力系数。
解析:
1. 求物体受到的摩擦力大小
- 因为物体在水平面上做匀速直线运动,根据二力平衡的知识,在水平方向上拉力和摩擦力是一对平衡力,大小相等,方向相反。
- 已知拉力,所以摩擦力,方向水平向左。
2. 求物体对桌面的压力大小
- 在竖直方向上,物体受到重力和桌面的支持力,且处于平衡状态。
- 根据重力公式,其中,(在初中阶段,通常取),则。
- 物体对桌面的压力与桌面对物体的支持力是一对相互作用力,大小相等。
而桌面对物体的支持力与物体的重力平衡,所以。
3. 求物体与桌面之间的摩擦力系数
- 根据摩擦力公式,已知,。
- 则。
1、一根轻质弹簧一端固定,用大小为F₁的力压弹簧的另一端,平衡时弹簧长度为L₁;改用大小为F₁的力拉弹簧的另一端,平衡时弹簧长度为L₁。
已知弹簧的拉伸与压缩均在弹性限度内,则该弹簧的劲度系数为( )A. (F₁ - F₁) / (L₁ - L₁) (答案)B. (F₁ + F₁) / (L₁ + L₁)C. (F₁ + F₁) / (L₁ - L₁)D. (F₁ - F₁) / (L₁ + L₁)2、下列关于胡克定律F = kx 中的x、F、k 的单位,下列说法正确的是( )A. x 是长度单位,国际单位制中是mB. F 是力单位,国际单位制中是kgC. k 是劲度系数单位,国际单位制中是N/m (答案)D. k 是劲度系数,它没有单位3、弹簧振子以O点为平衡位置在B、C两点间做简谐运动,B、C相距20cm。
某时刻振子处于B点,经过0.5s,振子首次到达C点。
求:(1)振动的周期和频率;(2)振子在5s内通过的路程及5s末的位移大小;(3)振子在B点的加速度大小跟它距O点4cm处P点的加速度大小的比值。
(答案:5:2)4、一列简谐横波沿x轴正方向传播,波速为6m/s。
已知x = 0处的质点,在t = 0时刻开始向上运动,且经过0.4s第一次到达波峰。
则下列说法正确的是_______ 。
A. 该波的周期为0.8sB. t = 0.5s时,x = 4m处的质点位于波峰C. t = 0.9s时,x = 6m处的质点位于波谷(答案)D. x = 10m处的质点,在t = 0.7s时,速度方向向下5、下列说法正确的是()A. 物体做受迫振动达到稳定后,物体振动的频率等于物体的固有频率B. 通过超声波被血流反射回来其频率发生变化可测血流速度,是利用了多普勒效应C. 只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或比波长更小时,才能发生衍射现象D. 质点的振动方向与波的传播方向在同一直线的波,叫作横波(答案:B)6、在“用单摆测重力加速度”的实验中,为使实验结果较为准确,在实验中,下列说法正确的是( )A. 要用细线、细铁丝等作为摆线B. 摆线长度等于摆球静止时摆线悬点到摆球上端的距离C. 开始计时时,应在摆球到达最高点时开始计时D. 要保证摆球在同一竖直面内摆动,不能形成圆锥摆(答案)7、关于简谐运动,下列说法正确的是()A. 物体振动的最大位移等于振幅B. 物体的振动速度最大时,加速度也最大C. 物体每次通过同一位置时,其速度不一定相同,但加速度一定相同D. 物体每次通过平衡位置时,加速度相同,速度也一定相同(答案:A、C)8、关于受迫振动,下列说法正确的是( )A. 物体做受迫振动达到稳定后,物体振动的频率等于物体的固有频率B. 物体做受迫振动达到稳定后,物体振动的频率等于驱动力的频率(答案)C. 物体做受迫振动时,振动稳定后的频率等于物体固有频率和驱动力频率之和D. 物体做受迫振动时,振动稳定后的周期与物体固有周期和驱动力周期无关。
高中物理 20个力学经典计算题汇总及解析1. 概述在力学领域中,经典的计算题是学习和理解物理知识的重要一环。
通过解题,我们能更深入地了解力学概念,提高解决问题的能力。
在本文中,我将为您带来高中物理领域中的20个经典力学计算题,并对每个问题进行详细解析,以供您参考和学习。
2. 一维运动1) 题目:一辆汽车以30m/s的速度行驶,经过10秒后匀减速停下,求汽车减速的大小和汽车在这段时间内行驶的距离。
解析:根据公式v=at和s=vt-0.5at^2,首先可求得汽车减速度a=3m/s^2,然后再求出汽车行驶的距离s=30*10-0.5*3*10^2=150m。
3. 二维运动2) 题目:一个质点在竖直平面内做抛体运动,初速度为20m/s,抛体初位置为离地30m的位置,求t=2s时质点的速度和所在位置。
解析:首先利用v=vo+gt求得t=2s时的速度v=20-9.8*2=-19.6m/s,然后再利用s=s0+vo*t-0.5gt^2求得t=2s时的位置s=30+20*2-0.5*9.8*2^2=30+40-19.6=50.4m。
1. 牛顿运动定律3) 题目:质量为2kg的物体受到一个5N的力,求物体的加速度。
解析:根据牛顿第二定律F=ma,可求得物体的加速度a=5/2=2.5m/s^2。
2. 牛顿普适定律4) 题目:一个质量为5kg的物体受到一个力,在10s内速度从2m/s 增加到12m/s,求物体受到的力的大小。
解析:利用牛顿第二定律F=ma,可求得物体受到的力F=5*(12-2)/10=5N。
3. 弹力5) 题目:一个质点的质量为4kg,受到一个弹簧的拉力,拉力大小为8N,求弹簧的弹性系数。
解析:根据弹簧的胡克定律F=kx,可求得弹簧的弹性系数k=8/0.2=40N/m。
4. 摩擦力6) 题目:一个质量为6kg的物体受到一个10N的水平力,地面对其的摩擦力为4N,求物体的加速度。
解析:首先计算摩擦力是否达到最大值f=μN=6*10=60N,由于摩擦力小于最大值,所以物体的加速度a=10-4/6=1m/s^2。
初中物理力学经典例题15道题1. 一个质量为2kg的物体,在水平地面上受到10N的水平拉力,求物体的加速度。
解答:根据牛顿第二定律,物体的加速度等于合外力除以物体的质量。
所以物体的加速度为a = F/m = 10N / 2kg = 5m/s^2。
2. 一个质量为0.5kg的物体受到一个5N的竖直向下的重力,求物体的重力加速度。
解答:重力加速度是指物体在自由下落时垂直于地面的加速度。
根据牛顿第二定律,物体的重力加速度等于重力除以物体的质量。
所以物体的重力加速度为g = F/m = 5N / 0.5kg = 10m/s^2。
3. 一个质量为4kg的物体,向右运动时受到一个10N的水平拉力和一个8N的水平推力,求物体的加速度。
解答:物体的加速度等于合外力除以物体的质量。
合外力等于水平拉力减去水平推力,即F = 10N - 8N = 2N。
所以物体的加速度为a = F/m = 2N / 4kg = 0.5m/s^2。
4. 一个质量为2kg的物体,在斜面上受到一个与斜面垂直的力为10N的重力和一个沿斜面方向的力为4N,斜面的倾角为30度,求物体的加速度。
解答:首先将斜面上的力分解为与斜面垂直方向的力和沿斜面方向的力,即重力沿斜面方向的分力为F1 = mg * sinθ,沿斜面方向的合力为F2 = mg * cosθ。
其中,m = 2kg,g = 9.8m/s^2,θ = 30°。
所以沿斜面方向的合力为F2 = 2kg * 9.8m/s^2 * cos(30°) ≈ 16.96N。
物体的加速度等于沿斜面方向的合力除以物体的质量,即a = F2/m = 16.96N / 2kg ≈ 8.48m/s^2。
5. 一个质量为3kg的物体,向左运动时受到一个3N的水平拉力和一个5N的水平推力,求物体的加速度。
解答:物体的加速度等于合外力除以物体的质量。
合外力等于水平推力减去水平拉力,即F = 5N - 3N = 2N。
初中物理力学经典例题以下是一些经典的初中物理力学例题:1. 一个质量为5kg的物体静止在水平地面上,施加一个10N的水平力。
求物体的加速度。
解答:根据牛顿第二定律F = ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。
由于力和质量已知,将其代入方程可以求得加速度。
所以a = F / m = 10N / 5kg = 2m/s²。
2. 一个弹簧常数为200N/m的弹簧拉伸10cm后,求弹簧所受的弹力。
解答:根据胡克定律F = kx,其中F是弹簧所受的弹力,k是弹簧的弹簧常数,x是弹簧的伸长量。
由于弹簧常数和伸长量已知,将其代入方程可以求得弹力。
所以F = 200N/m × 0.1m = 20N。
3.一个物体以2m/s的速度沿直线运动,经过5s后速度变为8m/s。
求物体的加速度。
解答:根据加速度的定义a = (vf - vi) / t,其中a是物体的加速度,vf是物体的最终速度,vi是物体的初始速度,t是时间间隔。
由于初始速度、最终速度和时间间隔已知,将其代入方程可以求得加速度。
所以 a = (8m/s - 2m/s) / 5s = 1.2m/s²。
4. 一个质量为2kg的物体以10m/s的速度水平地撞击到静止的墙壁,反弹后以8m/s的速度反向运动。
求撞击过程中墙壁对物体的平均力。
解答:由于撞击过程中物体速度发生了变化,需要用动量定理来求解。
根据动量定理FΔt = Δmv,其中F是力,Δt是撞击时间,Δm是物体的质量变化量,v是物体的速度变化量。
由于质量变化量为零(质量不变),而速度变化量已知,可以求得撞击时间。
所以Δt = Δmv / F = (2kg × (8m/s - (-10m/s))) / (8m/s) = 9.5s。
由于撞击过程是瞬间发生的,可以认为撞击时间非常短,近似为0。
因此,墙壁对物体的平均力可以近似为墙壁对物体的瞬时力,即F = Δmv / Δt = 2kg × (8m/s - (-10m/s)) / 0s = ∞(无穷大)。
初中物理力学试题及解析题1:题目:一力学家测量一个物体的质量为5千克,该物体在水平方向上受到10牛的水平力。
求该物体的加速度。
解析:根据牛顿第二定律F=ma,其中F为力,m为质量,a为加速度。
代入已知数据可得10=5a,解得a=2m/s²。
题2:题目:一个物体质量为2千克,受到一个垂直向下的重力为20牛的作用力,求该物体的重力加速度。
解析:重力加速度的大小为g,根据牛顿第二定律F=ma,其中F为力,m为质量,a为加速度。
代入已知数据可得20=2g,解得g=10m/s²。
题3:题目:一根木棒在1秒内由静止开始,加速运动到6m/s。
求该木棒的平均加速度。
解析:平均加速度的计算公式为a=(v-u)/t,其中v为末速度,u为初速度,t为时间。
代入已知数据可得a=(6-0)/1=6m/s²。
题4:题目:一辆汽车以20m/s的速度行驶,司机突然踩下刹车,并使汽车在2秒内停下来。
求汽车的减速度。
解析:减速度的计算公式为a=(v-u)/t,其中v为末速度,u为初速度,t为时间。
代入已知数据可得a=(0-20)/2=-10m/s²。
由于减速度是指向相反方向的,所以答案为-10m/s²。
题5:题目:一个小球以4m/s的初速度沿直线运动,经过2秒后速度变为12m/s。
求小球的加速度。
解析:加速度的计算公式为a=(v-u)/t,其中v为末速度,u为初速度,t为时间。
代入已知数据可得a=(12-4)/2=4m/s²。
题6:题目:一力学家测量的一个物体的质量为10千克,该物体在水平方向上受到20牛的水平力。
求该物体的加速度。
解析:根据牛顿第二定律F=ma,其中F为力,m为质量,a为加速度。
代入已知数据可得20=10a,解得a=2m/s²。
题7:题目:一辆汽车质量为1200千克,在水平方向上受到2000牛的水平力推动。
求汽车的加速度。
解析:根据牛顿第二定律F=ma,其中F为力,m为质量,a为加速度。
第02章 单自由度系统的振动2.1 一根抗弯刚度72=3610Ncm EI ⨯的简支架,两支承间跨度l 1=2m ,一端伸臂l 2=1m ,略去梁的分布质量,试求悬臂端处重为Q =2548 N 的重物的自由振动频率。
【提示:22123()EJ k l l l =+,2212()3st Ql l l EIδ+=,11.77n ω= 1/s 】2.2 梁AB 其抗弯刚度72=910Ncm EI ⨯,A 端与B 端由弹簧支承,弹簧刚性系数均为k =52.92 kN/m ,如图所示。
略去梁的分布质量,试求位于B 端点左边1米处,重为Q =4900 N 的物块自由振动的周期。
【解法1:通过计算静变形求解。
A ,B 弹簧受力为3Q 和23Q ,压缩量为3Q k 和23Q k ,则由弹簧引起的静变形为159Qkδ=;利用材料力学挠度公式求出梁变形引起的静变形222212(321)4619Q QEI EIδ⋅⋅--==⋅。
周期为:22 1.08nT πω===s 。
解法2:通过弹簧刚度的串并联计算总等效刚度求解。
A ,B 弹簧相对Q 处的等效刚度为(产生单位变形需要的力,利用解法1中计算的静变形结果)195k k =;利用材料力学挠度公式求出梁相对Q 处的等效刚度294EI k =;总等效刚度为:12111eq k k k =+。
周期为22 1.08nT πω===s 。
】 2.4 一均质刚杆重为P ,长度为L 。
A 处为光滑铰接,在C 处由刚性系数为k 的弹簧使杆在水平位置时平衡。
弹簧质量不计,求杆在竖直面内旋转振动时的周期。
【解:利用定轴转动微分方程:21()32st P l l P k a a g ϕϕδ=--,2st lk a P δ=, 得:22103P lk a gϕϕ+=, 22n T πω===题 2-1 图BAQ题 2-2 图QkkAB 题 2-4 图2.8 一个重为98 N 的物体,由刚性系数为k =9.8 kN/m 的弹簧支承着(简化为标准m-k-c 振动系统),在速度为1 cm/s 时其阻力为0.98 N 。
专题23 “滑块—木板”模型的动力学问题1.“滑块—木板”模型问题中,靠摩擦力带动的那个物体的加速度有最大值:a m =F fmm.假设两物体同时由静止运动,若整体加速度小于该值,则二者相对静止,二者间是静摩擦力;若整体加速度大于该值,则二者相对滑动,二者间为滑动摩擦力.2.滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;若反向运动,位移大小之和等于板长.1.(2020·山东济南历城二中一轮复习验收)如图1所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F =kt (k 是常数),木板和木块的加速度大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是( )图1答案 A解析 当F 比较小时,两个物体相对静止,加速度相同,根据牛顿第二定律可得a =Fm 1+m 2=kt m 1+m 2,a ∝t ;当F 比较大时,木块相对于木板运动,根据牛顿第二定律可得,a 1=μm 2gm 1,μ、m 1、m 2一定,则a 1一定,a 2=F -μm 2g m 2=k m 2t -μg ,a 2是t 的线性函数,t 增大,a 2增大.由于km 1+m 2<km 2,则木块相对于木板运动后,a 2-t 图线的斜率大于两者相对静止时图线的斜率.综上所述,A 正确.2.(2020·安徽六安市质量检测)如图2所示,静止在水平地面上的木板(厚度不计)质量为m 1=1 kg ,与地面的动摩擦因数μ1=0.2,质量为m 2=2 kg 可看作质点的小物块与木板、地面间的动摩擦因数均为μ2=0.4,以v 0=4 m/s 的水平速度从左端滑上木板,经过t =0.6 s 滑离木板,g 取10 m/s 2,以下说法正确的是( )图2A .木板的长度为1.68 mB .小物块离开木板时,木板的速度为1.6 m/sC .小物块离开木板后,木板的加速度为2 m/s 2,方向水平向右 D .小物块离开木板后,木板与小物块将发生碰撞 答案 D解析 由于μ2m 2g >μ1(m 1+m 2)g ,得物块在木板上以a 1=μ2g =4 m/s 2减速滑行时木板以a 2=μ2m 2g -μ1m 1+m 2g m 1=2 m/s 2向右加速运动,在0.6 s 时,物块的速度v 1=v 0-a 1t =1.6m/s ,木板的速度v 2=a 2t =1.2 m/s ,B 错误.0.6 s 内物块位移为x 1=v 0+v 12t =1.68 m ,木板位移x 2=0+v 22t =0.36 m ,相对位移为Δx =x 1-x 2=1.32 m ,即木板长度为1.32 m ,A 错.物块离开木板后,木板做减速运动,加速度大小为a 4=μ2g =2 m/s 2,方向向左,C 错.在地面上物块会滑行x 4=v 122a 4=v 122μ2g =0.32 m ,木板会滑行x 3=v 222a 3=v 222μ1g=0.36 m ,所以两者会相碰,D 正确.3.(多选)(2020·江苏南京师大苏州实验学校一模)如图3所示,质量为m 1的木块和质量为m 2的长木板叠放在水平地面上.现对木块施加一水平向右的拉力F ,木块在长木板上滑行,长木板始终静止.已知木块与长木板间的动摩擦因数为μ1,长木板与地面间的动摩擦因数为μ2,且最大静摩擦力与滑动摩擦力相等.重力加速度为g ,则( )图3A .μ1一定小于μ2B .μ1可能大于μ2C .改变F 的大小,F >μ2(m 1+m 2)g 时,长木板将开始运动D .改F 作用于长木板,F >(μ1+μ2)(m 1+m 2)g 时,长木板与木块将开始相对滑动 答案 BD解析 对木块,根据牛顿运动定律有:F -μ1m 1g =m 1a ;对长木板,由于保持静止,有:μ1m 1g -F f =0,F f <μ2(m 1+m 2)g ,m 1、m 2的大小关系不确定,所以μ1、μ2的大小关系无法确定,故A 错误,B 正确.改变F 的大小,只要木块在木板上滑动,木块对木板的滑动摩擦力不变,长木板仍然保持静止,故C 错误.若将F 作用于长木板,当木块与木板恰好开始相对滑动时,对木块,μ1m 1g =m 1a ,解得a =μ1g ,对整体分析,有F -μ2(m 1+m 2)g =(m 1+m 2)a ,解得F =(μ1+μ2)(m 1+m 2)g ,所以当F >(μ1+μ2)(m 1+m 2)g 时,长木板与木块将开始相对滑动,故D 正确.4.(多选)(2019·全国卷Ⅲ·20)如图4(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力.细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s 2.由题给数据可以得出( )图4A .木板的质量为1 kgB .2~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2 答案 AB解析 由题图(c)可知木板在0~2 s 内处于静止状态,再结合题图(b)中细绳对物块的拉力f 在0~2 s 内逐渐增大,可知物块受到木板的摩擦力逐渐增大,故可以判断木板受到的水平外力F 也逐渐增大,选项C 错误;由题图(c)可知木板在2~4 s 内做匀加速运动,其加速度大小为a 1=0.4-04-2 m/s 2=0.2 m/s 2,对木板进行受力分析,由牛顿第二定律可得F -F f =ma 1,在4~5 s 内做匀减速运动,其加速度大小为a 2=0.4-0.25-4 m/s 2=0.2 m/s 2,F f =ma 2,另外由于物块静止不动,同时结合题图(b)可知物块与木板之间的滑动摩擦力F f =0.2 N ,解得m =1 kg 、F =0.4 N ,选项A 、B 正确;由于不知道物块的质量,所以不能求出物块与木板之间的动摩擦因数,选项D 错误.5.(多选)(2020·山东邹城一中测试)如图5甲所示,质量为m =1 kg 可视为质点的物块A放置在长木板B 上,A 、B 静止在水平地面上,已知长木板B 的质量M =4 kg ,A 与B 及B 与地面间的动摩擦因数均为μ=0.1,用水平外力F 作用在长木板B 上,外力F 随时间变化关系如图乙所示,设最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2,则下列说法正确的是( )图5A .t =0时刻,A 的加速度为零B .t =5 s 时刻,B 的加速度为3.5 m/s 2C .在整个运动过程中,物块A 的加速度始终不变D .如果长木板B 足够长,最终A 、B 将共速 答案 BC解析 由滑动摩擦力公式可知,A 、B 间的滑动摩擦力:F f A =μmg =1 N ,B 与地面间的滑动摩擦力:F f B =μ(M +m )g =5 N ,A 、B 间发生相对滑动后,A 的加速度将保持不变,其大小为:a A =F f Am=1 m/s 2.若A 、B 间刚好发生相对滑动时的外力为F 1,由牛顿第二定律得F 1-μ(M +m )g =(M +m )a A ,得F 1=10 N ,所以t =0时刻A 的加速度a A =1 m/s 2,故A 项错误,C 项正确;在t =5 s 时,F =20 N ,对长木板B 由牛顿第二定律有:F -F f A -F f B =Ma B ,得a B =3.5 m/s 2,故B 项正确;只要F 始终作用在长木板B 上,B 的加速度始终大于A 的加速度,无论长木板B 多长,A 、B 都不会共速,故D 项错误.6.(多选)如图6甲所示,质量为2m 的足够长的木板B 放在粗糙水平面上,质量为m 的物块A 放在木板B 的右端且A 与B 、B 与水平面间的动摩擦因数均为μ,现对木板B 施加一水平变力F ,F 随t 变化的关系如图乙所示,最大静摩擦力等于滑动摩擦力,重力加速度为g ,下列说法正确的是( )图6A .前3 s 内,A 受到的摩擦力方向水平向右B .t =4 s 时,A 的加速度大小为13μgC .t =5 s 时,A 受到的摩擦力大小为0.5μmgD .第6 s 以后,A 受到的摩擦力大小为μmg 答案 BD解析 A 相对B 刚要滑动时,A 的加速度为a A =μg ,B 的加速度a B =F -4μmg2m,且a A =a B ,解得F =6μmg ,由图乙可知,第6 s 以后,F >6μmg ,A 相对B 滑动,A 受到的摩擦力大小为μmg ,故D 正确;A 和B 一起滑动时,a AB =F -3μmg 3m ≥0,解得F ≥3μmg ,所以在前3 s 内,A 、B 静止不动,A 受到的摩擦力为0,故A 错误;当t =4 s 时,A 和B 一起滑动,A 的加速度大小为a AB =F -3μmg 3m =4μmg -3μmg 3m =13μg ,故B 正确;当t =5 s 时,A 和B 一起滑动,A 受到的摩擦力大小F f =ma AB =m ·5μmg -3μmg 3m =23μmg ,故C 错误.7.(多选)如图7所示,质量相等的物块A 和木板B 叠放在水平地面上,左边缘对齐.A 与B 、B 与地面间的动摩擦因数均为μ.先水平敲击A ,A 立即获得水平向右的初速度v A ,在B 上滑动距离L 后停下.接着水平敲击B ,B 立即获得水平向右的初速度v B ,A 、B 都向右运动,左边缘再次对齐时恰好相对静止,相对静止前B 的加速度大小为a 1,相对静止后B 的加速度大小为a 2,此后两者一起运动至停下.已知最大静摩擦力等于滑动摩擦力,重力加速度为g .下列说法正确的是( )图7A .a 1=3a 2B .v A =2μgLC .v B =22μgLD .从左边缘再次对齐到A 、B 停止运动的过程中,A 和B 之间没有摩擦力 答案 ABC解析 分析可知,敲击A 时,B 始终静止,由牛顿第二定律知,A 加速度的大小a A =μg ,由匀变速直线运动规律有2a A L =v A 2,解得v A =2μgL ,选项B 正确;设A 、B 的质量均为m ,敲击B 时,在A 、B 相对滑动的过程中,B 所受合外力大小为3μmg ,由牛顿第二定律有3μmg =ma 1,解得a 1=3μg ,当A 、B 相对静止后,对A 、B 整体由牛顿第二定律有2μmg =2ma 2,解得a 2=μg ,故a 1=3a 2,选项A 正确;经过时间t ,A 、B 达到共同速度v ,位移分别为x A 、x B ,A 加速度的大小等于a 2,则v =a 2t ,v =v B -a 1t ,x A =12a 2t 2,x B =v B t -12a 1t 2且x B -x A =L ,解得v B =22μgL ,选项C 正确;对齐后,A 、B 整体以加速度大小a 2=μg 一起做匀减速运动,对A 分析有F f =ma 2=μmg ,故A 、B 之间有摩擦力且达到最大静摩擦力,选项D 错误. 8.(多选)(2020·云南大理、丽江等校第二次统考)如图8(a),质量m 1=0.2 kg 的足够长平板小车静置在光滑水平地面上,质量m 2=0.1 kg 的小物块静止于小车上,t =0时刻小物块以速度v 0=11 m/s 向右滑动,同时对小物块施加一水平向左、大小恒定的外力F ,图(b)显示物块与小车第1 s 内运动的v -t 图象.设最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.则下列说法正确的是( )图8A .小物块与平板小车间的动摩擦因数μ=0.4B .恒力F =0.5 NC .小物块与小车间的相对位移x 相对=6.5 mD .小物块向右滑动的最大位移是x max =7.7 m 答案 ABD解析 由题图(b)知,小车和小物块的加速度分别为a 1=Δv 1Δt =2-01 m/s 2=2 m/s 2a 2=Δv 2Δt =2-111m/s 2=-9 m/s 2对小车:μm 2g =m 1a 1,对小物块:-(F +μm 2g )=m 2a 2, 解得μ=0.4,F =0.5 N ,故A 、B 正确;根据题图(b)可知,在t =1 s 时小车和小物块的速度相同,两者不再发生相对运动,相对位移等于图中三角形的面积,x 相对=112 m =5.5 m ,C 错误;在0~1 s 内小物块向右滑动的位移x 1=2+112m =6.5 m当小车与小物块的速度相等后,在外力的作用下一起向右匀减速运动,其加速度大小为a 3=Fm 1+m 2=53m/s 2, 当速度减小到0时,整体向右发生的位移为x 2=222×53m =1.2 m所以小物块向右滑动的最大位移是x max =x 1+x 2=7.7 m ,故D 正确.9.(多选)(2020·山东济南市期末)如图9所示,倾角为37°的足够长斜面,上面有一质量为2 kg 、长8 m 的长木板Q ,木板上下表面与斜面平行.木板Q 最上端放置一质量为1 kg 的小滑块P .P 、Q 间光滑,Q 与斜面间的动摩擦因数为13.若P 、Q 同时从静止释放,以下关于P 、Q两个物体运动情况的描述正确的是(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)( )图9A .P 、Q 两个物体加速度分别为6 m/s 2、4 m/s 2B .P 、Q 两个物体加速度分别为6 m/s 2、2 m/s 2C .P 滑块在Q 上运动时间为1 sD .P 滑块在Q 上运动时间为2 s 答案 BD解析 对P 受力分析,受重力和Q 对P 的支持力作用,根据牛顿第二定律有:m P g sin 37°=m P a P解得:a P =g sin 37°=6 m/s 2对Q 受力分析,受重力、斜面对Q 的支持力、摩擦力和P 对Q 的压力作用,根据牛顿第二定律有:m Q g sin 37°-μ(m P +m Q )g cos 37°=m Q a Q ,解得:a Q =2 m/s 2,故A 错误,B 正确;设P 在Q 上面滑动的时间为t ,因a P =6 m/s 2>a Q =2 m/s 2,故P 比Q 运动更快,根据位移关系有:L =12(a P -a Q )t 2,代入数据解得t =2 s ,故C 错误,D正确.10.(2020·广东广州市一模)如图10所示,质量M =8 kg 的小车放在水平光滑的平面上,在小车右端加一F =8 N 的水平拉力,当小车向右运动的速度达到v 0=1.5 m/s 时,在小车前端轻轻地放上一个大小不计、质量为m =2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,小车足够长,g 取10 m/s 2.求:图10(1)放小物块后,小物块及小车的加速度各为多大; (2)经多长时间两者达到相同的速度;(3)从小物块放上小车开始,经过t =1.5 s 小物块通过的位移大小为多少? 答案 (1)2 m/s 20.5 m/s 2 (2)1 s (3)2.1 m解析 (1)对小车和物块受力分析,由牛顿第二定律可得,物块的加速度:a m =μg =2 m/s 2小车的加速度:a M =F -μmg M=0.5 m/s 2(2)由:a m t =v 0+a M t 得:t =1 s ,所以速度相同时用的时间为1 s. (3)在开始1 s 内小物块的位移:x 1=12a m t 2=1 m最大速度:v =a m t =2 m/s在接下来的0.5 s 物块与小车相对静止,一起做加速运动,加速度:a =FM +m=0.8 m/s 2这0.5 s 内的位移:x 2=vt ′+12at ′2=1.1 m所以通过的总位移x =x 1+x 2=2.1 m.11.如图11所示,两个完全相同的长木板放置于水平地面上,木板间紧密接触,每个木板质量M =0.6 kg ,长度l =0.5 m .现有一质量m =0.4 kg 的小木块,以初速度v 0=2 m/s 从木板的左端滑上木板,已知木块与木板间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1,重力加速度g 取10 m/s 2.求:图11(1)小木块滑上第二个木板的瞬间的速度大小; (2)小木块最终滑动的位移(保留3 位有效数字). 答案 (1)1 m/s (2)0.670 m解析 (1)木板受到木块的摩擦力为F f1=μ1mg 木板受到地面的摩擦力为F f2=μ2(2M +m )g 因为F f2>F f1,所以木块运动时,木板静止不动设木块在左边第一个木板上的加速度大小为a 1,μ1mg =ma 1 小木块滑上第二个木板的瞬间的速度为v ,则v 2-v 02=-2a 1l代入数据解得:v =1 m/s(2)木块滑上第二个木板后,设木板的加速度大小为a 2,则μ1mg -μ2(M +m )g =Ma 2设木块与木板达到相同速度v 1时,用时为t ,则有: 对木块:v 1=v -a 1t 对木板有:v 1=a 2t解得:v 1=0.1 m/s ,t =0.3 s此时木块运动的位移x 1=v +v 12t =0.165 m木板的位移x 1′=v 122a 2=0.015 m木块在木板上滑动的长度为x 1-x 1′<l达到共速后,木块和木板一起继续运动,设木块、木板一起运动的加速度大小为a 3,位移为x 2,μ2(M +m )g =(M +m )a 3 v 12=2a 3x 2解得x 2=0.005 m小木块滑动的总位移x =l +x 1+x 2=0.670 m.。